Abstract
竞争性内源核糖核酸(ceRNA)假说是一种新的基因转录后调控模式,即编码蛋白质的信使 RNA(mRNA)、长链非编码核糖核酸(lncRNA)、假基因转录物、环状核糖核酸(circRNA)等可通过结合微小核糖核酸(miRNA)参与其靶基因的表达调控。ceRNA 调节网络在维持正常生理状态及调控疾病发生、发展中发挥重要作用。本文围绕着该假说的提出、相关分子类型、当前研究现状、存在问题和发展方向等多个方面,对 ceRNA 的研究进展进行综述,有助于阐明包括肿瘤在内的多种疾病的致病机理,并为疾病的诊治提供新思路。
Keywords: 竞争性内源 RNA, 微小 RNA, 微小 RNA 应答元件, 转录后调控
Abstract
The competing endogenous RNA (ceRNA) hypothesis is a new pattern of gene posttranscriptional regulation. Encoding mRNA, long noncoding RNA (lncRNA), pseudogene transcript, circular RNA (circRNA), etc. can regulate gene expression by binding microRNA (miRNA). According to the research, ceRNA regulatory network participates in the maintenance of normal physiological state, occurrence and development of diseases. This paper reviewed ceRNA with the following respects: the proposal of ceRNA hypothesis, members of ceRNA regulatory network, research status, limitations and future development directions of this hypothesis. It will contribute to clarify the pathogenesis of much diseases including tumor and provide a new strategy for the diagnosis and treatment of disease.
Keywords: competing endogenous RNA, microRNAs, microRNA response element, posttranscriptional regulation
引言
自从竞争性内源核糖核酸(competing endogenous RNA,ceRNA)假说提出以来[1-2],尽管存在争议,但在越来越多生理和病理状态下发现该调控作用的存在,因此研究该假说对于揭示疾病发生机理及寻找疾病潜在治疗靶点等方面具有重要价值。ceRNA 是对传统微小 RNA(microRNA,miRNA)/信使 RNA(messanger RNA,mRNA)调控作用的补充,目前已发现多种 RNA 分子可通过相互作用形成 ceRNA 调控网络执行转录后调控的生物学功能。ceRNA 调控机制研究虽尚处于初级阶段,还有许多问题没有解决,但研究意义重大,成为医学和生物学研究的热点及难点。本文围绕该假说的提出、相关分子类型、当前研究现状、存在问题和发展方向等多个方面对 ceRNA 的研究进展进行综述,有助于揭示包括肿瘤在内的多种疾病的发生和发展规律,为从 RNA 角度出发进行疾病诊疗提供理论指导。
1. ceRNA 假说的提出
miRNA 与其靶向 RNA 之间的关系一度被认为是单向的,即靶基因接受 miRNA 的调控。直到 2009 年,Seitz[3]提出 miRNA 与 RNA 的关系并不是单向的,在 miRNA 通过与靶基因结合影响 RNA 稳定性和转录过程的同时,RNA 也可通过吸附作用来调节游离 miRNA 的丰度。随着研究深入,哈佛医学院 Pandolfi 课题组 Salmena 等[4]于 2011 年提出了竞争性内源性 RNA(competing endogenous RNA,ceRNA)假说。该假说认为,能够发挥 ceRNA 调控作用的分子是通过竞争结合相同的 miRNA 应答元件(miRNA response elements,MREs)完成的,一个 miRNA 可以调控多个靶基因,同时相同的靶基因可以被不同 miRNA 调控,即被同一 miRNA 调控的不同 RNA 之间形成了一种竞争关系,称为 ceRNA。该假说后来陆续被多个实验证实[5-6]。
2. 参与 ceRNA 机制的 RNA 分子类型
参与 ceRNA 机制的 RNA 分子类型包括编码蛋白的 mRNA、长链非编码 RNA(long non-coding RNA,lncRNA)、一些假基因(pseudogene)转录物及环状 RNA(circular RNA,circRNA)、miRNA 抑制剂等。
2.1. 编码蛋白的 mRNA 作为 ceRNA
传统观点认为,编码蛋白质基因的 mRNA 只能通过翻译成蛋白质的形式行使功能,ceRNA 机制颠覆了这种传统认识,丰富了转录调控网络。由于 mRNA 的 3’—非翻译区(3’-untranslated region,3’-UTR)多数都包含能与 miRNA 种子序列互补结合的区域,因而能够作为 ceRNA 分子参与基因表达调控。研究发现,叉头状转录因子 O1(forkhead transcription factor O1,FoxO1)mRNA 的 3’-UTR 可竞争性结合微小 RNA-9(microRNA-9,miR-9),上调 E 钙黏蛋白表达,抑制乳腺癌细胞转移[7]。在非小细胞肺癌中,星形细胞上调基因-1(astrocyte elevated gene-1,AEG-1)mRNA 的 3’-UTR 也可作为 ceRNA 竞争性结合微小 RNA-30a(microRNA-30a,miR-30a),促进癌细胞转移和侵袭[8]。特异蛋白 1(specific protein1,Sp1)在成牙质细胞分化期间通过竞争性结合多个 miRNA 发挥其作为 Kruppel 样因子 4(Kruppel-like factor 4,Klf4)的 ceRNA 调控作用[9]。
2.2. lncRNA 作为 ceRNA
lncRNA 是指长度大于 200 个核苷酸、不编码蛋白的一类内源性 RNA 分子,在多种疾病中均发现 lncRNA 可作为 ceRNA 发挥作用[10]。lncRNA 同源异型盒基因(homeobox,HOX)的反义基因间 RNA(HOX antisense intergenic RNA,HOTAIR)可竞争性结合微小 RNA-331-3p(microRNA-331-3p,miR-331-3p),上调上皮生长因子受体 2(human epidermal growth factor receptor 2,HER2)的表达水平,促进胃癌细胞增殖、侵袭与转移[11]。lncRNA 核糖核酸酶 P RNA 元件 H1(ribonuclease P RNA component H1,Rpph1)通过 ceRNA 方式调节细胞分裂周期蛋白 42(cell division control protein 42,CDC42)的表达水平,这可能是阿尔兹海默病(Alzheimer’s disease,AD)发病早期的一种代偿机制[12]。lncRNA 增殖性抗原 Ki-67 FHA 域相互作用的核仁磷蛋白-3(long non-coding RNA MKI67 FHA domain-interacting nucleolar phospho protein,lnc-MKI67IP-3)充当 ceRNA,可抑制血管内皮细胞炎症反应[13]。lncRNA 铁蛋白重链 1 假基因 3(ferritin heavy chain 1 pseudogene 3,FTH1P3)作为 ceRNA 调节卷曲蛋白 5(fizzled5,fzd5)表达,促进口腔鳞状细胞癌细胞增殖和集落形成,影响肿瘤进程[14]。基因间 lncRNA 00858(LINC00858)作为 ceRNA 调节激肽释放酶相关肽酶 4(kallikrein 4,KLK4)的表达从而促进非小细胞肺癌细胞增殖,诱导细胞迁移和侵袭[15]。肾细胞癌舒尼替尼耐药细胞系中激活的长链非编码 RNA(long non-coding RNA activated in renal cell carcinoma with sunitinib resistance,lncARSR)是一种与舒尼替尼药物耐药相关的肾细胞癌特异性高表达 lncRNA。实验表明,耐药细胞可以通过外泌体传递 lncARSR,与微小 RNA-34/449(microRNA-34/449,miR-34/449)结合调控黏附相关激酶(adhesion related kinase,AXL)和原癌基因细胞间质表皮转化因子(cellular-mesenchymal to epithelial transition factor,c-MET)的表达影响相关细胞抗药性[16]。
2.3. 假基因作为 ceRNA
假基因由于不参加编码蛋白质而一度被认为是“垃圾基因”,随着研究深入,现已逐渐证实假基因不仅可通过转录生成 RNA 并进一步翻译生成蛋白质,还可通过 ceRNA 网络调控亲本基因的表达[17-18]。第 10 染色体同源丢失性磷酸酶-张力蛋白(phosphatase and tensin homologue deleted on chromosome 10,PTEN)的假基因 PTENP1 与 PTEN 的 3’-UTR 序列高度相似,两者能与多种共同 miRNA 竞争性结合[19]。Tay 等[20]对柯尔斯顿大鼠肉瘤病毒(kirsten rat sarcoma viral,KRAS)基因及其假基因 KRAS1P 的研究发现,过表达 KRAS1P 的 3’-UTR,可以提高 KRAS 转录物的表达水平,进而促进细胞增殖,影响肿瘤发生。
2.4. 人工 miRNA 抑制剂
人工 miRNA 抑制剂,又称“miRNA 海绵”,是人工构建的与 miRNA 几乎完全互补的单链 RNA 反义寡核苷酸或含有多个 MREs 的转基因载体,并通过甲基化或形成一个发夹结构来增强其稳定性,其转录物“吸附”相应的 miRNA,进而可以发挥 ceRNA 的作用[21]。但只有人工 miRNA 海绵在细胞内达到较高水平时,才能比较有效地发挥其作用[22]。此外,人工 miRNA 抑制剂针对性较强,因此难以抑制多种 miRNA 的功能。
2.5. circRNA 作为 ceRNA
circRNA 最初是在酵母线粒体内发现的,后来在人体内也发现了这种 RNA 分子,但是其生物学作用目前尚不明确[23]。circRNA 缺乏多聚腺苷酸尾(polyadenylic acid,poly A)和 5’-末端,可以逃避脱腺苷、脱帽和降解等过程,稳定性较高,在充当 miRNA 海绵方面具有明显优势[24]。实验表明,小脑变性相关蛋白 1 反义链(cerebellar degeneration-related protein 1 antisense,CDR1as)又称作微小 RNA-7 环状 RNA 海绵(circular RNA sponge miR-7,ciRS- 7),包含 63 个保守的微小 RNA-7(microRNA-7,miR-7)结合位点可作为 ceRNA 竞争性结合 miRNA[25]。在先天性巨结肠症中,锌指蛋白 609(zinc finger protein 609,ZNF609)的 circRNA 作为 ceRNA 可吸附微小 RNA-150-5p(microRNA-150-5p,miR-150-5p)调控胸腺瘤病毒原癌基因 3(thymomaproto-oncogene 3,AKT3)表达[26]。在神经退行性疾病、膀胱癌以及软骨关节炎等领域中均已发现作为 ceRNA 的分子在发挥调控作用[27-29]。
2.6. 病毒来源的竞争 RNA
最新研究表明,病毒也可产生非编码 RNA,并经由 ceRNA 调控网络来影响宿主靶基因的表达[30]。在疱疹病毒转染的 T 细胞中富含尿嘧啶的疱疹病毒 RNAs(herpesvirus saimiri U RNAs,HSURs)高表达,具有多个宿主细胞 miRNA 家族结合位点,调控宿主细胞 FoxO1 基因表达水平。此外,逆转录病毒的基因组 RNA 也可以作为 ceRNA,如丙型肝炎病毒(hepatitis C virus,HCV)的 5’-端非翻译区(5’-untranslated region,5’-UTR)可竞争性结合微小 RNA-122(microRNA-122,miR-122)并逃脱降解,从而稳定存在[31]。
3. ceRNA 与正常生理状态
ceRNA 作为一种全新的基因表达调控模式,赋予多种 RNA 分子更广泛的生物学功能,在维持细胞正常生理状态等方面发挥重要作用,有助于对很多重要的生物学现象进行深入、全面地解析[32]。例如,灵长类动物可通过 ceRNA 机制控制某些信号通路的神经元数量,进而控制大脑皮层的发展进程[33]。再如,lncRNA H19 可作为 ceRNA,通过竞争性结合微小 RNA-874(microRNA-874,miR-874)来调节水通道蛋白 3(aquaporin-3,AQP3)的表达,在维持肠道屏障功能方面发挥重要作用[34]。最新实验发现,软骨细胞细胞外基质(extracellular matrix,ECM)相关 circRNA(chondrocyte ECM-related circRNAs,circRNA-CER)可通过 ceRNA 机制调控基质金属蛋白酶 13(matrix metalloproteinases,MMP13)的表达并参与软骨细胞 ECM 的降解[35]。
4. ceRNA 与疾病
除了影响信号通路,ceRNA 还能以多种其他方式参与疾病的发生和发展过程。在心血管研究中发现了多种 ceRNA 分子。心肌梗死转录相关因子 lncRNA(myocardial infarction associated transcript,lncRNA MIAT)以 ceRNA 的形式调控血管内皮生长因子 A 促进视网膜血管增生,参与调控糖尿病诱发的血管紊乱[36]。在缺氧条件下,心肌凋亡 lncRNA(cardiac apoptosis-related lncRNA,CARL)表达下调,其作为抗增殖蛋白 2(prohibitin,PHB2)的 ceRNA,抑制线粒体分裂和心肌细胞凋亡[37]。心脏相关环状 RNA(heart-related circRNA,HRCR)的过表达通过 ceRNA 机制减弱微小 RNA-223(microRNA-223,miR-223)对凋亡抑制蛋白(apoptosis repressor with caspase recruitment domain,ARC)的抑制作用,诱导 ARC 表达上调,抑制心肌细胞肥大[38]。
另一方面,多种 ceRNA 被证实参与调控肿瘤的发生、发展。八聚体结合转录因子 4(octamer-binding transcription factor 4,OCT4)假基因 4(OCT4 pseudogene 4,OCT4-pg4)竞争性结合微小 RNA-145(microRNA-145,miR-145),使 OCT4 表达上调,促进肝癌细胞生长[39]。多能蛋白聚糖 mRNA 的 3’-UTR 通过竞争性结合多种 miRNA,调节其靶基因 PTEN 的表达水平,影响乳腺癌细胞生长[40]。lncRNA 甲状腺乳头状癌易感性候选子 3(papillary thyroid carcinoma susceptibility candidate 3,PTCSC3)在甲状腺癌中表达下调,通过 ceRNA 网络,作为微小 RNA-574(microRNA-574,miR-574)的抑制剂,对甲状腺癌细胞生长、细胞周期和凋亡过程进行调控[17]。目前人们已经在肝癌、乳腺癌、前列腺癌、结直肠癌、肺癌、黑色素瘤、恶性胶质瘤等多种肿瘤中证实了 ceRNA 调控机制在肿瘤发生、发展中的作用[28, 41-43]。
5. 结语
ceRNA 作为重要的转录后调控模式,现已成为 RNA 生物学研究的一个新兴领域,虽取得了很大的进步,但尚不十分完善。目前的绝大多数研究一般还只局限于几个 RNA 之间,没有涉及到对 ceRNA 网络的整体研究。虽然 ceRNA 预测方法在不断地更新,但还不能将影响 ceRNA 的因素完全包括在内,需要寻找新的研究思路、开发新技术。目前有关 ceRNA 的研究大多还停留在生物信息学预测阶段,获得的实验证据还不十分充分,其参与调控的具体机制还需进一步探究。我们相信,随着 ceRNA 研究深入,将有助于拓展人们对疾病发病机理的认识,为人类疾病提供新的治疗思路和方法。
Funding Statement
辽宁省“百千万人才工程”资助项目(2011921039);沈阳市科学计划项目大型仪器设备共享服务专项(F16-102-4-00)
References
- 1.Martirosyan A, De Martino A, Pagnani A A, et al ceRNA crosstalk stabilizes protein expression and affects the correlation pattern of interacting proteins. Sci Rep. 2017;7:43673. doi: 10.1038/srep43673. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 2.Sanchez-Taltavull D, Macleod M, Perkins T J On cross-conditional and fluctuation correlations in competitive RNA networks. Bioinformatics. 2016;32(17):790–797. doi: 10.1093/bioinformatics/btw472. [DOI] [PubMed] [Google Scholar]
- 3.Seitz H Redefining microRNA targets. Curr Biol. 2009;19(10):870–873. doi: 10.1016/j.cub.2009.03.059. [DOI] [PubMed] [Google Scholar]
- 4.Salmena L, Poliseno L, Tay Y, et al. A ceRNA hypothesis: the Rosetta Stone of a hidden RNA language? Cell, 2011, 146(3): 353-358
- 5.Li Chengyun, Liang Geyu, Yao Wenzhuo, et al Integrated analysis of long non-coding RNA competing interactions reveals the potential role in progression of human gastric cancer. Int J Oncol. 2016;48(5):1965–1976. doi: 10.3892/ijo.2016.3407. [DOI] [PubMed] [Google Scholar]
- 6.Li Mingxun, Sun Xiaomei, Cai Hanfang, et al Long non-coding RNA ADNCR suppresses adipogenic differentiation by targeting miR-204. Biochim Biophys Acta. 2016;1859(7):871–882. doi: 10.1016/j.bbagrm.2016.05.003. [DOI] [PubMed] [Google Scholar]
- 7.Yang J, Li T, Gao C, et al Foxo1 3’-UTR functions as a ceRNA in repressing the metastases of breast cancer cells via regulating miRNA activity. FEBS Lett. 2014;588:3218–3224. doi: 10.1016/j.febslet.2014.07.003. [DOI] [PubMed] [Google Scholar]
- 8.Liu Kunmei, Guo Le, Guo Yongjian, et al AEG-1 3’-untranslated region functions as a ceRNA in inducing epithelial-mesenchymal transition of human non-small cell lung cancer by regulating miR-30a activity. Eur J Cell Biol. 2015;94(1):22–31. doi: 10.1016/j.ejcb.2014.10.006. [DOI] [PubMed] [Google Scholar]
- 9.Zhang Jie, Liu Huan, Lin Heng, et al Sp1 is a competitive endogenous RNA of Klf4 during odontoblast differentiation. International Journal of Biochemistry & Cell Biology. 2017;85:159–165. doi: 10.1016/j.biocel.2017.02.008. [DOI] [PubMed] [Google Scholar]
- 10.Evans J R, Feng F Y, Chinnaiyan A M The bright side of dark matter:lncRNAs in cancer. J Clin Invest. 2016;126(8):2775–2782. doi: 10.1172/JCI84421. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 11.Yang Chao, Wu Di, Gao Lin, et al Competing endogenous RNA networks in human cancer: hypothesis, validation, and perspectives. Oncotarget. 2016;7(12):13479–13490. doi: 10.18632/oncotarget.7266. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 12.Cai Yifei, Sun Ziling, Jia Huizhen, et al Rpph1 upregulates CDC42 expression and promotes hippocampal neuron dendritic spine formation by competing with miR-330-5p. Front Mol Neurosci. 2017;10:27. doi: 10.3389/fnmol.2017.00027. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 13.Lin Zongwei, Ge Junfeng, Wang Zhe, et al Let-7e modulates the inflammatory response in vascular endothelial cells through ceRNA crosstalk. Sci Rep. 2017;7:42498. doi: 10.1038/srep42498. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 14.Zhang C Z Long non-coding RNA FTH1P3 facilitates oral squamous cell carcinoma progression by acting as a molecular sponge of miR-224-5p to modulate fizzled 5 expression. Gene. 2017;607:47–55. doi: 10.1016/j.gene.2017.01.009. [DOI] [PubMed] [Google Scholar]
- 15.Zhu Shaoping, Wang Junyu, Wang Xianguo, et al Long intergenic non-protein coding RNA 00858 functions as a competing endogenous RNA for miR-422a to facilitate the cell growth in non-small cell lung cancer. Aging (Albany NY) 2017;9(2):475–486. doi: 10.18632/aging.101171. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 16.Qu Le, Ding Jin, Chen Cheng, et al Exosome-Transmitted lncARSR promotes sunitinib resistance in renal cancer by acting as a competing endogenous RNA. Cancer Cell. 2016;29(5):653–668. doi: 10.1016/j.ccell.2016.03.004. [DOI] [PubMed] [Google Scholar]
- 17.Shi Xuefei, Nie Fengqi, Wang Zhaoxia, et al Pseudogene-expressed RNAs: a new frontier in cancers. Tumour Biol. 2016;37(2):1471–1478. doi: 10.1007/s13277-015-4482-z. [DOI] [PubMed] [Google Scholar]
- 18.An Y, Furber K L, Ji S Pseudogenes regulate parental gene expression via ceRNA network. J Cell Mol Med. 2017;21(1):185–192. doi: 10.1111/jcmm.12952. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 19.Wang Lei, Zhang Ning, Wang Zun, et al Pseudogene PTENP1 functions as a competing endogenous RNA (ceRNA) to regulate PTEN expression by sponging miR-499-5p. Biochemistry (Mosc) 2016;81(7):739–747. doi: 10.1134/S0006297916070105. [DOI] [PubMed] [Google Scholar]
- 20.Tay Y, Rinn J, Pandolfi P P The multilayered complexity of ceRNA crosstalk and competition. Nature. 2014;505(7483):344–352. doi: 10.1038/nature12986. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 21.Migault M, Donnou F E, Galibert M D, et al Definition and identification of small RNA sponges: Focus on miRNA sequestration. Methods. 2017;117:35–47. doi: 10.1016/j.ymeth.2016.11.012. [DOI] [PubMed] [Google Scholar]
- 22.Thomson D W, Dinger M E Endogenous microRNA sponges: evidence and controversy. Nat Rev Genet. 2016;17(5):272–283. doi: 10.1038/nrg.2016.20. [DOI] [PubMed] [Google Scholar]
- 23.Barrett S P, Salzman J Circular RNAs: analysis,expression and potential functions. Development. 2016;143(11):1838–1847. doi: 10.1242/dev.128074. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 24.Kulcheski F R, Christoff A P, Margis R Circular RNAs are miRNA sponges and can be used as a new class of biomarker. J Biotechnol. 2016;238:42–51. doi: 10.1016/j.jbiotec.2016.09.011. [DOI] [PubMed] [Google Scholar]
- 25.Liu J, Liu T, Wang X, et al Circles reshaping the RNA world: from waste to treasure. Mol Cancer. 2017;16(1):58. doi: 10.1186/s12943-017-0630-y. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 26.Peng Lei, Chen Guanglin, Zhu Zhongxian, et al Circular RNA ZNF609 functions as a competitive endogenous RNA to regulate AKT3 expression by sponging miR-150-5p in Hirschsprung’s disease. Oncotarget. 2017;8(1):808–818. doi: 10.18632/oncotarget.13656. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 27.Zhong Zhenyu, Lv Mengxin, Chen Junxia Screening differential circular RNA expression profiles reveals the regulatory role of circTCF25-miR-103a-3p/miR-107-CDK6 pathway in bladder carcinoma. Sci Rep. 2016;6:30919. doi: 10.1038/srep30919. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 28.He J, Xie Q, Xu H, et al Circular RNAs and cancer. Cancer Lett. 2017;396:138–144. doi: 10.1016/j.canlet.2017.03.027. [DOI] [PubMed] [Google Scholar]
- 29.Lu D, Xu A D Mini review: circular RNAs as potential clinical biomarkers for disorders in the central nervous system. Front Genet. 2016;7:53. doi: 10.3389/fgene.2016.00053. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 30.Kumari B, Jain P, Das S, et al Dynamic changes in global microRNAome and transcriptome reveal complex miRNA-mRNA regulated host response to Japanese Encephalitis Virus in microglial cells. Sci Rep. 2016;6:20263. doi: 10.1038/srep20263. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 31.Nunes A C Viral pathogenesis: HCV RNA acts as a miR-122 sponge. Nature Reviews Microbiology. 2015;13(5):250. [Google Scholar]
- 32.Zhu Mu, Liu Jiafan, Xiao Jia, et al Lnc-mg is a long non-coding RNA that promotes myogenesis. Nat Commun. 2017;8:14718. doi: 10.1038/ncomms14718. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 33.Pratt T, Price D J Junk DNA used in cerebral cortical evolution. Neuron. 2016;90(6):1141–1143. doi: 10.1016/j.neuron.2016.06.007. [DOI] [PubMed] [Google Scholar]
- 34.Su Zhaoran, Zhi Xiaofei, Zhang Qun, et al LncRNA H19 functions as a competing endogenous RNA to regulate AQP3 expression by sponging miR-874 in the intestinal barrier. FEBS Lett. 2016;590(9):1354–1364. doi: 10.1002/1873-3468.12171. [DOI] [PubMed] [Google Scholar]
- 35.Liu Qiang, Zhang Xin, Hu Xiaoqing, et al Circular RNA related to the chondrocyte ECM regulates MMP13 expression by functioning as a MiR-136 ‘sponge’ in human cartilage degradation. Sci Rep. 2016;6:22572. doi: 10.1038/srep22572. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 36.Shen S, Jiang H, Bei Y, et al Long non-coding RNAs in cardiac remodeling. Cell Physiol Biochem. 2017;41(5):1830–1837. doi: 10.1159/000471913. [DOI] [PubMed] [Google Scholar]
- 37.Wang Kun, Long Bo, Zhou Luyu, et al CARL lncRNA inhibits anoxia-induced mitochondrial fission and apoptosis in cardiomyocytes by impairing miR-539-dependent PHB2 downregulation. Nat Commun. 2014;5:3596. doi: 10.1038/ncomms4596. [DOI] [PubMed] [Google Scholar]
- 38.Wang Kun, Long Bo, Liu Fang, et al A circular RNA protects the heart from pathological hypertrophy and heart failure by targeting miR-223. Eur Heart J. 2016;37(33):2602–2611. doi: 10.1093/eurheartj/ehv713. [DOI] [PubMed] [Google Scholar]
- 39.Liu X H, Sun M, Nie F Q, et al Lnc RNA HOTAIR funclions as a competing endogenous RNA to regulate HER2 expression by sponging miR-331-3p in gastric cancer. Mol Cancer. 2014;13:92. doi: 10.1186/1476-4598-13-92. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 40.Tang J, Zhuo H, Zhang X, et al A novel biomarker Linc00974 interacting with KRTl9 promotes proliferation and metastasis in hepatocellular carcinoma. Cell Death & Disease. 2014;5:e1549. doi: 10.1038/cddis.2014.518. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 41.Conte F, Fiscon G, Chiara M, et al Role of the long non-coding RNA PVT1 in the dysregulation of the ceRNA-ceRNA network in human breast cancer. PLoS One. 2017;12(2):e0171661. doi: 10.1371/journal.pone.0171661. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 42.Zhang Shilong, Dong Xinxin, Ji Tongyu, et al Long non-coding RNA UCA1 promotes cell progression by acting as a competing endogenous RNA of ATF2 in prostate cancer. Am J Transl Res. 2017;9(2):366–375. [PMC free article] [PubMed] [Google Scholar]
- 43.Chiu Y C, Wang Liju, Lu T P, et al Differential correlation analysis of glioblastoma reveals immune ceRNA interactions predictive of patient survival. BMC Bioinformatics. 2017;18(1):132. doi: 10.1186/s12859-017-1557-4. [DOI] [PMC free article] [PubMed] [Google Scholar]
