Skip to main content
Frontiers in Microbiology logoLink to Frontiers in Microbiology
. 2023 Feb 3;14:1115761. doi: 10.3389/fmicb.2023.1115761

Climacocystaceae fam. nov. and Gloeoporellaceae fam. nov., two new families of Polyporales (Basidiomycota)

Shun Liu 1, Jun-Liang Zhou 2, Jie Song 3, Yi-Fei Sun 1, Yu-Cheng Dai 1, Bao-Kai Cui 1,*
PMCID: PMC9935835  PMID: 36819032

Abstract

Polyporales is a diverse group of Agaricomycetes including more than 2,500 species belonging to 255 genera and 18 families. Recently, many studies focused on the classification of Polyporales, but the familial placements of some taxa remain uncertain. In this study, two new families, Climacocystaceae and Gloeoporellaceae of Polyporales, are proposed based on morphological characters and molecular data. Phylogenetic analyses of the two new families are inferred from the DNA sequences of the internal transcribed spacer regions (ITS), the large subunit of nuclear ribosomal RNA gene (nLSU), the largest subunit of RNA polymerase II gene (RPB1), the second largest subunit of RNA polymerase II gene (RPB2), and the translation elongation factor 1-α gene (TEF1). Furthermore, the divergence time of Polyporales was estimated as an additional taxonomic criterion based on the conserved regions of five DNA fragments (5.8S, nLSU, RPB1, RPB2, and TEF1). Bayesian evolutionary analysis revealed that the ancestor of Polyporales splits with a mean stem age of 136.53 Mya with a 95% highest posterior density (HPD) of 118.08–158.06 Mya. The mean stem ages of the families within Polyporales originated between 66.02 and 119.22 Mya, of which Climacocystaceae occurred in a mean stem age of 77.49 Mya with a 95% HPD of 61.45–93.16 Mya, and Gloeoporellaceae occurred in a mean stem age of 88.06 Mya with a 95% HPD of 67.15–107.76 Mya.

Keywords: molecular clock, multi-gene phylogeny, new family, taxonomy, white-rot fungi

Introduction

Polyporales Gäum is one of the major orders of Basidiomycota (Kirk et al., 2008). Most species of the Polyporales are saprotrophic wood-decay fungi, which can cause white decay or brown decay of wood, and play a vital role in the degradation and reduction of forest ecosystems. Moreover, some species of Polyporales are edible fungi, medicinal fungi, or forest pathogens (Dai et al., 2007; Rajchenber and Robledo, 2013; Wu et al., 2019). Due to their important ecological functions and economic values, Polyporales had been extensively studied, and their members were increased rapidly. In Kirk et al. (2008), Polyporales contain about 1,800 species, 216 genera, and 13 families, while in He et al. (2019), about 2,500 species, 285 genera, and 18 families are included in Polyporales.

Previously, the establishment of families in Polyporales was basically based on morphological characteristics. Polyporaceae Fr. ex Corda is the oldest family in Polyporales, which was proposed by Fries (1838) to include all fungi with poroid hymenophores. Then, Irpicaceae Spirin and Zmitr., Meruliaceae Rea, Podoscyphaceae D.A. Reid, Sparassidaceae Herter, and Steccherinaceae Parmasto were proposed successively and still legitimately exist in the current concept of Polyporales (Herter, 1910; Rea, 1922; Reid, 1965; Parmasto, 1968; Spirin, 2003; Justo et al., 2017). Jülich (1981) proposed a considerable number of families of Basidiomycetes, some of which belong to Polyporales were rarely used and treated as synonyms.

Since the 21st century, DNA sequencing and phylogenetic techniques have been widely used in the systematic study of Polyporales (Binder et al., 2005; Larsson, 2007; Miettinen et al., 2012). Binder et al. (2013) presented a phylogenetic and phylogenomic overview of the Polyporales and listed 40 validly published and legitimate family names. Zhao et al. (2015) introduced a new family Fragiliporiaceae Y-CD, B-KC, and C. L. Zhao based on the combination of morphological characters and molecular data. Justo et al. (2017) provided a phylogenetic overview of Polyporales, 18 clades in the Polyporales were assigned at the family level; the climacocystis clade (Climacocystis Kotl. and Pouzar, Diplomitoporus Domański) and Tyromyces merulinus (Berk.) G. Cunn. cannot be assigned to a family within Polyporales. He et al. (2019) carried out an outline of all genera of Basidiomycota; in which 19 families were placed in Polyporales, including 18 families accepted by Justo et al. (2017) and Fragiliporiaceae. However, the genera Climacocystis and Diplomitoporus remained with an uncertain familial placement. Liu et al. (2022) presented a systematic classification and phylogenetic relationships of the brown-rot fungi within the Polyporales; the study showed that 29 clades are assigned a family name, including four new brown-rot fungal families, viz., Auriporiaceae B.K. Cui, Shun Liu & Y.C. Dai, Piptoporellaceae B.K. Cui, Shun Liu & Y.C. Dai, Postiaceae B.K. Cui, Shun Liu & Y.C. Dai and Taiwanofungaceae B.K. Cui, Shun Liu & Y.C. Dai. They focused on the phylogenetic relationships of the brown-rot fungi within the Polyporales, and the number and composition of white-rot fungi family were consistent with the study of He et al. (2019).

Fruiting body types and wood decay types are two key traits in the evolutionary origins and genetic bases of fungi (Nagy et al., 2017). The Polyporales is a diverse group of Agaricomycetes, not only in molecular sequences but also in morphological characteristics (fruiting body: Resupinate, effused-reflexed, pileate-sessile, pileate-stipitate, cauliflower-like, etc.; Hymenophores: Poroid, daedaleoid, hydnoid, lamellate, labyrinthine, odontoid, etc.). Moreover, Polyporales include two types of wood decay fungi, white-rot fungi and brown-rot fungi (Binder et al., 2013; Justo et al., 2017). The varied fruiting body types and wood decay types indicate that there are complex evolutionary relationships among the members of Polyporales. Recently, divergence time was used as important criteria for the classification and estimation of evolutionary time in Basidiomycota (Chen et al., 2015; Song et al., 2016; Zhao et al., 2016, 2017; Song and Cui, 2017; He et al., 2019; Zhu et al., 2019; Wu et al., 2020; Wang et al., 2021; Ji et al., 2022).

During the investigations of wood decay fungi, abundant samples of Climacocystis, Diplomitoporus, and Gloeoporellus Zmitr. were collected. To determine their phylogenetic positions within Polyporales, phylogenetic analyses were carried out based on the combined sequence datasets of ITS + nLSU + RPB1 and ITS + nLSU + RPB1 + RPB2 + TEF1. In addition, divergence time, as an additional criterion, was estimated by the molecular clock analyses with 5-gene loci (5.8S, nLSU, RPB1, RPB2, and TEF1).

Materials and methods

Morphological studies

The specimens used in this study are deposited at the herbarium of the Institute of Microbiology, Beijing Forestry University, China (BJFC). Morphological studies and abbreviations of this study followed the study of Sun et al. (2020) and Ji et al. (2022).

Molecular studies and phylogenetic analysis

The approaches for DNA extraction and polymerase chain reaction (PCR) used in this study with some modifications followed the study of Cui et al. (2019) and Liu et al. (2021). The primer pairs are ITS5 and ITS4 for ITS regions, LR0R and LR7 for nLSU regions, RPB1-Af and RPB1-Cr for the RPB1 gene, bRPB2-6F and bRPB2-7R for the RPB2 gene, and EF1-983F and EF1-1567R for TEF1 (White et al., 1990; Matheny et al., 2002; Matheny, 2005; Rehner and Buckley, 2005). The PCR products were purified and sequenced at the Beijing Genomics Institute (BGI), China. All newly generated sequences were deposited at GenBank (Table 1).

TABLE 1.

A list of species, specimens, and GenBank accession number of sequences used for phylogenetic analyses in this study.

Species name Sample no. Locality GenBank accessions
ITS nLSU RPB1 RPB2 TEF1
Abortiporus biennis Cui 17845 China ON417149 ON417197 ON424663 ON424750 ON424821
Abortiporus biennis Cui 16986 China ON417150 ON417198 ON424664 ON424751 ON424822
Adustoporia sinuosa Cui 16252 China OM039269 OM039169 OM037741 OM037767 OM037791
Adustoporia sinuosa Cui 16484 China MW377252 MW377333 MW337154 ON424753 MW337083
Agaricostilbum hyphaenes AFTOL 675 USA AY789077 AY634278 AY788845 AY780933 AY879114
Agaricus campestris LAPAG 370 China KM657927 KR006607 KT951556 KR006636
Amylocorticium cebennense CFMR HHB 2808 USA GU187505 GU187561 GU187439 GU187770 GU187675
Amyloporia subxantha Cui 17175 China OM039272 OM039172 OM037744 OM037770 OM037794
Amyloporia xantha Cui 11544 China KR605817 KR605756 ON424665 KR610836 KR610746
Antrodia serpens Dai 7465 Luxemburg KR605813 KR605752 ON424666 KR610832 KR610742
Antrodia subserpens Cui 16285 China ON417152 ON417201 ON424669 ON424755 ON424824
Antrodiella stipitata FD 136 USA KP135314 KP135197 KP134886
Aroramyces gelatinosporus H 4010 Unknown DQ218524 DQ218941 DQ219118
Athelia arachnoidea CBS 418.72 Netherlands GU187504 GU187557 GU187436 GU187769 GU187672
Athelia epiphylla CFMR FP 100564 USA GU187501 GU187558 GU187440 GU187771 GU187676
Aurantiporus albidus Cui 16664 Australia ON682353 ON680805 ON688458 ON688479 ON688500
Aurantiporus albidus Cui 16665 Australia ON682354 ON680806 ON688459 ON688480 ON688501
Bjerkandera adusta Cui 16670 Australia ON682355 ON680807 ON688460 ON688481 ON688502
Bjerkandera adusta Cui 16682 Australia ON682356 ON680808 ON688461 ON688482 ON688503
Boletus edulis HMJAU 4637 China JN563894 KF112455 KF112586 KF112704 KF112202
Bondarzewia montana AFTOL 452 Canada DQ200923 DQ234539 DQ256049 AY218474 DQ059044
Bondarzewia sp. Yu 56 China KT693203 KT693205 KX066158 KX066165 KX066148
Brevicellicium olivascens KHL 8571 Sweden HE963792 HE963793
Bulbillomyces farinosus FP 100488 T USA KY948802 DQ681201 KY948929
Cabalodontia delicate MCW 564/17 Brazil MT849295 MT849295 MT833947 MT833934
Cabalodontia delicate MCW 693/19 Brazil MT849297 MT849297 MT833948 MT833936
Callistosporium graminicolor AFTOL ID 978 USA DQ484065 AY745702 GU187493 KJ424369 GU187761
Calocera cornea AFTOL 438 USA AY789083 AY701526 AY857980 AY536286 AY881019
Ceriporiopsis gilvescens Chen 3340 China MZ636936 MZ637099 MZ748446 OK136039 MZ913651
Cerrena sp. Cui 16874 Puerto Rico ON682357 ON680809 ON688462 ON688483 ON688504
Cerrena unicolor He 6082 China OM100740 OM083972 ON424672 ON424756 ON424825
Cerrena zonata Cui 16578 Australia ON417153 ON417203 ON424673 ON424757 ON424826
Cerrena zonata Cui 18502 China ON417154 ON417204 ON424674 ON424758 ON424827
Chondrogaster pachysporus OSC 49298 Unknown DQ218538 DQ218958 DQ219136
Climacocystis borealis Dai 4014 China KJ566627 KJ566637 ON688463 KJ566644
Climacocystis borealis FD 31 USA KP135308 KP135210 KP134882 KP134895
Climacocystis montana Cui 9607 China KJ566629 KJ566639 ON688464 ON688484 KJ566646
Climacocystis montana Cui 17502 China MW377276 MW377356 ON688465
Climacocystis montana Cui 17122 China ON682359 ON680811 ON688466 ON688485 ON688505
Climacocystis montana Cui 17123 China ON682360 ON680812 ON688467 ON688486 ON688506
Climacocystis montana Cui 17124 China ON682361 ON680813 ON688487 ON688507
Climacocystis montana Dai 23003 China ON682358 ON680810
Craterocolla cerasi TUB 020203 Germany KF061265 KF061300
Crustoderma dryinum FP 105487 USA KC585320 KC585145
Crustoderma dryinum HHB 7517 USA KC585322 KC585147
Cryptococcus humicola AFTOL 1552 USA DQ645516 DQ645514 DQ645518 DQ645517 DQ645519
Cymatoderm aelegans Dai 17511 China ON417155 ON417205
Cymatoderma sp. OMC 1427 USA KY948826 KY948872 KY948971
Dacryobolus gracilis Dai 14943 China MH048972 MH048985
Dacryobolus gracilis He 5995 China ON417156 ON417206 ON424760 ON424831
Dacryobolus karstenii Miettinen 18685 USA KY948743 KY948900 KY948955
Dacryobolus montanus He 6314 China ON417157 ON417207 ON424761 ON424832
Dacryobolus sudans FP 101996 USA KC585332 KC585157
Dacryopinax spathularia AFTOL 454 USA AY854070 AY701525 AY857981 AY786054 AY881020
Daedalea quercina Dai 12152 Czech Republic KP171207 KP171229 ON424675 KR610809 KR610717
Daedalea quercina Dai 12659 Finland KP171208 KP171230 ON424676 KR610810 KR610719
Dictyophora duplicate OSC 38819 Unknown DQ218481 DQ219087 DQ219265
Diplomitoporus crustulinus Cui 17394 China MW377287 MW377366 MW337181 MW337050 MW337114
Diplomitoporus crustulinus Cui 17475 China MW377288 MW377367 MW337182 MW337115
Diplomitoporus crustulinus Cui 17690 China MW377289 MW377368 MW337183 MW337116
Diplomitoporus flavescens Cui 17457 China MW377291 MW377370 MW337184 MW337052 MW337118
Diplomitoporus flavescens Dai 21020 Belarus MW377292 MW377371 MW337185 MW337053 MW337119
Diplomitoporus flavescens Cui 17419 China MW377290 MW377369 ON688468 MW337051 MW337117
Diplomitoporus flavescens Cui 18420 China ON682362 ON680814 ON688469 ON688488 ON688510
Diplomitoporus flavescens Dai 23640 China ON682363 ON680815 ON688470 ON688489 ON688511
Echinodontium tinctorium AFTOL 455 USA AY854088 AF393056 AY864882 AY218482 AY885157
Efibula tropica Wei 18-149 China MZ636967 MZ637129 MZ748419 OK136079 MZ913681
Efibula yunnanensis Wu 880515-1 China MZ636977 GQ470672 MZ748420 OK136080 MZ913682
Fibroporia ceracea Cui 16299 China MW377293 MW377372 MW337186 MW337054 MW337120
Fibroporia ceracea Cui 16300 China MW377294 MW377373 MW337187 MW337055 MW337121
Fibroporia gossypium Cui 9472 China KU550474 KU550494 ON424677 KU550550 KU550567
Fibroporia radiculosa Cui 16485 Vietnam OM039278 OM039178 OM037751 OM037776 OM037800
Fibroporia radiculosa Cui 11404 China KP145011 KR605760 ON424679 KR610840 KR610751
Fomitiporia hartigii MUCL 53551 Belgium JX093789 JX093833 JX093877 JX093746
Fomitiporia mediterranea AFTOL 688 USA AY854080 AY684157 AY864870 AY803748 AY885149
Fomitopsis betulina Cui 17121 China OL621853 OL621242 ON424683 OL588969 OL588982
Fomitopsis eucalypticola Cui 16594 Australia MK852560 MK860110 ON424685 MK900476 MK900483
Fragiliporia fragilis Dai 13080 China KJ734260 KJ734264 KJ790248 KJ790245
Fragiliporia fragilis Dai 13559 China KJ734261 KJ734265 KJ790249 KJ790246
Fragiliporia fragilis Dai 13561 China KJ734262 KJ734266 KJ790250 KJ790247
Fragiliporia fragilis Yuan 5516 China KJ734263 KJ734267
Geastrum recolligens OSC 41996 Unknown DQ218486 DQ219052 DQ219230
Gelatoporia subvermispora Cui 17120 China ON417159 ON417209 ON424694 ON424772 ON424835
Gelatoporia subvermispora Dai 22847 China ON417160 ON417210 ON424695 ON424773 ON424836
Gloeophyllum sepiarium Wilcox 3BB USA HM536091 HM536061 HM536109 HM536110
Gloeophyllum striatum ARIZAN 027866 USA HM536092 HM536063 HM640259 HM536111
Gloeoporellus merulinus Dai 18734 Australia MW377298 MW377377 MW337191 MW337059 MW337125
Gloeoporellus merulinus Dai 18735 Australia MW377299 MW377378 MW337192 ON688490 MW337126
Gloeoporellus merulinus Dai 18782 Australia MW377300 MW377379 MW337193 ON688491 MW337127
Gloeoporellus merulinus Cui 16629 Australia ON682364 ON680816 ON688471 ON688492 ON688512
Gloeoporellus merulinus Cui 16650 Australia ON682365 ON680817 ON688472 ON688493 ON688513
Gloeoporus dichrous Cui 16931 China ON682366 ON680818 ON688473 ON688494 ON688514
Gloeoporus orientalis Wei 16-485 China MZ636980 MZ637141 MZ748443 OK136095 MZ913709
Grifola frondosa AFTOL 701 Unknown AY854084 AY629318 AY864876 AY885153
Grifola frondosa Dai 19172 Canada ON417161 ON417211 ON424696 ON424774 ON424837
Grifola frondosa Dai 19175 Canada ON417162 ON417212 ON424697 ON424775 ON424838
Gymnopilus picreus ZRL 2015011 China LT716066 KY418882 KY418980 KY419027 KY419077
Heterobasidion annosum Dai 20962 Belarus ON417163 ON417213 ON424698 ON424776 ON529284
Hydnum repandum BB 07.341 Unknown KF294643 KF294720 JX192980
Hymenochaete rubiginosa He 1049 China JQ716407 JQ279667
Hyphoderma litschaueri FP 101740 USA KP135295 KP135219 KP134868 KP134965
Hyphoderma medioburiense FD 335 USA KP135298 KP135220 KP134869 KP134966
Hyphoderma mutatum HHB 15479 USA KP135296 KP135221 KP134870 KP134967
Hyphoderma setigerum FD 312 USA KP135297 KP135222 KP134871
Hypochnicium bombycinum HHB 12631 USA KY948801 KY415959 KY948930
Hypochnicium geogenium He 6804 China OM039279 OM039179 OM037777 OM037802
Hypochnicium geogenium He 6812 China OM039280 OM039180 OM037778 OM037803
Hypochnicium geogenium He 6817 China OM039281 OM039181 OM037779 OM037804
Hypochnicium geogenium He 6819 China OM039282 OM039182 OM037780 OM037805
Hypochnicium karstenii HHB 9373 USA KY948799 DQ677510 KY948931
Hypochnicium punctulatum FP 101698 USA KY948827 KY948860 KY948932
Hypochnicium sphaerosporum RLG 15138 USA KY948803 KY948861 KY948940
Hypochnicium wakefieldiae KJM 271 USA KY948828 DQ677512 KY948933
Irpex flavus Wu 0705-1 China MZ636988 MZ637149 MZ748432 OK136087 MZ913683
Irpex sp. Wu 910807-35 China MZ636994 GQ470627 MZ748433 OK136088 MZ913684
Ischnoderma benzoinum Cui 17058 China ON417164 ON417214 ON424699 ON424777 ON424839
Ischnoderma benzoinum Cui 17700 China ON417165 ON417215 ON424700 ON424778 ON424840
Jaapia argillacea CBS 252.74 Netherlands GU187524 GU187581 GU187463 GU187788 GU187711
Lactarius deceptivus AFTOL ID 682 USA AY854089 AY631899 AY864883 AY803749 AY885158
Laetiporus montanus Cui 10015 China KF951273 KF951311 ON424701 KT894791 KX354618
Laetiporus montanus Cui 10011 China KF951274 KF951315 MG867670 KT894790 KX354617
Laetiporus sulphureus Cui 12389 China KR187106 KX354487 ON424702 KX354653 KX354608
Laetiporus sulphureus Cui 12388 China KR187105 KX354486 MG867671 KX354652 KX354607
Laricifomes officinalis JV 0309/49-J USA KR605821 KR605764 KR610846 KR610757
Laricifomes officinalis JV 9010/14 Slovak Republic KR605822 KR605765 KR610847 KR610758
Lentoporia carbonica Zabel 40 GLN USA KC585243 KC585065 KY949013
Lentoporia carbonica DAOM F 8281 Cabada KC585239 KC585061
Lepiota cristata ZRL 20151133 China LT716026 KY418841 KY418963 KY418992 KY419048
Leptoporus mollis TJV-93-174-T USA KY948795 EU402510 KY948957 OK136102 MZ913694
Leptoporus mollis RLG 7163 USA KY948794 MZ637155 KY948956 OK136101 MZ913693
Leptosporomyces raunkiaeri CFMR HHB 7628 USA GU187528 GU187588 GU187471 GU187791 GU187719
Luteoporia albomarginata GC 1702-1 China LC379003 LC379155 LC379160 LC387358 LC387377
Luteoporia lutea GC 1409-1 China MZ636998 MZ637158 MZ748467 OK136050 MZ913656
Macrohyporia dictyopora Dai 18878 Australia OK036736 OK036735 OK076964
Meripilus giganteus FP 135344 United Kingdom KP135307 KP135228 KP134873
Metuloidea reniforme MCW 523/17 Brazil MT849302 MT849302 MT833949
Metuloidea reniforme MCW 542/17 Brazil MT849303 MT849303 MT833950 MT833940
Multiclavula mucida AFTOL 1130 USA DQ521417 AY885163
Neurospora crassa OR 74A India HQ271348 AF286411 XM959004 AF107789 XM959775
Obba rivulosa Cui 16477 Vietnam ON682367 ON680819 ON688474 ON688495 ON688515
Obba rivulosa Cui 16483 Vietnam ON417171 ON417221 ON424711 ON424787 ON424849
Obba rivulosa Cui 16482 Vietnam ON417172 ON417222 ON424712 ON424788 ON424850
Panus fragilis HHB 11042 USA KP135328 KP135233 KP134877
Perenniporia yinggelingensis Cui 13627 China MH427961 MH427968 MH427989 MH427993 MH427997
Perenniporia yinggelingensis Cui 13631 China MH427962 MH427969 MH427990 MH427994 MH427998
Phaeolus schweinitzii Dai 8025 China KX354457 KX354511 DQ408119 KX354686
Phaeophlebiopsis caribbeana HHB 6990 USA KP135415 KP135243 KP134810 KP134931 MZ913643
Phaeophlebiopsis ravenelii FCUG 2126 Spain MZ637015 GQ470675 MZ748361 OK135993 MZ913634
Phallus costatus MB 02040 Unknown DQ218513 DQ219104 DQ219279
Phanerochaete alnea FP 151125 USA KP135177 MZ637181 MZ748385 OK136014 MZ913641
Phanerochaete canolutea Wu 9211-105 China MZ422795 GQ470641 MZ748387 OK136018 MZ913640
Phanerochaetella angustocystidiata Wu 9606-39 China MZ637020 GQ470638 MZ748422 OK136082 MZ913687
Phanerochaetella leptoderma Chen 1362 China MZ637025 GQ470646 MZ748423 OK136083 MZ913689
Phlebia nantahaliensis HHB 2816 USA KY948777 KY948852 KY948920 OK136063 MZ913701
Phlebia tomentopileata GC 1602-67 China MZ637040 MZ637244 MZ748457 OK136064 MZ913702
Phlebiopsis gigantea FCUG 1417 Norway MZ637051 AF141634 MZ748370 OK135996 MZ913623
Phlebiopsis odontoidea GC 1708-181 China MZ637054 MZ637255 MZ748371 OK135997 MZ913624
Physisporinus longicystidius Cui 16630 Australia ON417177 ON417227 ON424717 ON424795 ON424856
Physisporinus longicystidius Cui 16725 Australia ON417178 ON417228 ON424718 ON424796 ON424857
Picipes badius Cui 10853 China KU189780 KU189811 KU189894 KX900300 KU189929
Picipes badius Cui 11136 China KU189781 KU189812 KU189895 KU189990 KU189930
Podoscypha venustula Cui 16923 Puerto Rico ON417181 ON417231 ON424722 ON424799 ON424860
Podoserpula ailaoshanensis ZJL 2015015 China KU324484 KU324487 KU324494
Polyporus squamosus Cui 10595 China KU189778 KU189809 KU189892 KU189988 KU189925
Polyporus varius Cui 12249 China KU507581 KU507583 KU507589 KU507592 KU507591
Porodaedalea chinensis Cui 10252 China KX673606 MH152358 MH101479 MG585301
Pseudofibroporia citrinella He 20120721 China KU550477 KU550500 KU550555 KU550574
Pseudofibroporia citrinella Yuan 6181 China KU550478 KU550501 KU550556 KU550575
Pycnoporellus fulgens Cui 16463 Vietnam MW377318 MW377396 ON424725 ON424805 ON424867
Pycnoporellus fulgens Cui 10033 China KX354458 KX354512 ON424726 KX354684 KX354687
Pyrenogaster pityophilus OSC 59743 Unknown DQ218519 DQ219057 DQ219232
Radulodon casearius HHB 9567 USA KY948752 KY948871 KY948943
Resinoporia sordida Dai 23393 China ON682368 ON680820 ON688475 ON688496 ON688516
Resinoporia sordida Cui 16469 Vietnam ON417186 ON417237 ON424730 ON424806 ON424870
Rhizochaete chinensis Wu 0910-45 China LC387335 MF110294 LC387348 LC387370 LC270925
Rhizochaete sulphurina HHB 5604 USA KY273031 GU187610 MZ748363 OK135991 MZ913707
Rhizopus stolonifer CBS 609.82 Japan AB113023 DQ273817 AB512268
Rhodofomes roseus Cui 17046 China ON417187 ON417238 ON424731 ON424807 ON424871
Rhodofomes roseus Cui 17081 China ON417188 ON417239 ON424732 ON424808 ON424872
Rhodofomitopsis pseudofeei Cui 16794 Australia MK461952 MK461956 ON424735 MK463984 MK463986
Rhodofomitopsis pseudofeei Cui 16762 Australia MK461951 MK461955 ON688476 MK463983 MK463985
Rhodonia obliqua Dai 23436 China ON417191 ON417242 ON424738 ON424876
Rhodonia placenta Wei 1406 China KF699129 KT893750 ON424739 KT893746 KT893748
Rickiopora latemarginata RP 56 Brazil KU521768 KU521768
Rickiopora latemarginata RP 58 Brazil KU521769 KU521769 KU521773 KU521771
Rickiopora latemarginata RP 110 Brazil KU521770 KU521770 KU521774 KU521772
Rigidoporus corticola ZRL 20151459 China LT716075 KY418899 KY419038 KY419087 KY418954
Rigidoporus ginkgonis Cui 5555 China KT203295 KT203316
Rigidoporus sp. Cui 16852 Puerto Rico ON417179 ON417229 ON424719 ON424797 ON424858
Rigidoporus sp. Cui 16859 Puerto Rico ON417180 ON417230 ON424720 ON424798 ON424859
Rigidoporus undatus Miettinen 13591 Finland KY948731 KY948870 KY948945
Russula emeticicolor FH 12253 Germany KT934011 KT933872 KT957382 KT933943
Ryvardenia campyla Cui 16674 Australia MW377323 MW377400 MW337203 MW337076 MW337143
Ryvardenia cretacea Cui 16731 Australia MW377324 MW377401 MW337204 MW337077 MW337144
Ryvardenia cretacea Cui 16732 Australia MW377325 MW377402 MW337205 MW337078 MW337145
Sarcoporia polyspora Cui 16977 China MW377326 MW377403 MW337206 MW337079 MW337146
Sarcoporia polyspora Cui 16995 China OM039299 OM039199 OM037761 ON424811 OM037817
Sarcoporia polyspora Cui 17165 China ON417192 ON417244 ON424740 ON424812 ON424878
Schizosaccharomyces pombe 972 h France Z19578 Z19136 NM001021568 NM001018498 NM001021161
Scopuloides allantoidea Wei 16-060 China MZ637081 MZ637279 MZ748463 OK136047 MZ913664
Scopuloides rimosa HHB 15484 USA KP135352 KP135281 KP134851 KP134902 MZ913665
Scopuloides rimosa Wu 1507-117 China MZ637087 MZ637284 MZ748464 OK136048 MZ913666
Serpula himantioides MUCL 30528 Belgium GU187545 GU187600 GU187480 GU187808 GU187748
Skeletocutis coprosmae Cui 16623 Australia ON417193 ON417245 ON424741 ON424813 ON424879
Skeletocutis nivea Cui 16752 Australia ON682369 ON680821 ON688477 ON688497 ON688517
Skeletocutis yuchengii FBCC 1132 China KY953045 KY953045 KY953143 KY953109
Skeletocutis yunnanensis Dai 15709 China KU950434 KU950436 MW526263 MW427605
Sparassis crispa AFTOL ID 703 Unknown DQ250597 AY629321 DQ408122 DQ056289
Sparassis crispa MBUH DORISL Germany AY218442 AY218404
Sparassis radicata SS 29 Unknown AY218446 AY218408 DQ270672
Sparassis radicata TENN 52558 USA AY218450 AY218411 AY218547
Sparassis radicata OKM 4756 USA KC987580 KF053407 KY949023
Steccherinum larssonii MCW 593/17 Brazil MT849306 MT849306 MT833956 MT833941
Steccherinum meridionale Cui 16691 Australia ON417195 ON417247 ON424743 ON424817 ON424882
Steccherinum sp. Cui 16755 Australia ON682370 ON680822 ON688478 ON688498 ON688518
Stereopsis radicans OLR 45395 Belize KC203496 KC203502 KC203516
Stereopsis sp. OKHL 15544 Brazil KC203505 KC203519
Stereum hirsutum FPL 8805 Unknown AF393078
Stereum hirsutum AFTOL ID 492 Unknown AY854063 AY864885 AY218520 AY885159
Suillus pictus AFTOL 717 Unknown AY854069 AY684154 AY858965 AY786066 AY883429
Thelephora ganbajun ZRL 20151295 China LT716082 KY418908 KY418987 KY419043 KY419093
Tomentella sp. AFTOL ID 1016 USA DQ835998 DQ835997 DQ835999
Trametes cinnabarina Dai 14386 China KX880629 KX880667 KX880818 KX880854 KX880885
Trametes sanguinea Cui 7091 China KX880628 KX880666 KX880817 MG867689 KX880884
Trechispora alnicola AFTOL 665 Unknown DQ411529 AY635768 DQ059052
Tremellodendron sp. PBM 2324 Unknown DQ411526 DQ408132 DQ029196
Tyromyces chioneus FD 4 USA KP135311 KP135291 KP134891 KP134977
Tyromyces odora L 13763 Canada KY948830 KY948893 KY949046
Tyromyces sp. Cui 16652 Australia ON417196 ON417248 ON424749 ON424820 ON424885
Wolfiporia cocos CBS 279.55 USA MW251869 MW251858 MW250264 MW250253
Wolfiporia hoelen Dai 20036 China MW251877 MW251866 MW250272 MW250261
Wolfiporia hoelen Dai 20034 China MW251879 MW251868 ON688499 MW250263
Wolfiporia dilatohypha CS 635913 USA KC585400 KC585234 KY949026
Wolfiporia castanopsidis Cui 16295 China MW377408 MW337209 MW337080 MW337151
Wolfiporia castanopsidis Cui 16296 China MW377409 MW337210 MW337081 MW337152

Newly generated sequences for this study are shown in bold.

In the phylogenetic analyses, we selected exact and more gene fragments of representative species from previous studies. Other sequences were obtained from GenBank (Table 1). The sequences used in this study were aligned in MAFFT 7 (Katoh and Standley, 2013)1 and then manually adjusted in BioEdit (Hall, 1999). Each alignment sequence was spliced with Mesquite (Maddison and Maddison, 2017). The missing sequences and ambiguous nucleotides were coded as “N.”

The phylogenetic analysis methods used in this study followed Shen et al. (2019) and Sun et al. (2022). The sequences of Heterobasidion annosum (Fr.) Bref. and Stereum hirsutum (Willd.) Pers. were obtained as outgroups for the phylogenetic analyses following Binder et al. (2013) and Justo et al. (2017). The congruences of gene sequence datasets were evaluated with the incongruence length difference (ILD) test (Farris et al., 1994) with PAUP* 4.0b10 (Swofford, 2002), under 1,000 homogeneity replicates. Maximum parsimony analysis was applied to the combined gene dataset and the tree construction procedure was performed in PAUP* version 4.0b10. Clade robustness was assessed using a bootstrap (BT) analysis with 1,000 replicates (Felsenstein, 1985). Descriptive tree statistic tree length (TL), consistency index (CI), retention index (RI), rescaled consistency index (RC), and homoplasy index (HI) were calculated for each Most Parsimonious Tree (MPT) generated.

Maximum likelihood (ML) analysis was performed with RAxML-HPC v. 8.2.3 (Stamatakis, 2014) with 1,000 ML searches under the GTRGAMMA model, and only the maximum likelihood best tree from all searches was kept. Bayesian inference (BI) was performed using MrBayes v. 3.2 (Ronquist and Huelsenbeck, 2003) with four simultaneous independent chains for all datasets, performing five million generations until the split deviation frequency value of <0.01, and sampled every 100th generation. The first 25% of sampled trees were discarded as burn-in, while the remaining ones were used to calculate Bayesian posterior probabilities (BPPs) of the clades.

Phylogenetic trees were inferred from the combined sequences datasets of ITS + nLSU + RPB1 and ITS + nLSU + RPB1 + RPB2 + TEF1. Trees were viewed in FigTree v1.4.4.2 Branches that received bootstrap supports for maximum parsimony (MP), maximum likelihood (ML), and Bayesian posterior probabilities (BPP) greater than or equal to 75% (MP and ML) and 0.95 (BPP) were considered as significantly supported, respectively.

Divergence time estimation

Three fossil calibrations, Archaeomarasmius leggetti Hibbett, D. Grimaldi and Donoghue, Quatsinoporites cranhamii S. Y. Sm., Currah and Stockey, and Paleopyrenomycites devonicus Taylor, Hass, Kerp, M. Krings and Hanlin, were used in the divergence time estimating. Archaeomarasmius leggetti was used as the representative of the minimum age of Agaricales at 90–94 Mya (Hibbett et al., 1997); Q. cranhamii was the representative of the minimum age of Hymenochaetales at 113 Mya (Smith et al., 2004); P. devonicus was used as the representative of the minimum age between Basidiomycota and Ascomycota at 400 Mya (Taylor et al., 2005; Berbee and Taylor, 2010). Divergence time is estimated with the BEAST v1.8.0 software package (Drummond et al., 2012) with 5.8S, nLSU, RPB1, RPB2, and TEF1 sequences representing main lineages in Basidiomycota (Table 1).

All the DNA sequences of 5.8S, nLSU, RPB1, RPB2, and TEF1 were aligned in MAFFT 7 (Katoh and Standley, 2013) and manually adjusted in BioEdit (Hall, 1999). ModelTest 3.7 was used to estimate the rate of evolutionary changes at nucleic acids with the GTR substitution model (Posada and Crandall, 1998). BEATUti v2 was used to generate the BEAST XML input file. A log-normal distribution is employed for molecular clock analysis (Drummond and Rambaut, 2007). The clock model was set to an uncorrelated lognormal relaxed clock (Drummond et al., 2006; Lepage et al., 2007). A Yule speciation model is selected as the prior choice assuming a constant speciation rate per lineage. Gamma prior distribution was used for fossil node calibrations (shape = 1.0, scale = 50.0), and the offset was set at 90.0, 113.0, and 400.0 for Agaricales, Hymenochaetales, and Basidiomycota, respectively (Sánchez-Ramírez et al., 2014). All the ucld. mean parameters for different genes were set to gamma prior distribution, shape = 1.0, scale = 0.001, and offset = 0.0 (Sánchez-Ramírez et al., 2014). Overall, four independent Markov chain Monte Carlo (MCMC) chains of 100 million generations were conducted and saving trees every 5,000th generation. The log file is analyzed in Tracer v1.6 to confirm that the estimated effective sample size (ESS) is ≥2003. A maximum clade credibility (MCC) tree is summarized in TreeAnnotator, removing the first 10% of the sampled trees as burn-in and setting a posterior probability limit of 0.80, and viewed in FigTree v1.4.4.

Results

Phylogeny

The combined 3-gene (ITS + nLSU + RPB1) sequence dataset had an aligned length of 3,289 characters, including gaps (628 characters for ITS, 1,333 characters for nLSU, and 1,328 characters for RPB1), of which 1,415 characters were constant, 130 were variable and parsimony-uninformative, and 1,744 were parsimony-informative. MP analysis yielded 54 equally parsimonious trees (TL = 25,472, CI = 0.154, RI = 0.653, RC = 0.101, HI = 0.846). The best-fit evolutionary models applied in the Bayesian analyses were selected by MrModeltest2 v. 2.3 for each region of the three genes, and the model for ITS, nLSU, and RPB1 was GTR + I + G with an equal frequency of nucleotides. This model was applied in the Bayesian analyses for the combined dataset. ML analysis resulted in a similar topology as MP and Bayesian analyses, and only the ML topology is shown in Figure 1.

FIGURE 1.

FIGURE 1

Maximum likelihood tree illustrating the phylogeny of the Polyporales based on the combined sequence dataset of ITS + nLSU + RPB1. Branches are labeled with parsimony bootstrap proportions higher than 50%, maximum likelihood bootstrap higher than 50% and Bayesian posterior probabilities more than 0.90, respectively.

The combined 5-gene (ITS + nLSU + RPB1 + RPB2 + TEF1) sequence dataset had an aligned length of 4,849 characters, including gaps (628 characters for ITS, 1,333 characters for nLSU, 1,328 characters for RPB1, 1,020 characters for RPB2, and 540 characters for TEF1), of which 1,980 characters were constant, 177 were variable and parsimony-uninformative, and 2,692 were parsimony-informative. MP analysis yielded 80 equally parsimonious trees (TL = 41,080, CI = 0.149, RI = 0.634, RC = 0.094, HI = 0.851). The best-fit evolutionary models applied in the Bayesian analyses were selected by MrModeltest2 v. 2.3 for each region of the five genes, and the model for ITS, LSU, RPB1, RPB2, and TEF1 was GTR + I + G with an equal frequency of nucleotides. This model was applied in the Bayesian analyses for the combined dataset. ML analysis resulted in a similar topology as MP and Bayesian analyses, and only the ML topology is shown in Figure 2.

FIGURE 2.

FIGURE 2

Maximum likelihood tree illustrating the phylogeny of the Polyporales based on the combined sequence dataset of ITS + nLSU + RPB1 + RPB2 + TEF1. Branches are labeled with parsimony bootstrap proportions higher than 50%, maximum likelihood bootstrap higher than 50%, and Bayesian posterior probabilities more than 0.90, respectively.

The phylogenetic trees inferred from ITS + nLSU + RPB1 and ITS + nLSU + RPB1 + RPB2 + TEF1 gene sequences were obtained from 185 fungal samples representing 113 taxa of Polyporales and two taxa of Russulales (Figures 1, 2). A total of 810 sequences derived from five gene loci (ITS, nLSU, RPB1, RPB2, and TEF1) were used to reconstruct the phylogenetic trees, of which 153 were newly generated. Phylogenetic analyses showed that 27 clades within Polyporales are assigned family names, including two new families, viz., Climacocystaceae fam. nov. and Gloeoporellaceae fam. nov., established for the climacocystis lineage (Climacocystis and Diplomitoporus) and Gloeoporellus merulinus (Berk.) Zmitr. (= Tyromyces merulinus) (Figures 1, 2).

FIGURE 4.

FIGURE 4

Basidiomata of Climacocystis and Diplomitoporus species: C. borealis (A,B: Dai 13028); C. montana (C,D: Cui 17502); D. crustulinus (E: Cui 17394; F: Cui 17475); D. flavescens (G: Dai 22798; H: Dai 23640). Scale bars: A = 2 cm; B,C,D = 3 cm; E,F,G,H = 1.5 cm.

Divergence time estimation

The combined dataset (5.8S, nLSU, RPB1, RPB2, and TEF1) for the molecular clock analysis includes 174 fungal samples representing 132 taxa, of which 123 fungal samples represent 87 taxa belonging to Polyporales. The MCMC tree (Figure 3) shows that the most recent ancestor of Polyporales evolved during the early Cretaceous, approximately 136.53 Mya with a 95% highest posterior density (HPD) of 118.08–158.06 Mya. The youngest families of Polyporales are Cerrenaceae Miettinen, Justo and Hibbett and Panacea Miettinen, Justo and Hibbett, occurring in a mean stem age of 66.02 Mya with a 95% HPD of 45.28–86.67 Mya, the oldest family of Polyporales is Ischnodermataceae Jülich, occurring in a mean stem age of 119.22 with a 95% HPD of 102.03–136.08 Mya, and the average divergence time of the families in Polyporales is 86.34 Mya. The estimated divergence times for families of Polyporales are summarized in Table 2.

FIGURE 3.

FIGURE 3

Divergence time estimation of families within Polyporales from Bayesian evolutionary analysis sampling tree based on the combined sequence dataset of 5.8S + nLSU + RPB1 + RPB2 + TEF1. Posterior probabilities not less than 0.80 and the mean ages of each node are annotated. The 90% highest posterior densities of divergence time estimation are marked by horizontal bars.

TABLE 2.

The divergence times of estimated taxa in Polyporales.

Node Mean of stem age (Mya) 95% HPD (Mya)
A: Polyporales/Thelephorales 136.53 118.08–158.06
B: Ischnodermataceae 119.22 102.03–136.08
C: Grifolaceae 107.05 89.96–126.02
D: Incrustoporiaceae 101.19 84.47–121.39
E: Meruliaceae 100.98 84.76–117.47
F: Gelatoporiaceae/Polyporaceae 99.1 81.93–116.47
G: Phaeolaceae 94.89 78.85–112.34
H: Fibroporiaceae 91.44 73.90–109.55
I: Irpicaceae/Phanerochaetaceae 90.57 75.39–106.39
J: Dacryobolaceae/Sarcoporiaceae 89.29 71.96–109.52
K: Steccherinaceae 88.11 69.75–106.60
L: Fragiliporiaceae/Gloeoporellaceae 88.06 67.15–107.76
M: Pycnoporellaceae/Sparassidaceae 81.28 65.62–99.46
N: Hyphodermataceae/Meripilaceae 80.5 63.16–97.26
O: Climacocystaceae/Podoscyphaceae 77.49 61.45–93.16
P: Adustoporiaceae/Fomitopsidaceae 74.38 58.72–90.04
Q: Laetiporaceae/Laricifomitaceae 67.4 52.85–83.94
R: Cerrenaceae/Panaceae 66.02 45.28–86.67

Taxonomy

Climacocystaceae B.K. Cui, Shun Liu & Y.C. Dai, fam. nov.

MycoBank: MB 840367

Type genus: Climacocystis.

Diagnosis: Basidiomata annual, pileate, resupinate to effused-reflexed, soft corky and watery when fresh, brittle, corky to hard corky when dry. Hymenophores poroid. Hyphal system monomitic, dimitic to trimitic; generative hyphae with clamp connections, skeletal hyphae IKI–, CB–. Cystidia present or absent, cystidioles occasionally present. Basidiospores broadly ellipsoid to globose, colorless, thin- to slightly thick-walled, smooth, IKI–, CB–. Causing a white rot.

Genera: Climacocystis, Diplomitoporus.

Climacocystis Kotl. and Pouzar, Ceská Mykologie 12 (2): 95, 1958.

MycoBank: MB 17325

Type species: Climacocystis borealis (Fr.) Kotl. and Pouzar.

Diagnosis: Basidiomata annual, pileate, sessile to laterally substipitate, usually imbricate, soft and watery when fresh, corky to hard corky and light in weight when dry. Pileus applanate, fan-shaped to dimidiate. Pileal surface white to cream, tomentose to hirsute when fresh, becoming cream, yellowish-brown to orange-brown, glabrous or tufted with short stiff hairs when dry, often radially furrowed, azonate; margin acute. Pore surface white to cream when fresh, becoming cream, clay-buff to orange-brown when dry; pores angular or irregular; dissepiments thin, entire to lacerate. Context white to clay-buff, corky to hard corky. Tubes white, clay-buff to orange-brown, corky to hard corky. Hyphal system monomitic; generative hyphae with clamp connections, IKI–, CB–; tissues unchanged in KOH. Cystidia present, ventricose, colorless, thin- to thick-walled, smooth or apically encrusted. Basidia clavate, colorless, thin-walled. Basidiospores ellipsoid to subcylindrical, colorless, thin-walled, smooth, IKI–, CB–. Causing a white rot.

Notes: Climacocystis was established by Kotlába and Pouzar (1958) and typified by C. borealis, which is widely distributed in the northern hemisphere (Gilbertson and Ryvarden, 1986; Núñez and Ryvarden, 2001; Dai, 2012). Song et al. (2014) carried out taxonomic and phylogenetic studies on Climacocystis in China, and C. montana B-KC and JS described high elevations in southwestern China based on morphological and molecular characteristics. Currently, two species are accepted in Climacocystis, including C. borealis and C. montana. Basidiomata of C. borealis and C. montana are shown in Figure 4.

Specimens examined: Climacocystis borealis. CHINA. Heilongjiang Province, Yichun, Wuying, Fenglin Nature Reserve, on stump of Pinus sp., 8 September 2002, Dai 3703 (BJFC 000443). FINLAND. Helsinki, Vantaa, Tamisto Nature Reserve, on fallen trunk of Picea sp., 22 September 2010, Dai 11798 (BJFC 008905); on stump of Picea sp., 15 November 2011, Dai 12681 (BJFC 012265). SWITZERLAND. Geneva, on living tree of Picea sp., 25 November 2012, Dai 13208 (BJFC 014072). Climacocystis montana. CHINA. Xizang Autonomous Region (Tibet), Leiwuqi County, on fallen trunk of Picea sp., 22 September 2010, Cui 9603 (BJFC 008541, holotype), Cui 9610 (BJFC 008548), Cui 9612 (BJFC 008550), Cui 9607 (BJFC 008545). Sichuan Province, Jiuzhaigou County, Jiuzhaigou Nature Reserve, on fallen trunk of Picea sp., 11 October 2012, Cui 10603 (BJFC 013528). Yunnan Province, Shangri-La County, Pudacuo National Park, on root of Picea sp., 17 September 2018, Cui 17122 (BJFC 030422), Cui 17123 (BJFC 030423), Cui 17124 (BJFC 030424), 13 August 2019, Cui 17502 (BJFC 034361); on root of Picea sp., 7 September 2021, Dai 23003 (BJFC 037576).

Diplomitoporus Domanski, Acta Societatis Botanicorum Poloniae 39: 191, 1970.

MycoBank: MB 17515

Type species: Diplomitoporus flavescens (Bres.) Domański.

Diagnosis: Basidiomata annual, resupinate to effuse-reflexed, fibrous, soft corky when fresh, brittle to hard corky when dry. Pore surface white, cream to straw-yellow when fresh, becoming cream, ochraceous to dark ochraceous when dry; pores round to angular. Context cream to ochraceous, brittle to corky. Tubes concolorous with the pore surface, brittle to hard corky. Hyphal system dimitic to trimitic; generative hyphae with clamp connections; skeletal hyphae IKI–, CB–. Cystidia absent; cystidioles occasionally present, subclavate to fusoid, colorless, thin-walled, smooth. Basidia clavate, subclavate to subglobose, colorless, thin-walled. Basidiospores allantoid to ellipsoid or globose, colorless, thin- to slightly thick-walled, smooth, IKI–, CB–. Causing a white rot.

Notes: Diplomitoporus was described by Domanski (1970) with D. flavescens as type species. Some species of Diplomitoporus have been transferred to other genera based on morphological or molecular evidence (Ghobad-Nejhad and Dai, 2010; Miettinen, 2012). Baltazar et al. (2014) reviewed the species of Diplomitoporus from Brazil and reported seven species of this genus in Brazil. In recent years, Ryvarden and co-authors described several Diplomitoporus species based on their morphological characteristics (Ryvarden, 2018, 2019, 2020; Decock and Ryvarden, 2020). Although 34 Diplomitoporus species are recorded in Index Fungorum,4 only the molecular sequences of D. crustulinus and D. flavescens are available in GenBank. Basidiomata of D. crustulinus and D. flavescens are shown in Figure 4.

Specimens examined: Diplomitoporus crustulinus. CHINA. Sichuan Province, Daocheng County, Yading Nature Reserve, on fallen branch of Picea sp., 11 August 2019, Cui 17394 (BJFC 034253); Jiulong County, on fallen branch of Abies sp., 12 September 2019, Cui 17690 (BJFC 034549). Yunnan Province, Shangri-La County, Pudacuo National Park, on fallen branch of Picea sp., 13 August 2019, Cui 17475 (BJFC 034334). Diplomitoporus flavescens. BELARUS. Brestskaya Voblasts, Belavezhskaya Pushcha National Park, on fallen trunk of Pinus sp., 18 October 2019, Dai 21020 (BJFC 032679). CHINA. Hebei Province, Zhuolu County, Xiaowutai Nature Reserve, on dead tree of Pinus sp., 9 September 2017, Dai 18096 (BJFC 025626), Dai 18097 (BJFC 025627). Jilin Province, Antu County, Changbaishan Nature Reserve, on fallen branch of Pinus sp., 20 September 2019, Dai 20846 (BJFC 032515). Sichuan Province, Xiangcheng County, on fallen branch of Pinus sp., 12 August 2019, Cui 17419 (BJFC 034278), Cui 17457 (BJFC 034316), Cui 17459 (BJFC 034318). Xizang Autonomous Region (Tibet), Linzhi, Bomi County, Bulang, on fallen branch of Pinus yunnanensis, 21 October 2021, Dai 23640 (BJFC 038212); on fallen trunk of Pinus yunnanensis, 21 October 2021, Dai 23650 (BJFC 038222); Chayu County, Cibagou Nature Reserve, on fallen branch of Pinus densata, 10 September 2020, Cui 18420 (BJFC 035281), Cui 18428 (BJFC 035289), Cui 18444 (BJFC 035305); Mangkang County, Jueba Mountain, on fallen branch of Pinus densata, 9 September 2020, Cui 18392 (BJFC 035253). Yunnan Province, Lanping County, Tongdian, Luoguqing, on fallen branch of Pinus yunnanensis, 3 September 2021, Dai 22798 (BJFC 037371).

Gloeoporellaceae B.K. Cui, Shun Liu & Y.C. Dai, fam. nov.

MycoBank: MB 840368

Type genus: Gloeoporellus.

Diagnosis: Basidiomata annual, resupinate to effused-reflexed, soft corky to corky when fresh, corky to fragile when dry. Hymenophores poroid. Hyphal system dimitic; generative hyphae with clamp connections, binding hyphae IKI–, CB+. Cystidia absent; cystidioles present. Basidiospores allantoid, colorless, thin-walled, smooth, IKI–, CB–. Causing a white rot.

Genus: Gloeoporellus.

Gloeoporellus Zmitr., Folia Cryptogamica Petropolitana 6: 85, 2018.

MycoBank: MB 827569

Type species: Gloeoporellus merulinus.

Diagnosis: Basidiomata annual, resupinate to effuse-reflexed, soft corky to corky when fresh, corky to fragile when dry. Pore surface buff-yellow, yellowish brown to apricot-orange when fresh, yellowish buff to orange-yellow when dry; pores round to angular. Context buff-yellow to orange-yellow, corky to fragile. Tubes concolorous with the pore surface, corky to fragile. Hyphal system dimitic; generative hyphae with clamp connections; binding hyphae IKI–, CB+. Cystidia absent; cystidioles present, tubular to fusoid, colorless, thin-walled, smooth. Basidia subclavate, colorless, thin-walled. Basidiospores allantoid to cylindrical, colorless, thin- to slightly thick-walled, smooth, IKI–, CB–. Causing a white rot.

Notes: Tyromyces merulinus was proposed by Cunningham (1965) as a new combination. This species distributes in Argentina, Australia, and New Zealand in the southern hemisphere, and the type locality is Tasmania, Australia (Cunningham, 1965). In Justo et al. (2017), Tyromyces merulinus cannot be placed with certainty in any of the recognized families. Zmitrovich (2018) presented the system of Polyporaceae and carried out the overview of the order Polyporales; Gloeoporellus was proposed as a new genus, with Tyromyces merulinus as type species. Zmitrovich (2018) and He et al. (2019) placed Gloeoporellus into Incrustoporiaceae Jülich, but without the support of phylogenetic analysis. Only one species, Gloeoporellus merulinus, is accepted in this genus now. Basidiomata of G. merulinus are shown in Figure 5.

FIGURE 5.

FIGURE 5

Basidiomata of Gloeoporellus species: G. merulinus (A: Cui 16724; B: Dai 18735). Scale bars: A,B = 2 cm.

Specimens examined: Gloeoporellus merulinus. AUSTRALIA. Tasmania, Mount Field Forest, close to Mount National Park, on rotten wood of Nothofagus cunninghamii, 14 May 2018, Dai 18734 (BJFC 027203); on rotten wood of Nothofagus sp., 14 May 2018, Dai 18735 (BJFC 027204); on living tree of Eucalyptus sp., 14 May 2018, Cui 16676 (BJFC 029975); Hobart, Mount Wellington, on rotten wood of Acacia sp., 13 May 2018, Cui 16629 (BJFC 029928); Timbs Track, on fallen trunk of Nothofagus sp., 14 May 2018, Cui 16650 (BJFC 029949), Cui 16668 (BJFC 029967); Arve River, Streamside Nature Reserve, on dead tree of Eucalyptus sp., 15 May 2018, Dai 18782 (BJFC 027250); on fallen trunk of Eucalyptus sp., 15 May 2018, Cui 16724 (BJFC 030023).

Discussion

The Polyporales are a diverse group of Agaricomycetes, which have received extensive attention and studies. Some mycologists have attempted to adopt ribosomal RNA genes to study the phylogeny of Polyporales, but the results suggested that it is difficult to resolve the taxonomic structure of Polyporales (Larsson et al., 2004; Binder et al., 2005). Subsequently, protein-coding genes, including RPB1, RPB2, and TEF1, were applied to the phylogenetic study of Polyporales (Matheny et al., 2007; Binder et al., 2013; Zhao et al., 2015; Justo et al., 2017). To better verify the independent status of the two new families and provide more molecular data for future research, the phylogenetic analyses of Polyporales are inferred from the combined datasets of ITS + nLSU + RPB1 sequences (Figure 1) and ITS + nLSU + RPB1 + RPB2 + TEF1 sequences (Figure 2). The topological structures obtained from the phylogenetic analyses of the two sequence datasets are slightly different, probably due to the different gene fragments used in the phylogenetic analyses. The results showed that 27 lineages of Polyporales are recognized at the family level (Figures 1, 2), viz., Adustoporiaceae Audet, Cerrenaceae, Dacryobolaceae Jülich, Fibroporiaceae Audet, Fomitopsidaceae Jülich, Fragiliporiaceae, Gelatoporiaceae Miettinen, Justo and Hibbett, Grifolaceae Jülich, Hyphodermataceae Jülich, Incrustoporiaceae, Irpicaceae, Ischnodermataceae, Laetiporaceae Jülich, Laricifomitaceae Jülich, Meripilaceae Jülich, Meruliaceae, Panaceae, Phaeolaceae Jülich, Phanerochaetaceae Jülich, Podoscyphaceae, Polyporaceae, Pycnoporellaceae Audet, Sarcoporiaceae Audet, Sparassidaceae, Steccherinaceae, the climacocystis lineage (Climacocystis and Diplomitoporus) and Gloeoporellus merulinus (Tyromyces merulinus) could not be recognized in any existing families and they are proposed as two new families.

Binder et al. (2005) showed that Climacocystis nested inside the antrodia clade, but other analyses showed that Climacocystis grouped in the residual polyporoid clade (Miettinen et al., 2012; Binder et al., 2013; Justo et al., 2017). Justo et al. (2017) indicated that Climacocystis and Diplomitoporus grouped together with high support within the residual clade and could not be assigned to any recognized family of the Polyporales. Perhaps, previous studies lacked sufficient morphological features and molecular data to determine the family level of Climacocystis and Diplomitoporus, so their classifications at the family level were treated as incertae sedis (He et al., 2019). In the present study, Climacocystis and Diplomitoporus grouped together with high support within the residual clade (100% MP, 100% ML, 1.00 BPP; Figures 1, 2). This lineage has unique morphological characters and forms a well-supported clade. Phylogenetically, Climacocystaceae was closely related to the white-rot fungal families Hyphodermataceae, Meripilaceae, Podoscyphaceae, and Steccherinaceae (Figures 1, 2). Morphologically, Hyphodermataceae differs by having corticioid basidiomata, monomitic hyphal system, and thin-walled basidiospores; Meripilaceae differs in having monomitic or dimitic hyphal system without clamped generative hyphae; Podoscyphaceae differs by possessing mostly pileate basidiomata with smooth, ridged, or poroid hymenophore, dimitic or trimitic hyphal system, and thin-walled basidiospores; Steccherinaceae differs in possessing poroid or hydnoid hymenophore, dimitic hyphae system, mostly thin-walled, and rather small basidiospores (Reid, 1965; Parmasto, 1968; Jülich, 1981; Justo et al., 2017). Thus, a new family, Climacocystaceae, is proposed based on phylogenetic analyses and morphological characters. Rickiopora Westph., Tomšovskı, and Rajchenb. Were established by Westphalen et al. (2016) and related to Climacocystis. But in the current study, Rickiopora cannot be grouped with Climacocystaceae with high support (Figures 1, 2). Hypochnicium J. Erikss. and Bulbillomyces Jülich were grouped together and given an informal name as the hypochnicium clade, and the hypochnicium clade was closely related to the climacocystis clade without high support (Justo et al., 2017). In our current study, the hypochnicium clade is not closely related to the climacocystis clade (Figures 1, 2). Regarding the phylogenetic relationship between the climacocystis clade and related taxa, we found some differences between the current study and previous studies. This may be due to the difference in the number and composition of samples, gene fragments, and analysis methods used in the phylogenetic analysis. Nevertheless, all phylogenetic analyses support that the climacocystis clade cannot be placed in any recognized family and should be established as a new family.

Justo et al. (2017) revealed that Tyromyces merulinus is sister to Incrustoporiaceae, and this species cannot be assigned to a family within Polyporales. Subsequently, Gloeoporellus was proposed to accommodate Tyromyces merulinus (Zmitrovich, 2018) and was placed in the Incrustoporiaceae (Zmitrovich, 2018; He et al., 2019) without the verification of the phylogenetic analysis. In the present study, specimens of Gloeoporellus merulinus are grouped together with high support (100% MP, 100% ML, 1.00 BPP; Figures 1, 2), and are closely related to Fragiliporiaceae and Incrustoporiaceae without statistical support. Morphologically, Fragiliporiaceae resembles Gloeoporellaceae by having an annual growth habit, resupinate basidiomata, clamped generative hyphae, and thin-walled basidiospores. However, Fragiliporiaceae differs by its brittle basidiomata, grayish-buff to lavender pore surface when fresh, vinaceous gray to grayish brown when dry, larger pores, monomitic hyphal system, larger, and allantoid basidiospores (Zhao et al., 2015). Gloeoporellaceae and Incrustoporiaceae share poroid hymenophores, clamped generative hyphae and thin-walled basidiospores, but Incrustoporiaceae differs by having pileate, resupinate to effused-reflexed basidiomata, monomitic, dimitic to trimitic hyphal system, allantoid to ellipsoid or subglobose basidiospores, and tips of generative hyphae at tube mouths commonly with rose-thorn encrustations (Justo et al., 2017; Korhonen et al., 2018; Yuan et al., 2020). Thus, a new family, Gloeoporellaceae, is proposed to accommodate Gloeoporellus merulinus.

In the current study, the molecular clock analysis is executed to verify the taxonomic system for Polyporales with the estimated divergence time. The MCC tree (Figure 3) shows that the ancestor of Agaricales, Amylocorticiales, Cantharellales, Hymenochaetales, Hysterangiales, Phallales, Polyporales, Russulales, and Thelephorales split at about 120.6, 127.4, 243.29, 224.4, 93.89, 93.89, 136.53, 156.58, and 136.53 Mya, respectively; these data generally agree with previous studies (Chen et al., 2015; He et al., 2019; Wang et al., 2021; Ji et al., 2022). He et al. (2019) showed the mean of stem age of families within Agaricomycotina in a range of 27–259 Mya, among which the mean of stem age of six families in Polyporales ranged from 62 to 106 Mya. The current molecular clock analysis shows that the families in Polyporales diverged between 66.02 and 119.22 Mya (Figure 3 and Table 2), of which the Climacocystaceae occur in a mean stem age of 77.49 Mya and Gloeoporellaceae occur in a mean stem age of 88.06 Mya. According to the evolutionary divergence times, Climacocystaceae and Gloeoporellaceae could be recognized as independent families within Polyporales.

Data availability statement

The datasets presented in this study can be found in online repositories. The names of the repository/repositories and accession number(s) can be found in the article/supplementary material.

Author contributions

B-KC designed the experiment and conceived and supervised the work. SL, J-LZ, JS, Y-FS, Y-CD, and B-KC prepared the samples. SL and B-KC made the morphological examinations. SL performed the phylogenetic analyses. SL and J-LZ performed the molecular clock analysis. SL and JS performed the molecular sequencing. SL, J-LZ, JS, and B-KC wrote the manuscript. All authors contributed to the article and approved the submitted version.

Acknowledgments

We express our gratitude to Ms. Xing Ji (China), Chang-Ge Song (China), and Yan Wang (China) for their help during field collections and molecular studies. Drs. Genevieve Gates (Australia), Jun-Zhi Qiu (China), Li-Wei Zhou (China), Xiao-Lan He (China), Hai-Xia Ma (China), Yuan-Yuan Chen (China), Shi-Liang Liu (China), and Long-Fei Fan (China) are thanked for their companionship during field collections.

Funding Statement

This research was supported by the National Natural Science Foundation of China (nos. 32270010, U2003211, and 31870008) and Beijing Forestry University Outstanding Young Talent Cultivation Project (no. 2019JQ03016).

Abbreviations

AIC, Akaike information criterion; BI, Bayesian inference; BJFC, Herbarium of the Institute of Microbiology, Beijing Forestry University, China; BGI, Beijing Genomics Institute; BPP, Bayesian posterior probabilities; BT, bootstrap; CB, cotton blue; CB+, Cyanophilous; CB–, Acyanophilous; CI, consistency index; CTAB, cetyl trimethylammonium bromide; GTR + I + G, general time reversible + proportion invariant + gamma; HI, Homoplasy Index; hLRTs, hierarchical likelihood ratio tests; HPD, highest posterior density; IKI, Melzer’s reagent; IKI–, neither amyloid nor dextrinoid; ILD, incongruence length difference test; ITS, internal transcribed spacer; KOH, 5% potassium hydroxide; MCC, maximum clade credibility; MCMC, Markov Chain Monte Carlo; ML, maximum likelihood; MP, maximum parsimony; MPT, most parsimonious tree; nLSU, nuclear large subunit rDNA; PCR, polymerase chain reaction; RC, rescaled gonsistency index; RI, retention index; RPB1, DNA-directed RNA polymerase II subunit 1; RPB2, DNA-directed RNA polymerase II subunit 2; TEF1, translation elongation factor 1- α ; TL, tree length.

Conflict of interest

The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Publisher’s note

All claims expressed in this article are solely those of the authors and do not necessarily represent those of their affiliated organizations, or those of the publisher, the editors and the reviewers. Any product that may be evaluated in this article, or claim that may be made by its manufacturer, is not guaranteed or endorsed by the publisher.

References

  1. Baltazar J. M., Ryvarden L., Gibertoni T. B. (2014). Diplomitoporus (Polyporales. Basidiomycota) in Brazil revisited. Mycol. Prog. 13 313–319. 10.1007/s11557-013-0916-4 [DOI] [Google Scholar]
  2. Berbee M. L., Taylor J. W. (2010). Dating the molecular clock in fungi – how close are we? Fungal Biol. Rev. 24 1–16. 10.1016/j.fbr.2010.03.001 [DOI] [Google Scholar]
  3. Binder M., Hibbett D. S., Larsson K. H., Larsson E., Langer E. (2005). The phylogenetic distribution of resupinate forms across the major clades of mushroom-forming fungi (Homobasidiomycetes). Syst. Biodivers. 3 113–157. 10.1017/S1477200005001623 [DOI] [Google Scholar]
  4. Binder M., Justo A., Riley R., Salamov A., Lopez-Giraldez F., Sjökvist E., et al. (2013). Phylogenetic and phylogenomic overview of the Polyporales. Mycologia 105 1350–1373. 10.3852/13-003 [DOI] [PubMed] [Google Scholar]
  5. Chen J. J., Cui B. K., Zhou L. W., Korhonen K., Dai Y. C. (2015). Phylogeny, divergence time estimation, and biogeography of the genus Heterobasidion (Basidiomycota, Russulales). Fungal Divers. 71 185–200. 10.1007/s13225-014-0317-2 [DOI] [Google Scholar]
  6. Cui B. K., Li H. J., Ji X., Zhou J. L., Song J., Si J., et al. (2019). Species diversity, taxonomy and phylogeny of Polyporaceae (Basidiomycota) in China. Fungal Divers. 97 137–392. 10.1007/s13225-019-00427-4 [DOI] [Google Scholar]
  7. Cunningham G. H. (1965). Polyporaceae of New Zealand. Bull. Dep. Sci. Industr. Res. 164 1–304. [Google Scholar]
  8. Dai Y. C. (2012). Polypore diversity in China with an annotated checklist of Chinese polypores. Mycoscience 53 49–80. 10.1007/s10267-011-0134-3 [DOI] [Google Scholar]
  9. Dai Y. C., Cui B. K., Yuan H. S., Li B. D. (2007). Pathogenic wood-decaying fungi in China. Forest Pathol. 37 105–120. 10.1111/j.1439-0329.2007.00485.x [DOI] [Google Scholar]
  10. Decock C., Ryvarden L. (2020). Aphyllophorales of Africa 41 Some polypores from Gabon. Synop. Fungorum 42 5–15. [Google Scholar]
  11. Domanski S. (1970). Wood-inhabiting fungi of Bialowieza virgin forests in Poland. XIII. Two species of Diplomitoporus Doman., gen. nov. Acta Soc. Bot. Pol. 39 191–207. 10.5586/asbp.1970.016 [DOI] [Google Scholar]
  12. Drummond A. J., Rambaut A. (2007). BEAST: Bayesian evolutionary analysis by sampling trees. BMC Evol. Biol. 7:214. 10.1186/1471-2148-7-214 [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Drummond A. J., Ho S. Y. W., Phillips M. J., Rambaut A. (2006). Relaxed phylogenetics and dating with confidence. PLoS Biol. 4:e88. 10.1371/journal.pbio.0040088 [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Drummond A. J., Suchard M. A., Xie D., Rambaut A. (2012). Bayesian phylogenetics with BEAUti and the BEAST 1.7. Mol. Biol. Evol. 29 1969–1973. 10.1093/molbev/mss075 [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Farris J. S., Källersjö M., Kluge A. G., Bult C. (1994). Testing significance of incongruence. Cladistics 10 315–319. 10.1111/j.1096-0031.1994.tb00181.x [DOI] [Google Scholar]
  16. Felsenstein J. (1985). Confidence intervals on phylogenies: An approach using the bootstrap. Evolution 39 783–791. 10.1111/j.1558-5646.1985.tb00420.x [DOI] [PubMed] [Google Scholar]
  17. Fries E. (1838). Epicrisis systematis mycologici. Upsaliae: Typographia Academica. [Google Scholar]
  18. Ghobad-Nejhad M., Dai Y. C. (2010). Diplomitoporus rimosus is found in Asia and belongs to the Hymenochaetales. Mycologia 102 1510–1517. 10.3852/10-025 [DOI] [PubMed] [Google Scholar]
  19. Gilbertson R. L., Ryvarden L. (1986). North American polypores 1. Oslo: Fungiflora. [Google Scholar]
  20. Hall T. A. (1999). Bioedit: A user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symp. Ser. 41 95–98. 10.1021/bk-1999-0734.ch008 [DOI] [Google Scholar]
  21. He M. Q., Zhao R. L., Hyde K. D., Begerow D., Kemler M., Yurkov A., et al. (2019). Notes, outline and divergence times of Basidiomycota. Fungal Divers. 99 105–367. 10.1007/s13225-019-00435-4 [DOI] [Google Scholar]
  22. Herter W. G. F. (1910). Autobasidiomycetes. Kryptogamen Flora Der Mark Brandenburg 6 1–192. [Google Scholar]
  23. Hibbett D. S., Grimaldi D., Donoghue M. J. (1997). Fossil mushrooms from Miocene and Cretaceous ambers and the evolution of Homobasidiomycetes. Am. J. Bot. 84 981–991. 10.2307/2446289 [DOI] [PubMed] [Google Scholar]
  24. Ji X., Zhou J. L., Song C. G., Xu T. M., Wu D. M., Cui B. K. (2022). Taxonomy, phylogeny and divergence times of Polyporus (Basidiomycota) and related genera. Mycosphere 13 1–52. 10.5943/mycosphere/13/1/1 [DOI] [Google Scholar]
  25. Jülich W. (1981). Higher taxa of basidiomycetes. Bibl. Mycol. 85 1–485. [Google Scholar]
  26. Justo A., Miettinen O., Floudas D., Ortiz-Santana B., Sjökvist E., Lindner D., et al. (2017). A revised family-level classification of the Polyporales (Basidiomycota). Fungal Biol. 121 798–824. 10.1016/j.funbio.2017.05.010 [DOI] [PubMed] [Google Scholar]
  27. Katoh K., Standley D. M. (2013). MAFFT Multiple sequence alignment software version 7: Improvements in performance and usability. Mol. Biol. Evol. 30 772–780. 10.1093/molbev/mst010 [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Kirk P. M., Cannon P. F., Minter D. W., Stalpers J. A. (2008). Dictionary of the Fungi, 10th Edn. Oxon: CAB International. [Google Scholar]
  29. Korhonen A., Seelan J. S. S., Miettinen O. (2018). Cryptic species diversity in polypores: The Skeletocutis nivea species complex. MycoKeys 36 45–82. 10.3897/mycokeys.36.27002 [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Kotlába F., Pouzar Z. (1958). Polypori novi vel minus cogniti Cechoslovakiae III. Ceská Mykol. 12 95–104. [Google Scholar]
  31. Larsson K. H. (2007). Re-thinking the classification of corticioid fungi. Mycol. Res. 111 1040–1063. 10.1016/j.mycres.2007.08.001 [DOI] [PubMed] [Google Scholar]
  32. Larsson K. H., Larsson E., Kõljalg U. (2004). High phylogenetic diversity among corticioid homobasidiomycetes. Mycol. Res. 108 983–1002. 10.1017/S0953756204000851 [DOI] [PubMed] [Google Scholar]
  33. Lepage T., Bryant D., Philippe H., Lartillot N. A. (2007). A general comparison of relaxed molecular clock models. Mol. Biol. Evol. 24 2669–2680. 10.1093/molbev/msm193 [DOI] [PubMed] [Google Scholar]
  34. Liu S., Chen Y. Y., Sun Y. F., He X. L., Song C. G., Si J., et al. (2022). Systematic classification and phylogenetic relationships of the brown-rot fungi within the Polyporales. Fungal Divers. 10.1007/s13225-022-00511-2 [Online ahead of print]. [DOI] [Google Scholar]
  35. Liu S., Shen L., Wang Y., Xu T., Gates G., Cui B. (2021). Species diversity and molecular phylogeny of Cyanosporus (Polyporales. Basidiomycota). Front. Microbiol. 12:631166. 10.3389/fmicb.2021.631166 [DOI] [PMC free article] [PubMed] [Google Scholar]
  36. Maddison W. P., Maddison D. R. (2017). Mesquite: A modular system for evolutionary analysis, Version 3.2. [Google Scholar]
  37. Matheny P. B. (2005). Improving phylogenetic inference of mushrooms with RPB1 and RPB2 nucleotide sequences (Inocybe, Agaricales). Mol. Phylogenet. Evol. 35 1–20. 10.1016/j.ympev.2004.11.014 [DOI] [PubMed] [Google Scholar]
  38. Matheny P. B., Liu Y. J., Ammirati J. F., Hall B. D. (2002). Using RPB1 sequences to improve phylogenetic inference among mushrooms (Inocybe, Agaricales). Am. J. Bot. 89 688–698. 10.2307/4131413 [DOI] [PubMed] [Google Scholar]
  39. Matheny P. B., Wang Z., Binder M., Curtis J. M., Lim Y. W., Nilsson R. H., et al. (2007). Contributions of rpb2 and tef1 to the phylogeny of mushrooms and allies (Basidiomycota, Fungi). Mol. Phylogenet. Evol. 43 430–451. 10.1016/j.ympev.2006.08.024 [DOI] [PubMed] [Google Scholar]
  40. Miettinen O. (2012). Diplomitoporus dilutabilis belongs to Cinereomyces (Polyporales, Basidiomycota). Mycotaxon 121 345–348. 10.105248/121.345 [DOI] [Google Scholar]
  41. Miettinen O., Larsson E., Sjökvist E., Larsson K. H. (2012). Comprehensive taxon sampling reveals unaccounted diversity and morphological plasticity in a group of dimitic polypores (Polyporales, Basidiomycota). Cladistics 28 251–270. 10.1111/j.1096-0031.2011.00380.x [DOI] [PubMed] [Google Scholar]
  42. Nagy László G, Tóth Renáta, Kiss Enikö, Slot Jason, Gácser Attila, Kovács Gábor M. (2017). Six key traits of fungi: Their evolutionary origins and genetic bases. Microbiol Spectr. 5:FUNK–0036–2016. 10.1128/microbiolspec.FUNK-0036-2016 [DOI] [PMC free article] [PubMed] [Google Scholar]
  43. Núñez M., Ryvarden L. (2001). East Asian polypores 2. Synop. Fungorum 14 170–522. [Google Scholar]
  44. Parmasto E. (1968). Conspectus systematis Corticiacearum. Tartu: Instituut Zooloogia Botaanika. [Google Scholar]
  45. Posada D., Crandall K. A. (1998). Modeltest: Testing the model of DNA substitution. Bioinformatics 14 817–818. 10.1093/bioinformatics/14.9.817 [DOI] [PubMed] [Google Scholar]
  46. Rajchenber M., Robledo G. (2013). Pathogenic polypores in Argentina. For. Pathol. 43 171–184. 10.1111/efp.12032 [DOI] [Google Scholar]
  47. Rea C. (1922). British Basidiomycetae: A handbook to the larger British fungi. Cambridge: Cambridge University Press, 1–799. [Google Scholar]
  48. Rehner S. A., Buckley E. (2005). A Beauveria phylogeny inferred from nuclear ITS and EF1-α sequences: Evidence for cryptic diversification and links to Cordyceps teleomorphs. Mycologia 97 84–98. 10.1080/15572536.2006.11832842 [DOI] [PubMed] [Google Scholar]
  49. Reid D. A. (1965). A monograph of the stipitate stereoid fungi. Beih. Nova Hedwigia 18 1–382. [Google Scholar]
  50. Ronquist F., Huelsenbeck J. P. (2003). MRBAYES 3: Bayesian phylogenetic inference under mixed models. Bioinformatics 19 1572–1574. 10.1093/bioinformatics/btg180 [DOI] [PubMed] [Google Scholar]
  51. Ryvarden L. (2018). Studies in African Aphyllophorales 23 Some new species in Ceriporiopsis and Diplomitoporus. Synop. Fungorum 38 12–19. [Google Scholar]
  52. Ryvarden L. (2019). Studies in Aphyllophorales of Africa 30 Some poroid species from Uganda. Synop. Fungorum 39 41–45. [Google Scholar]
  53. Ryvarden L. (2020). Aphyllophorales 36 More new African polypores. Synop. Fungorum 40 101–105. [Google Scholar]
  54. Sánchez-Ramírez S., Tulloss R. E., Amalfi M., Moncalvo J. M. (2014). Palaeotropical origins, boreotropical distribution and increased rates of diversification in a clade of edible ectomycorrhizal mushrooms (Amanita section Caesareae). J. Biogeogr. 42 351–363. 10.1111/jbi.12402 [DOI] [Google Scholar]
  55. Shen L. L., Wang M., Zhou J. L., Xing J. H., Cui B. K., Dai Y. C. (2019). Taxonomy and phylogeny of Postia. Multi-gene phylogeny and taxonomy of the brown-rot fungi: Postia (Polyporales, Basidiomycota) and related genera. Persoonia 42 101–126. 10.3767/persoonia.2019.42.05 [DOI] [PMC free article] [PubMed] [Google Scholar]
  56. Smith S. Y., Currah R. S., Stockey R. A. (2004). Cretaceous and Eocene poroid hymenophores from Vancouver Island, British Columbia. Mycologia 96 180–186. 10.2307/3762001 [DOI] [PubMed] [Google Scholar]
  57. Song J., Cui B. K. (2017). Phylogeny, divergence time and historical biogeography of Laetiporus (Basidiomycota, Polyporales). BMC Evol. Biol. 17:102. 10.1186/s12862-017-0948-5 [DOI] [PMC free article] [PubMed] [Google Scholar]
  58. Song J., Chen J. J., Wang M., Chen Y. Y., Cui B. K. (2016). Phylogeny and biogeography of the remarkable genus Bondarzewia (Basidiomycota, Russulales). Sci. Rep. 6:34568. 10.1038/srep34568 [DOI] [PMC free article] [PubMed] [Google Scholar]
  59. Song J., Chen Y. Y., Cui B. K. (2014). Phylogeny and taxonomy of Climacocystis (Polyporales) in China. Cryptogamie Mycol. 35 221–232. 10.7872/crym.v35.iss3.2014.221 [DOI] [Google Scholar]
  60. Spirin W. (2003). Antrodiella romellii (Irpicaceae, Basidiomycetes) in Russia. Mycena 3 48–52. [Google Scholar]
  61. Stamatakis A. (2014). RAxML Version 8: A tool for phylogenetic analyses and post analyses of large phylogenies. Bioinformatics 30 1312–1313. 10.1093/bioinformatics/btu033 [DOI] [PMC free article] [PubMed] [Google Scholar]
  62. Sun Y., Costa-Rezende D. H., Xing J., Zhou J., Zhang B., Gibertoni T. B., et al. (2020). Multi-gene phylogeny and taxonomy of Amauroderma s. lat. (Ganodermataceae). Persoonia 44 206–239. 10.3767/persoonia.2020.44.08 [DOI] [PMC free article] [PubMed] [Google Scholar]
  63. Sun Y., Xing J., He X., Wu D., Song C., Liu S., et al. (2022). Species diversity, systematic revision and molecular phylogeny of Ganodermataceae (Polyporales, Basidiomycota) with an emphasis on Chinese collections. Stud. Mycol. 101 287–415. 10.3767/10.3114/sim.2022.101.05 [DOI] [PMC free article] [PubMed] [Google Scholar]
  64. Swofford D. L. (2002). PAUP *: Phylogenetic analysis using parsimony (* and other methods), version 4.0b10. Sunderland: Sinauer Associates, 10.1111/j.0014-3820.2002.tb00191.x [DOI] [Google Scholar]
  65. Taylor T. N., Hass H., Kerp H., Krings M., Hanlin R. T. (2005). Perithecial ascomycetes from the 400 million year old Rhynie chert: Anexample of ancestral polymorphism. Mycologia 97 269–285. 10.1080/15572536.2006.11832862 [DOI] [PubMed] [Google Scholar]
  66. Wang X. W., Tom W. M., Liu X. L., Zhou L. W. (2021). Towards a natural classification of Hyphodontia sensu lato and the trait evolution of basidiocarps within Hymenochaetales (Basidiomycota). J. Fungi 7:478. 10.3390/jof7060478 [DOI] [PMC free article] [PubMed] [Google Scholar]
  67. Westphalen M. C., Rajchenberg M., Tomšovský M., Gugliotta A. M. (2016). Extensive characterization of the new genus Rickiopora (Polyporales). Fungal Biol. 120 1002–1009. 10.1016/j.funbio.2016.05.001 [DOI] [PubMed] [Google Scholar]
  68. White T. J., Bruns T., Lee S., Taylor J. (1990). “Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics,” in PCR Protocols: A Guide to Methods and Applications, eds Innis M. A., Gelfand D. H., Sninsky J. J., White T. J. (San Diego: Academic Press; ), 315–322. 10.1016/B978-0-12-372180-8.50042-1 [DOI] [Google Scholar]
  69. Wu F., Yuan Y., Chen J. J., Cui B. K., Dai Y. C. (2020). Terrestriporiaceae fam. nov., a new family of Russulales (Basidiomycota). Mycosphere 11 2755–2766. 10.5943/mycosphere/11/1/21 [DOI] [Google Scholar]
  70. Wu F., Zhou L. W., Yang Z. L., Bau T., Li T. H., Dai Y. C., et al. (2019). Resource diversity of Chinese macrofungi: Edible, medicinal and poisonous species. Fungal Divers. 98 1–76. 10.1007/s13225-019-00432-7 [DOI] [Google Scholar]
  71. Yuan H. S., Lu X., Dai Y. C., Hyde K. D., Kan Y. H., Kušan I., et al. (2020). Fungal diversity notes 1277–1386: taxonomi and phylogenetic contributions to fungal taxa. Fungal Divers. 104 1–266. 10.1007/s13225-020-00461-7 [DOI] [Google Scholar]
  72. Zhao C. L., Cui B. K., Song J., Dai Y. C. (2015). Fragiliporiaceae, a new family of Polyporales (Basidiomycota). Fungal Divers. 70 115–126. [Google Scholar]
  73. Zhao R. L., Li G. J., Sánchez-Ramírez S., Stata M., Yang Z. L., Wu G., et al. (2017). A six-gene phylogenetic overview of Basidiomycota and allied phyla with estimated divergence times of higher taxa and a phyloproteomics perspective. Fungal Divers. 84 43–74. 10.1007/s13225-017-0381-5 [DOI] [Google Scholar]
  74. Zhao R. L., Zhou J. L., Chen J., Margaritescu S., Sánchez-Ramírez S., Ramírez S., et al. (2016). Towards standardizing taxonomic ranks using divergence times – a case study for reconstruction of the Agaricus taxonomic system. Fungal Divers. 78 239–292. 10.1007/s13225-016-0357-x [DOI] [Google Scholar]
  75. Zhu L., Song J., Zhou J. L., Si J., Cui B. K. (2019). Species diversity, phylogeny, divergence time and biogeography of the genus Sanghuangporus (Basidiomycota). Front. Microbiol. 10:812. 10.3389/fmicb.2019.00812 [DOI] [PMC free article] [PubMed] [Google Scholar]
  76. Zmitrovich I. (2018). Conspectus Systematis Polyporacearum v. 1.0. Folia Cryptogamica Estonica. Petropolitana 6 3–145. [Google Scholar]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Data Availability Statement

The datasets presented in this study can be found in online repositories. The names of the repository/repositories and accession number(s) can be found in the article/supplementary material.


Articles from Frontiers in Microbiology are provided here courtesy of Frontiers Media SA

RESOURCES