Skip to main content
Springer Nature - PMC COVID-19 Collection logoLink to Springer Nature - PMC COVID-19 Collection
. 2023 Feb 17;122(3):691–704. doi: 10.1007/s00436-023-07792-9

Transovarial transmission of pathogenic protozoa and rickettsial organisms in ticks

Reghu Ravindran 1,, Prabodh Kumar Hembram 1, Gatchanda Shravan Kumar 1, Karapparambu Gopalan Ajith Kumar 1, Chundayil Kalarickal Deepa 1, Anju Varghese 1
PMCID: PMC9936132  PMID: 36797442

Abstract

Transovarial transmission (TOT) is an efficient vertical transmission of pathogens that is observed in many arthropod vectors. This method seems to be an evolutionarily unique development observed only in Babesia sensu stricto (clade VI) and Rickettsia spp., whereas transstadial transmission is the common/default way of transmission. Transovarial transmission does not necessarily contribute to the amplification of tick-borne pathogens but does contribute to the maintenance of disease in the environment. This review aims to provide an updated summary of previous reports on TOT of tick-borne pathogens.

Keywords: Babesia, Anaplasma, Rickettsia, Eggs, Larvae, PCR

Background

Ticks are obligate hematophagous ectoparasites of mammals, birds, reptiles, and amphibians found worldwide, and have great medical and veterinary importance (Perez-Sautu et al. 2021). Ticks and tick-borne diseases (TTBDs) can reach serious levels resulting in human mortality and significant economic losses in livestock (Jongejan and Uilenberg 2004; Schnittger et al. 2012; Florin-Christensen et al. 2014). To date, there have been ~ 970 species of ticks identified in the order Ixodida with ~ 750 hard tick species (Ixodidae), ~ 218 species of soft ticks (Argasidae), and single species under the family Nuttalliellidae (Nuttalliella namaqua) and family Deinocrotonidae (Sonenshine 1991; Dantas-Torres and Otranto 2022).

Tick-borne protozoan pathogens infecting domestic animals are various species under the genera Babesia, Theileria, Cytauxzoon, and Hepatozoon. Similarly, many species of Rickettsia are infecting domestic animals. Species under each genus have different modes of transmission. To understand the unique transmission methods in each species, knowledge on the phylogeny or evolutionary history is important. Molecular phylogeny using 18S rRNA genes of piroplasmids infecting mammals resulted in the formation of six clades, viz., I (B. microti group), II (Western clade), III (Cytauxzoon spp.), IV (T. equi), V (Theileria sensu stricto), and VI (Babesia s.s.) (Schnittger et al. 2012, 2022).

Tick-borne pathogens have the potential to be transmitted through horizontal, transstadial, transovarial, venereal, co-feeding, and localized transmission (Parola and Raoult 2001; Turell 2007; Chauvin et al. 2009). During horizontal transmission, parasites are spread from host to tick and vice versa. Transstadial transmission occurs when there is transmission of parasites throughout the development of tick life stages, from the engorgement through moulting into the next unfed stage of the same individual tick. Such transmission may continue through more than one tick stage within a generation (larva to nymph to adult) in the absence of an oral infection (of the nymph) from a vertebrate host, whereas, in the case of transovarial or vertical transmission, the parasite transmission occurs from the female tick to the larvae of the next generation via the eggs (Randolph et al. 1996). The group of true Babesia or Babesia s.s. (clade VI) is characterized by transstadial and transovarial transmission. In contrast, true Theileria or Theileria s.s. (clade V) and T. equi (clade IV or Equus clade) show transstadial transmission and a schizont parasite stage (Schnittger et al. 2022). However, Babesia sensu lato clade I (B. microti group), II (Western clade), and III (Cytauxzoon) exhibit only transstadial transmission.

During localized transmission, an infected tick transmits the parasite to uninfected ticks feeding at the same skin site (transmission may continue beyond the duration of the blood meal of the infected tick). Whereas during co-feeding, the transmission occurs from infected to uninfected ticks while feeding simultaneously on the same host, but not necessarily at the same skin site, in the absence of a systemic infection in the host (Randolph et al. 1996). Lastly, venereal or sexual transmission occurs during the mating of ticks. For a tick to be considered a competent vector, horizontal transmission and at least one of these other transmission routes must be present (Kahl et al. 2002; Pfaffle et al. 2013; Schnittger et al. 2022).

Among the different transmission mechanisms, transstadial transmission is the key survival strategy for many piroplasms. The lifelong carrier status of the vertebrate host ensures the infection of different lifecycle stages of ticks. In contrast, in the case of transovarial transmission, the parasite will be passed on to the next generation once a tick is infected, without the need for prior feeding on an infected host. Here, the tick functions as a carrier of the pathogen. Hence, a prolonged carrier status of the vertebrate host is not necessary for the transovarial transmission. The transovarial transmission facilitates species diversification by host switching to other vertebrate host species (Schnittger et al. 2022). It is not necessarily contributing to the amplification of tick-borne disease, rather contributes to the maintenance of disease in the environment. Hence, more detailed studies on transovarial transmission are essential. Here, in this review, the updated information on the reports of transovarial transmission of pathogens in ticks is presented.

Babesia spp.

Babesiosis was the first arthropod-borne mammalian disease discovered and has been shown to spread from one generation of a hard tick to the next via a transovarial transmission (Smith and Kilbourne 1893; Demessie and Derso 2015). Ticks become infected with Babesia parasites when they ingest blood cells containing gametocytes, which develop into ray bodies or Strahlenkörper (male and female gametes) in their midgut (Uilenberg 2006), which fuse to form a motile zygote (ookinete), that invades the tick gut cells and undergoes meiotic division, resulting in the production of kinetes. Kinetes disseminate via hemolymph to peripheral tick tissues, including ovarian cells leading to the infection of eggs (Jalovecka et al. 2019).

Babesia sensu stricto (clade VI) shows a unique evolutionary pattern because of their ability of transovarial transmission which facilitates the diversification of Babesia s.s. species to all groups of vertebrates around the world. All ruminant infecting Babesia species (B. bigemina, B. bovis, B. divergens, B. ovata, B. major, B. occultans, B. orientalis, Babesia sp. Mymensingh nk, Babesia sp. Tengchong, B. ovis, B. crassa, B. motasi, B. motasi-like, Babesia sp. Xinjiang, etc.) belong to the Babesia sensu stricto group (clade VI) (Schnittger et al. 2012, 2022), which are characterized by the lack of a schizont stage, asexual reproduction exclusively within red blood cells in vertebrate hosts, and the occurrence of transovarial transmission in the tick vector (Uilenberg 2006; Schnittger et al. 2012; Jalovecka et al. 2019). Ticks belonging to the genera Rhipicephalus and Ixodes are generally implicated in the transmission of bovine babesiosis.

Babesia spp. that cause infections in dogs are divided into the Babesia s.s. clade (clade VI) (B. vogeli, B. canis, B. rossi, B. gibsoni, Rangelia vitalii, and Babesia sp. Coco, Babesia sp. Akita610) and two clearly identifiable Babesia s.l. clades, namely, the Western clade (clade II) (B. negevi, B. conradae) and B. vulpes group (clade Ib) (B. vulpes) (Jalovecka et al. 2019). In horses, only B. caballi is recognised as a true Babesia species (Babesia s.s) (clade VI), while B. equi is reclassified as T. equi (clade IV). Babesia caballi is transmitted transovarially. Among the babesias (B. trautmanni, B. perroncitoi, Babesia sp. Suis) that cause infections in swine, Babesia sp. Suis was recently characterized as Babesia s.s. (clade VI), based on the molecular phylogeny using 18S rRNA genes (Avenant et al. 2021).

Table 1 lists the reports of transovarial transmission of different Babesia spp. In ticks, the transovarial infection rate (the percentage of female ticks that pass microorganisms to their progeny) (Burgdorfer and Varma 1967) with different Babesia spp. ranged from 0.5 to 100% while the filial infection rate (the percentage of infected progeny derived from an infected female tick) (Burgdorfer and Varma 1967) for the same were not available in the published reports.

Table 1.

Transovarial transmission of Babesia spp. in ticks

Place Tick species Study type, test performed Transovarial infection rate Filial infection rate Reference
B. bigemina (bovine)
Australia Rh. microplus Experimental study NA NA Riek (1964)
Brazil Rh. microplus nPCR NA NA Oliveira-Sequeira et al. (2005)
Brazil Rh. microplus Microscopic examination NA NA Oliveira et al. (2005)
Brazil Rh. microplus qPCR 20 to 40% NA Giglioti et al. (2018)
Cuba Rh. microplus qPCR 68% NA Obregon et al. (2020)
India Rh. microplus DNA hybridization with a nonradioactive probe NA NA Ravindran et al. (2006)
India Rh. microplus nPCR 7.41% NA Bhat et al. (2017)
India Rh. annulatus PCR 38% NA Hembram et al. (2022)
Iran Rh. annulatus PCR NA NA Rajabi et al. (2017)
Israel Rh. annulatus Nested PCR NA NA Molad et al. (2015)
Kenya Rh. decoloratus Experimental study NA NA Morzaria et al. (1977)
South Africa Rh. decoloratus Experimental study NA NA Gray and Potgieter 1982
Turkey Rh. annulatus Reverse line blot (RLB) NA NA Ica et al. (2007)
Uruguay Rh. microplus PCR NA NA Gayo et al. (2003)
USA Rh. annulatus Experimental study NA NA Smith and Kilbourne (1893)
B. bovis (bovine)
Australia Rh. microplus Experimental study NA NA Mahoney and Mirre (1979)
Brazil Rh. microplus nPCR NA NA Oliveira-Sequeira et al. (2005)
Brazil Rh. microplus Microscopic examination NA NA Oliveira et al. (2005)
Brazil Rh. microplus qPCR 0.5 to 14.5% NA Giglioti et al. (2018)
Cuba Rh. microplus qPCR 100% NA Obregon et al. (2020)
Uruguay Rh. microplus PCR NA NA Gayo et al. (2003)
USA Rh. microplus Experimental study NA NA Smith et al. (1978)
USA Rh. microplus PCR 12% to 48% NA Howell et al. (2007)
B. ovata (bovine)
Japan Ha. longicornis IFAT NA NA Maeda et al. (2016)
Japan Ha. longicornis nPCR NA NA Shirafuji et al. (2017)
B. occultans (bovine)
South Africa Hy. rufipes Experimental study NA NA Gray and de Vos (1981)
Turkey Hy. marginatum PCR 22.22% NA Aktas et al. (2014)
Turkey Rh. turanicus PCR 50% NA Aktas et al. (2014)
Turkey Hy. marginatum PCR NA NA Orkun (2019)
Turkey Hy. excavatum PCR NA NA Orkun (2019)
B. divergens (bovine)
England I. ricinus Experimental study NA NA Donnelly and Peirce (1975)
France I. ricinus PCR NA NA Bonnet et al. (2007)
B. canis (canine)
England Ha. elliptica Experimental study NA NA Shortt (1973)
England Rh. sanguineus Experimental study NA NA Shortt (1973)
Poland D. reticulatus PCR 100% NA Mierzejewska et al. (2018)
West-central Poland I. ricinus PCR NA NA Liberska et al. (2021)
B. rossi (canine)
Nigeria, West Africa Ha. leachi PCR NA NA Kamani (2021)
B. vogeli (canine)
Taiwan Rh. sanguineus PCR NA NA Jongejan et al. (2018)
B. gibsoni (canine)
Japan Ha. longicornis PCR NA NA Hatta et al. (2012)
Taiwan Ha. hystricis PCR NA NA Jongejan et al. (2018)
B. ovis (ovine)
Iran Rh. bursa (two-host tick) PCR NA NA Esmaeilnejad et al. (2014)
Israel Rh. bursa (two-host tick) Experimental study NA NA Yeruham et al. (2001)
Israel Rh. bursa (two-host tick) PCR NA NA Erster et al. (2016)
Turkey Rh. bursa (two-host tick) PCR NA NA Orkun (2019)
B. motasi (ovine)
Netherlands Ha. punctata Experimental study NA NA Uilenberg et al. (1980)
Great Britain Ha. punctata Experimental study NA NA Alani and Herbert (1988)
B. caballi (equine)
Americas Dermacentor nitens PCR NA NA Schwint et al. (2008)
Brazil Rh. microplus PCR NA NA Battsetseg et al. (2002)
US state, Florida Hy. truncatum Experimental study NA NA de Waal (1990)
B. trautmanni (porcine)
South Africa Rh. simus Experimental study NA NA de Waal et al. (1992)

NA not available

Theileria spp.

Theileriosis, (Phylum Apicomplexa; order Piroplasmida; family Theileriidae; genus Theileria) remains a burden for millions of livestock in tropical countries, especially crossbreds and exotic cattle annually (Roy et al. 2021). The dominant Theileria spp. linked to economic loss and mortality worldwide are T. annulata and T. parva (Roy et al. 2021). Mild bovine theileriosis is caused by T. orientalis, T. mutans, T. velifera, and T. taurotragi. Various genotypes of T. orientalis are type 1 (Chitose), type 2 (Ikeda), type 3 (Buffeli), types 4–8, and types N1–N3 (Hammer et al. 2015). Bovine Theileria species, which include T. annulata, T. parva, T. orientalis (syn. T. buffeli/T. sergenti/T. sinensis), T. mutans, T. velifera, and T. taurotragi, belong to a monophyletic group corresponding to clade V (Theileria sensu stricto group) (Schnittger et al. 2012, 2022). Members of this clade exhibit a schizont stage in the lymphoid cells and piroplasms in the red blood cells of the vertebrate host, as well as exclusive transstadial transmission but not transovarial transmission in the tick (Kiara et al. 2018). Theileria annulata (tropical bovine theileriosis) infection is most common in southern Europe, North Africa, the Middle East, and Asia transmitted transstadially by several species of Hyalomma ticks, namely, Hyalomma anatolicum, Hy. dromedarii, Hy. detritum, Hy. scupense, and Hy. lusitanicum (Ali et al. 2013; Jabbar et al. 2015; Gharbi et al. 2020). Hyalomma ticks transmit T. annulata sporozoites into the host and causes a lymphoproliferative disease similar to cancer (Ghosh et al. 2007; Tretina et al. 2015). In addition to a tick bite, transplacental transmission has been detected for T. annulata (Sudan et al. 2015), by PCR analysis. There is no report on the transovarial transmission of T. annulata in ticks (Mehlhorn and Schein 1984; Norval et al. 1992).

Theileria parva, transmitted transstadially, most commonly by Rh. appendiculatus, is present throughout a large part of eastern and southern Africa (Morrison et al. 2020). These parasites also infect the Asian and African species of buffalo (Bubalus bubalis and Syncerus caffer, respectively) (Morrison et al. 2020). Based on the available literature, there are no reports on the transovarial transmission of T. parva in ticks.

Oriental theileriosis was reported in Asia, New Zealand, Australia, and the USA (Oakes et al. 2019). Haemaphysalis longicornis is a known vector tick for T. orientalis in different countries (Fujisaki et al.1994; Hammer et al. 2015, Jabbar et al. 2015). Other potential vectors include Ha. punctata in France (Uilenberg 2000), Rh. microplus in Vietnam and Thailand (Khukhuu et al. 2011; Poolkhetkit et al. 2015), Rh. decoloratus and Rh. evertsi in Ethiopia (Kumsa et al. 2013), and Rh. annulatus in India (Nimisha et al. 2019). Available literature reveals only one report on the detection of the parasite DNA in the eggs of Rh. microplus (Kakati et al. 2015) engorged on a parasite-positive animal. Theileria orientalis can be spread in various ways other than by tick vectors. It has been proven that the infected heifers can transmit the parasite to their foetus or calf (Baek et al. 2003; Lawrence et al. 2016; Swilks et al. 2017; Mekata et al. 2018). Transmission via the transcolostral route is also plausible, but requires more research to confirm this (Emery 2016). In addition, theilerial DNA was detected in mosquitos, lice (Linognathus vituli), and other hematophagous insects (Emery 2016; Hammer et al. 2016). Theileria orientalis can also be transmitted by transfer of piroplasms when contaminated needles (vaccinations), castration knives, and ear notching equipments are reused. In addition, the injuries sustained during yarding and transport of cattle can also assist in the transmission (Hammer et al. 2016).

Among six Theileria species infecting goats, T. lestoquardi, T. luwenshuni, and T. uilenbergi are extremely pathogenic, causing high mortality, and the remaining three, T. separata, T. ovis and T. recondite, are less pathogenic in small ruminants (Islam et al. 2021). It is believed that these infections are transmitted transstadially through multihost ticks and there were no previous reports on transovarial transmission for these parasites.

Babesia equi in horses is reclassified as T. equi owing to its extraerythrocytic schizogony, erythrocytic invasion, and transstadial transmission in ticks (Mehlhorn and Schein 1998; Ueti and Knowles 2018). However, there are reports on the occurrence of transovarial transmission of T. equi in Rh. microplus (Battsetseg et al. 2002) and Ha. longicornis tick (Ikadai et al. 2007). Phylogenetic studies proved that T. equi does not belong to Theileria s.s., but rather represents a unique separate monophyletic clade (clade IV or Equus group) (Schnittger et al. 2012; Jalovecka et al. 2019; Bhoora et al. 2020).

Cytauxzoon (clade III) is characterized by the presence of a schizont stage that infects host cells of the mononuclear reticulohistiocytic system (Schnittger et al. 2022). Dermacentor variabilis was initially accepted to be the natural tick vector of C. felis (Blouin et al. 1984) while transstadial transmission was experimentally proved recently in Amblyomma americanum (Reichard et al. 2009).

Rickettsia spp.

The organisms assigned to the order Rickettsialses were reclassified based on 16S rRNA genes, groESL, and surface protein genes into two families viz., Anaplasmataceae and Rickettsiaceae (Dumler et al. 2001). All the members of the family Rickettsiaceae are slow-growing gram-negative bacteria that are pleomorphic, obligatory intracellular, have a life cycle that involves both an arthropod vector and a vertebrate host (Portillo et al. 2017; Blanda et al. 2020), and grow freely in the cytoplasm of eukaryotic cells. These bacteria can be transmitted to animals and humans by blood-sucking arthropods, causing specific zoonotic diseases termed rickettsioses (Merhej et al. 2014; de Mera et al. 2018). Rickettsia and Orientia are the two genera causing rickettsioses (Jiang et al. 2021) in animals and man.

Based on the disease presentation, antigenicity, and vectors, rickettsial diseases (and their causative agents) have been traditionally separated into three major groups viz., spotted fever group (SFG), typhus group, and scrub typhus group (Luce-Fedrow et al. 2015; Parola et al. 2013; Abdad et al. 2018; Richards and Jiang 2020). More than 30 species are included in the SFG, with more species being added in each year (https://www.bacterio.net).

Many rickettsial endosymbionts of invertebrates are thought to be vertically transmitted, implying that arthropod vectors serve as reservoirs or amplifiers in nature (Parola et al. 2013). The Rickettsia of spotted fever category encompasses a number of human infections, the majority of which are spread by ticks. The Rickettsia spp. transmitted transovarially in the ticks are shown in Table 2. In ticks, the transovarial infection rate with different Rickettsia spp. ranged from 8 to 100%, while its filial infection rate for the same ranged from 22.7 to 100%.

Table 2.

Transovarial transmission of Rickettsia spp. in ticks

Place Tick species Study type, test performed Transovarial infection rate Filial infection rate Reference
R. rickettsii
Brazil A. aureolatum PCR 100% 100% Labruna et al. (2011)
Brazil Rh. sanguineus PCR NA  < 50% Piranda et al. (2011)
Brazil Rh. sanguineus PCR NA 100% Pacheco et al. (2011)
Brazil A. cajennense qPCR  < 50%  < 50% Soares et al. (2012)
Brazil A. aureolatum qPCR 25% NA Binder et al. (2021)
USA D. andersoni Experimental study 100% 100% Burgdorfer (1963)
R. conorii conorii
Algeria Rh. sanguineus PCR 100% Up to 99% Socolovschi et al. (2009a, b)
Algeria Rh. sanguineus PCR 100% Up to 99% Socolovschi et al. (2012)
Thailand Rh. sanguineus PCR NA NA Matsumoto et al. (2005a, b)
R. raoultii
India Rh. annulatus PCR 8% NA Hembram et al. (2022)
India Ha. bispinosa PCR 15% NA Hembram et al. (2022)
Netherlands D. reticulatus PCR NA NA Alberdi et al. (2012)
Northern Mongolia D. nuttalli nPCR NA NA Moore et al. (2018)
Turkey D. marginatus PCR NA NA Orkun (2019)
R. slovaca
Turkey D. marginatus PCR NA NA Orkun (2019)
USA D. variabilis PCR  ≥ 99%  ≥ 99% Zemtsova et al. (2016)
R. massiliae
France Rh. turanicus PCR 100% 98.5% Matsumoto et al. (2005a, b)
R. africae
Ivory Coast, Africa A. variegatum PCR 100% 93.4% Socolovschi et al. (2009a, b)
R. bellii
Brazil I. loricatus PCR NA NA Horta et al. (2006)
R. aeschlimannii
Turkey Hy. marginatum PCR 25% NA Orkun (2019)
R. amblyommii
Brazil A. auricularium PCR 100% 100% Saraiva et al. (2013)
R. montana
USA D. variabilis PCR NA NA Macaluso et al. (2001)
R. rhipicephali
USA D. variabilis PCR NA NA Macaluso et al. (2001)
Rickettsia spp.
Northern Germany I. ricinus qPCR NA 22.7% Hauck et al. (2020)

NA not available

Anaplasma spp.

The organisms placed under family Anaplasmataceae are obligate intracellular parasites found exclusively within the membrane-bound vacuoles in the host cell cytoplasm. The family Anaplasmataceae include four genera viz., Anaplasma, Ehrlichia, Neorickettsia, and Wolbachia. The genus Anaplasma include A. marginale, A. marginale subsp. centrale, A. phagocytophilum, A. bovis, and A. platys (Kocan et al. 2010).

A. marginale

Anaplasmosis causes considerable economic loss to beef and dairy industries globally, including those in the America, Europe, Australia, Asia, and Africa (Aubry and Geale 2011; Atif 2015; Kocan et al. 2015). Anaplasma spp. can be transmitted biologically by ticks, mechanically by blood-sucking arthropods (blood-contaminated mouthparts of biting flies) or blood-contaminated fomites, i.e., castration and dehorning equipment, needles, and ear tag applicators (Kocan et al. 2015; Battilani et al. 2017).

Many species of ticks are reported to serve as the vectors of A. marginale viz., Argas persicus, Dermacentor andersoni, D. albipictus, D. calcaratus, D. variabilis, D. occidentalis, D. hunteri, Hy. excavatum, Hy. rufipes, I. ricinus, I. scapularis, Ornithodoros lahorensis, Rh. microplus, Rh. annulatus, Rh. decoloratus, Rh. evertsi, and Rh. simus, but the most common vectors throughout tropical and subtropical areas of the world are Dermacentor spp. (D. andersoni, D. variabilis, and D. albipictus) and Rhipicephalus (Boophilus) spp. (Rh. microplus and Rh. annulatus) (Rar and Golovljova 2011; Kocan et al. 2015). Tick transmission can occur from stage to stage (interstadial or transstadial) or within a stage (intrastadial) (Stich et al. 1989). Interstadial transmission of A. marginale has been demonstrated by the 3-host ticks, D. andersoni, and D. variabilis in the USA (Kocan 1986; Kocan et al. 1981, 1985; Stiller et al. 1989), Rh. sanguineus in Israel (Shkap et al. 2009) and by Rh. simus in South Africa (Potgieter and Van Rensburg 1980, 1982; Potgieter et al. 1983). Intrastadial transmission of A. marginale is caused by male ticks which serve as the reservoir hosts of the organisms, persistently infecting the cattle (Ge et al. 1996; Kocan et al. 1992, 2000; Palmer et al. 2001). The co-feeding of ticks does not appear to influence the dynamics of A. marginale transmission (Kocan and de la Fuente 2003). Transplacental transmission of A. marginale occurs in cattle, resulting in healthy but persistently infected calves (Grau et al. 2013).

There are very few reports on the occurrence of transovarial transmission of A. marginale. Shimada et al. (2004) detected A. marginale major surface protein 5 (msp5) gene in larvae of Rh. microplus by PCR amplification. Amaro Estrada et al. (2020) confirmed the transovarial transmission of A. marginale by detecting it in the unfed larvae hatched from the fully engorged Rh. microplus by the PCR targeting both msp5 and major surface protein1α (msp1α) genes. Kumar et al. (2019) detected this organism in the Rh. microplus ticks and their egg masses. Hembram et al. (2022) detected this organism in the Rh. annulatus ticks, their egg masses, and unfed larvae.

A. bovis

Anaplasma bovis is a bacterium infecting the circulating monocytes (Sreekumar et al. 1996; Liu et al. 2012) and tissue macrophages of domestic and wild ruminants (Worthington and Bigalke 2001). The infection in cattle is normally asymptomatic, although it can induce a number of clinical symptoms, including decreased body weight, fever, anemia, depression, lymphadenopathy, and in rare cases, abortion, as well as death. Anaplasma bovis DNA was detected in the nymphs and larvae of Ha. megaspinosa in Japan (Yoshimoto et al. 2010), Rh. turanicus in Israel (Harrus et al. 2011), engorged female Rh. annulatus in India (Nimisha et al. 2019), and an undescribed tick species in South Africa (Harrison et al. 2011). There are no reports on the transovarial transmission of A. bovis in ticks.

A. phagocytophilum

Anaplasma phagocytophilum, an obligate intracellular gram-negative bacterium is the etiological agent of tick-borne fever (TBF) in ruminants (Atif 2015) and of equine, canine, and human granulocytic anaplasmosis (EGA, CGA, and HGA, respectively) (Dumler et al. 2001; Woldehiwet 2010). Anaplasma phagocytophilum (Rickettsiales: Anaplasmataceae) has become an important tick-borne pathogen in the USA, Europe, and Asia, with increasing numbers of infected people and animals every year (Bakken and Dumler 2015; Tang et al. 2015). Anaplasma phagocytophilum multiplies within a parasitophorous vacuole to form a morula in the cytoplasm of tick and vertebrate host cells (Dumler et al. 2001; Tang et al. 2015; Munderloh et al. 1999). Fatal cases have been reported so far in sheep, cattle, horses, reindeer, roe deer, moose, dogs, and humans (Jenkins et al. 2001; Stuen 2003; Franzen et al. 2007).

The most typical way to spread the A. phagocytophilum is through the bite of an infected tick (Jaarsma et al. 2019). Transstadial transmission is essential in maintaining A. phagocytophilum within its endemic cycles (Medlock et al. 2013; Jahfari et al. 2014; Krucken et al. 2013). Ixodes ricinus (Strle 2004; Parola et al. 2005), I. scapularis, and I. persulcatus (Alekseev et al. 1998; Woldehiwet 2010) were identified as vectors. Anaplasma phagocytophilum has been found in questing ticks belonging to other members of the genus Ixodes like I. trianguliceps (Ogden et al. 1998), I. ventalloi (Santos et al. 2004), I. hexagonus (Pfaffle et al. 2011), and I. nipponensis (Lee et al. 2020). Anaplasma phagocytophilum DNA has also been found in D. reticulatus (Karbowiak et al. 2014), Haemaphysalis punctata, Ha. concinna, and Rh. bursa (Barandika et al. 2007).

Although the transovarial transmission has not been shown in Ixodes species, it has been demonstrated in moose tick D. albipictus, a parasite with a single host life cycle (Baldridge et al. 2009). The presence of A. phagocytophilum was confirmed by PCR in unfed larvae of D. albipictus (Baldridge et al. 2009) and I. ricinus (Hauck et al. 2020). Hembram et al. (2022) detected this organism in the fully repleted Rh. annulatus and Ha. bispinosa ticks as well as their progenies.

Concluding remarks

Numerous factors have contributed to an increase in the incidence and diversity of tick-borne diseases in both humans and animals in recent years. Global climate change favored the spread of vector populations restricted previously to narrow geo-climatic conditions to new and wider areas, thereby spreading the infections carried by them. Urbanization and habitat encroachment caused increased contact of humans/animals with wildlife and new vectors. Human activities including deforestation, reforestation, and plantation lead to a situation with increased interaction of the host with the widely dispersed blood-feeding ectoparasites, previously restricted only to the forest environments. This resulted in changes in the vector ecology. In addition, the availability of better diagnostic tools and increased awareness among the scientific community, veterinarians, physicians, and public health authorities contributed to significant improvement in the knowledge of TTBDs. Presently, TTBDs are considered to be a major problem for both human and animal populations. There is still a great dearth of knowledge regarding the vector potential of many tick species found throughout the world. In order to elucidate the disease biology of tick-borne diseases, it is essential to understand their transmission mechanisms. Among the different transmission mechanisms, transstadial transmission is the key survival strategy for many piroplasms. The lifelong carrier status of the vertebrate host ensures infection of such organisms infecting different lifecycle stages of ticks. In contrast, in the case of transovarial transmission, the parasite will be passed on into the next generation once a tick is infected, without the need for prior feeding on an infected host. Here, the tick functions as a carrier of the pathogen. Hence, a prolonged carrier status of the vertebrate host is not necessary for transmission. The transovarial transmission facilitates species diversification by host switching to other vertebrate host species. Thus, transovarial transmission plays a role in establishing the endemicity of the infection. Hence, it can affect the control efforts against the pathogen in a particular region. The transovarial transmission results in the formation of infected larvae (more when the transovarial and filial infection rates are high) with greater potential for spreading disease compared to nymphal and adult stages since such larvae are minute and difficult to be detected with the naked eye.

Acknowledgements

The second author wishes to acknowledge the Indian Council of Agricultural Research (ICAR) for providing the National Talent Scholarship (NTS) and Kerala Veterinary and Animal Sciences University (KVASU) for the facilities.

Abbreviations

TOT

Transovarial transmission

SFG

Spotted fever group

TTBDs

Ticks and tick-borne diseases

PCR

Polymerase chain reaction

nPCR

Nested polymerase chain reaction

RLB

Reverse line blot

qPCR

Quantitative polymerase chain reaction

IFAT

Indirect immunofluorescent antibody test

msp5

Major surface protein 5

msp1α

Major surface protein1α

TBF

Tick-borne fever

B

Babesia

A

Anaplasma

Th

Theileria

Rh

Rhipicephalus

Ha

Haemaphysalis

Hy

Hyalomma

I

Ixodes

D

Dermacentor

R

Rickettsia

NA

Not available

s.s.

sensu stricto

s.l.

sensu lato

Author contribution

R.R. and P.K.H. wrote the manuscript text and prepared tables. G.S.K. and C.K.D. edited the tables. K.G.A. and A.V. edited the manuscript. All authors read and approved the final manuscript.

Funding

The study was financially supported by the RKVY-RAFTAAR 2019–20 project (KE/RKVY-ANHB/2019/1422), Kerala state plan project (2021–22) (RSP/21–22/VI-7), Indian Council of Agricultural Research (ICAR)-sponsored research projects (NAIP/C2066, NFBSFARA/BSA-4004/2013–14, NASF/ABA-6015/2016–17), Kerala State Council for Science, Technology, and Environment-sponsored research projects (022/YIPB/KBC/2013/CSTE, 010–14/SARD/13/CSTE), and Kerala Veterinary and Animal Sciences University (KVASU/2019/078/MVP/VPR). The funders had no role in the study design, data collection, analysis, decision to publish, or preparation/content of the manuscript.

Data availability

Not applicable.

Code availability

Not applicable.

All the required ethical standards were complied with.

Declarations

Competing interests

The authors declare no competing interests.

Consent of publication

All authors consent to the publication of this manuscript.

Conflict of interest

The authors declare no competing interests.

Footnotes

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

References

  1. Abdad MY, Abou Abdallah R, Fournier PE, Stenos J, Vasoo S. A concise review of the epidemiology and diagnostics of rickettsioses: Rickettsia and Orientia spp. J Clin Microbiol. 2018;56:e01728–e1817. doi: 10.1128/JCM.01728-17. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Aktas M, Vatansever Z, Ozubek S. Molecular evidence for trans-stadial and transovarial transmission of Babesia occultans in Hyalomma marginatum and Rhipicephalus turanicus in Turkey. Vet Parasitol. 2014;204:369–371. doi: 10.1016/j.vetpar.2014.05.037. [DOI] [PubMed] [Google Scholar]
  3. Alani AJ, Herbert IV. The morphometrics of Babesia motasi (Wales) and its transmission by Haemaphysalis punctata (Canestrini and Fanzago 1877) to sheep. Vet Parasitol. 1988;30:87–95. doi: 10.1016/0304-4017(88)90155-0. [DOI] [PubMed] [Google Scholar]
  4. Alberdi MP, Nijhof AM, Jongejan F, Bell-Sakyi L. Tick cell culture isolation and growth of Rickettsia raoultii from Dutch Dermacentor reticulatus ticks. Ticks Tick Borne Dis. 2012;3:349–354. doi: 10.1016/j.ttbdis.2012.10.020. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Alekseev AN, Dubinina HV, Antykova LP, Dzhivanyan TI, Rijpkema SG, De Kruif NV, Cinco M. Tick-borne borrelioses pathogen identification in Ixodes ticks (Acarina, Ixodidae) collected in St. Petersburg and Kaliningrad Baltic regions of Russia. J Med Entomol. 1998;35:136–142. doi: 10.1093/jmedent/35.2.136. [DOI] [PubMed] [Google Scholar]
  6. Ali Z, Maqbool A, Muhammad K, Khan MS, Younis M. Prevalence of Theileria annulata infected hard ticks of cattle and buffalo in Punjab, Pakistan. J Anim Plant Sci. 2013;23:20–26. [Google Scholar]
  7. Amaro Estrada I, García-Ortiz MA, Preciado de la Torre JF, Rojas-Ramírez EE, Hernández-Ortiz R, Alpírez-Mendoza F, Rodríguez Camarillo SD. Transmission of Anaplasma marginale by unfed Rhipicephalus microplus tick larvae under experimental conditions. Rev Mex Cienc Pecu. 2020;11:116–131. doi: 10.22319/rmcp.v11i1.5018. [DOI] [Google Scholar]
  8. Atif FA. Anaplasma marginale and Anaplasma phagocytophilum: Rickettsiales pathogens of veterinary and public health significance. Parasitol Res. 2015;114:3941–3957. doi: 10.1007/s00436-015-4698-2. [DOI] [PubMed] [Google Scholar]
  9. Aubry P, Geale DW. Review of bovine anaplasmosis. Transbound Emerg Dis. 2011;58:1–30. doi: 10.1111/j.1865-1682.2010.01173.x. [DOI] [PubMed] [Google Scholar]
  10. Avenant A, Park JY, Vorster I, Mitchell EP, Arenas-Gamboa AM. Porcine babesiosis caused by Babesia sp. Suis in a pot-bellied pig in South Africa. Front vet sci. 2021;7:1129. doi: 10.3389/fvets.2020.620462. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Baek BK, Soo KB, Kim JH, Hur J, Lee BO, Jung JM, Onuma M, Oluoch AO, Kim CH, and Kakoma I (2003). Verification by polymerase chain reaction of vertical transmission of Theileria sergenti in cows. Can J Vet Res 67:278–282. https://pubmed.ncbi.nlm.nih.gov/14620864/ [PMC free article] [PubMed]
  12. Bakken JS, Dumler JS. Human granulocytic anaplasmosis. Infect Dis Clin N Am. 2015;29:341–355. doi: 10.1016/j.idc.2015.02.007. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Baldridge GD, Scoles G, Burkhardt NY, Schloeder B, Kurtti TJ, Munderloh UG. Transovarial transmission of Francisella-like endosymbionts and Anaplasma phagocytophilum variants in Dermacentor albipictus (Acari: Ixodidae) J Med Entomol. 2009;46:625–632. doi: 10.1603/033.046.0330. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Barandika JF, Hurtado A, Garcia-Esteban C, Gil H, Escudero R, Barral M, Jado I, Juste RA, Anda P, Garcia-Perez AL. Tick-borne zoonotic bacteria in wild and domestic small mammals in northern Spain. Appl Environ Microbiol. 2007;73:6166–6171. doi: 10.1128/AEM.00590-07. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Battilani M, De Arcangeli S, Balboni A, Dondi F. Genetic diversity and molecular epidemiology of Anaplasma. Infect Genet Evol. 2017;49:195–211. doi: 10.1016/j.meegid.2017.01.021. [DOI] [PubMed] [Google Scholar]
  16. Battsetseg B, Lucero S, Xuan X, Claveria FG, Inoue N, Alhassan A, Kanno T, Igarashi I, Nagasawa H, Mikami T, Fujisaki K. Detection of natural infection of Boophilus microplus with Babesia equi and Babesia caballi in Brazilian horses using nested polymerase chain reaction. Vet Parasitol. 2002;107:351–357. doi: 10.1016/s0304-4017(02)00131-0. [DOI] [PubMed] [Google Scholar]
  17. Bhat SA, Singh NK, Singh H, Rath SS. Molecular prevalence of Babesia bigemina in Rhipicephalus microplus ticks infesting cross-bred cattle of Punjab, India. Parasit Epidemiol Control. 2017;2:85–90. doi: 10.1016/j.parepi.2017.04.002. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Bhoora RV, Collins NE, Schnittger L, Troskie C, Marumo R, Labuschagne K, Smith RM, Dalton DL, Mbizeni S. Molecular genotyping and epidemiology of equine piroplasmids in South Africa. Ticks Tick Borne Dis. 2020;11:101358. doi: 10.1016/j.ttbdis.2019.101358. [DOI] [PubMed] [Google Scholar]
  19. Binder LC, Ramirez-Hernandez A, de Azevedo Serpa MC, Moraes-Filho J, Pinter A, Scinachi CA, Labruna MB. Domestic dogs as amplifying hosts of Rickettsia rickettsii for Amblyomma aureolatum ticks. Ticks Tick Borne Dis. 2021;12:101824. doi: 10.1016/j.ttbdis.2021.101824. [DOI] [PubMed] [Google Scholar]
  20. Blanda V, D’Agostino R, Giudice E, Randazzo K, La Russa F, Villari S, Vullo S, Torina A. New real-time PCRs to differentiate Rickettsia spp. and Rickettsia conorii. Molecules. 2020;25:4431. doi: 10.3390/molecules25194431. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Blouin EF, Kocan AA, Glenn BL, Kocan KM, Hair JA. Transmission of Cytauxzoon felis Kier, 1979 from bobcats, Felis rufus (Schreber), to domestic cats by Dermacentor variabilis (Say) J Wildl Dis. 1984;20:241–242. doi: 10.7589/0090-3558-20.3.241. [DOI] [PubMed] [Google Scholar]
  22. Bonnet S, Jouglin M, Malandrin L, Becker C, Agoulon A, l’Hostis M, Chauvin A. Transstadial and transovarial persistence of Babesia divergens DNA in Ixodes ricinus ticks fed on infected blood in a new skin-feeding technique. Parasitology. 2007;134:197–207. doi: 10.1017/S0031182006001545. [DOI] [PubMed] [Google Scholar]
  23. Burgdorfer W. Investigation of “transovarial transmission” of Rickettsia rickettsii in the wood tick, Dermacentor andersoni. Exp Parasitol. 1963;14:152–159. doi: 10.1016/0014-4894(63)90019-5. [DOI] [Google Scholar]
  24. Burgdorfer W, Varma MGR. Trans-stadial and transovarial development of disease agents in arthropods. Annu Rev Entomol. 1967;12:347–376. doi: 10.1146/annurev.en.12.010167.002023. [DOI] [PubMed] [Google Scholar]
  25. Chauvin A, Moreau E, Bonnet S, Plantard O, Malandrin L. Babesia and its hosts: adaptation to long-lasting interactions as a way to achieve efficient transmission. Vet Res. 2009;40:1–18. doi: 10.1051/vetres/2009020. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Dantas-Torres F, Otranto D (2022) Ixodid and Argasid ticks. In: Rezaei N (ed) Encyclopedia of infection and immunity, 1st edn. Elsevier, United States pp 1049–1063. 10.1016/B978-0-12-818731-9.00013-6
  27. de Mera IGF, Blanda V, Torina A, Dabaja MF, El Romeh A, Cabezas-Cruz A, de la Fuente J. Identification and molecular characterization of spotted fever group rickettsiae in ticks collected from farm ruminants in Lebanon. Ticks Tick Borne Dis. 2018;9:104–108. doi: 10.1016/j.ttbdis.2017.10.001. [DOI] [PubMed] [Google Scholar]
  28. de Waal DT (1990) The transovarial transmission of Babesia caballi by Hyalomma truncatum Onderstepoort J Vet Res 57:99–100. https://pubmed.ncbi.nlm.nih.gov/2339004/ [PubMed]
  29. de Waal DT, Lopez Rebollar LM, Potgieter FT (1992) The transovarial transmission of Babesia trautmanni by Rhipicephalus simus to domestic pigs. Onderstepoort J Vet Res 59:219–21. https://pubmed.ncbi.nlm.nih.gov/1437025/ [PubMed]
  30. Demessie Y, Derso S (2015) Tick borne hemoparasitic diseases of ruminants: a review. Adv Biol Res 9:210–224. https://www.idosi.org/abr/9(4)15/1.pdf
  31. Donnelly J, Peirce MA. Experiments on the transmission of Babesia divergens to cattle by the tick Ixodes ricinus. Int J Parasitol. 1975;5:363–367. doi: 10.1016/0020-7519(75)90085-5. [DOI] [PubMed] [Google Scholar]
  32. Dumler JS, Barbet AF, Bekker CPJ, Dasch GA, Palmer GH, Ray SC, Rikihisa Y, Rurangirwa FR. Reorganization of the genera in the families Rickettsiaceae and Anaplasmataceae in the order Rickettsiales: unification of some species of Ehrlichia with Anaplasma, Cowdria with Ehrlichia and Ehrlichia with Neorickettsia, descriptions of six new species combinations and designation of Ehrlichia equi and ‘HGE agent’ as subjective synonyms of Ehrlichia phagocytophila. Int J Syst Evol Microbiol. 2001;51:2145–2165. doi: 10.1099/00207713-51-6-2145. [DOI] [PubMed] [Google Scholar]
  33. Emery D (2016) Transmission of Theileria orientalis in cattle. MLA report B.AHE. 0240, meat and livestock Australia Limited, North Sydney. https://www.mla.com.au/contentassets/50545b92bae946c9b82456b6475be11d/b.ahe.0240_final_report.pdf
  34. Erster O, Roth A, Wolkomirsky R, Leibovich B, Savitzky I, Shkap V. Transmission of Babesia ovis by different Rhipicephalus bursa developmental stages and infected blood injection. Ticks Tick Borne Dis. 2016;7:13–19. doi: 10.1016/j.ttbdis.2015.07.017. [DOI] [PubMed] [Google Scholar]
  35. Esmaeilnejad B, Tavassoli M, Asri-Rezaei S, Dalir-Naghadeh B, Mardani K, Jalilzadeh-Amin G, Golabi M, Arjmand J (2014) PCR-based detection of Babesia ovis in Rhipicephalus bursa and small ruminants. J Parasitol Res 2014:294704. 10.1155/2014/294704 [DOI] [PMC free article] [PubMed]
  36. Florin-Christensen M, Suarez CE, Rodriguez AE, Flores DA, Schnittger L. Vaccines against bovine babesiosis: where we are now and possible roads ahead. Parasitology. 2014;28:1–30. doi: 10.1017/S0031182014000961. [DOI] [PubMed] [Google Scholar]
  37. Franzen P, Berg AL, Aspan A, Gunnarsson A, Pringle J. Death of a horse infected experimentally with Anaplasma phagocytophilum. Vet Rec. 2007;160:122–125. doi: 10.1136/vr.160.4.122. [DOI] [PubMed] [Google Scholar]
  38. Fujisaki K, Kawazu S, Kamio T. The taxonomy of the bovine Theileria spp. Parasitol Today. 1994;10:31–33. doi: 10.1016/0169-4758(94)90355-7. [DOI] [PubMed] [Google Scholar]
  39. Gayo V, Romito M, Solari MA, Viljoen GJ, Nel LH (2003) PCR-based detection of the transovarial transmission of Uruguayan Babesia bovis and Babesia bigemina vaccine strains. Onderstepoort J Vet Res 70:197–204 https://pubmed.ncbi.nlm.nih.gov/14621315/ [PubMed]
  40. Ge NL, Kocan KM, Blouin EF, Murphy GL. Developmental studies of Anaplasma marginale (Rickettsiales: Anaplasmataceae) in male Dermacentor andersoni (Acari: Ixodidae) infected as adult using nonradioactive in situ hybridization. J Med Entomol. 1996;33:911–920. doi: 10.1093/jmedent/33.6.911. [DOI] [PubMed] [Google Scholar]
  41. Gharbi M, Darghouth MA, Elati K, AL-Hosary AA, Ayadi O, Salih DA, El Hussein AM, Mhadhbi M, Khamassi Khbou M, Hassan SM, Obara I. Current status of tropical theileriosis in Northern Africa: a review of recent epidemiological investigations and implications for control. Transbound Emerg Dis. 2020;67:8–25. doi: 10.1111/tbed.13312. [DOI] [PubMed] [Google Scholar]
  42. Ghosh S, Azhahianambi P, Yadav MP (2007) Upcoming and future strategies of tick control: a review. J Vector Borne Dis 44:79–89. http://www.mrcindia.org/journal/issues/442079.pdf [PubMed]
  43. Giglioti R, de Oliveira HN, Okino CH, de Sena Oliveira MC. qPCR estimates of Babesia bovis and Babesia bigemina infection levels in beef cattle and Rhipicephalus microplus larvae. Exp Appl Acarol. 2018;75:235–240. doi: 10.1007/s10493-018-0260-0. [DOI] [PubMed] [Google Scholar]
  44. Grau HEG, Cunha NAD, Pappen FG, Farias NADR. Transplacental transmission of Anaplasma marginale in beef cattle chronically infected in southern Brazil. Rev Bras Parasitol Vet. 2013;22:189–193. doi: 10.1590/S1984-29612013000200038. [DOI] [PubMed] [Google Scholar]
  45. Gray JS, de Vos AJ (1981) Studies on a bovine babesia transmitted by Hyalomma marginatum rufipes Koch 1844. Onderstepoort J Vet Res 48:215–23. https://pubmed.ncbi.nlm.nih.gov/7345388/ [PubMed]
  46. Gray JS, Potgieter FT (1982) Studies on the infectivity of Boophilus decoloratus males and larvae infected with Babesia bigemina. Onderstepoort J Vet Res 49:1–2. http://hdl.handle.net/2263/51084 [PubMed]
  47. Hammer JF, Emery D, Bogema DR, Jenkins C. Detection of Theileria orientalis genotypes in Haemaphysalis longicornis ticks from southern Australia. Parasit Vectors. 2015;8:229. doi: 10.1186/s13071-015-0839-9. [DOI] [PMC free article] [PubMed] [Google Scholar]
  48. Hammer JF, Jenkins C, Bogema D, Emery D. Mechanical transfer of Theileria orientalis: possible roles of biting arthropods, colostrum and husbandry practices in disease transmission. Parasit Vectors. 2016;9:1–9. doi: 10.1186/s13071-016-1323-x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  49. Harrison A, Bown KJ, Horak IG. Detection of Anaplasma bovis in an undescribed tick species collected from the eastern rock sengi Elephantulus myurus. J Parasitol. 2011;97:1012–1016. doi: 10.1645/GE-2800.1. [DOI] [PubMed] [Google Scholar]
  50. Harrus S, Perlman-Avrahami A, Mumcuoglu KY, Morick D, Eyal O, Baneth G. Molecular detection of Ehrlichia canis, Anaplasma bovis, Anaplasma platys, Candidatus Midichloria mitochondrii and Babesia canis vogeli in ticks from Israel. Clin Microbiol Infect. 2011;17:459–463. doi: 10.1111/j.1469-0691.2010.03316.x. [DOI] [PubMed] [Google Scholar]
  51. Hatta T, Matsubayashi M, Miyoshi T, Islam K, Alim MA, Yamaji K, Fujisaki K, Tsuji N. Quantitative PCR-based parasite burden estimation of Babesia gibsoni in the vector tick, Haemaphysalis longicornis (Acari: Ixodidae), fed on an experimentally infected dog. J Vet Med Sci. 2012;75:1–6. doi: 10.1292/jvms.12-0175. [DOI] [PubMed] [Google Scholar]
  52. Hauck D, Jordan D, Springer A, Schunack B, Pachnicke S, Fingerle V, Strube C. Transovarial transmission of Borrelia spp., Rickettsia spp. and Anaplasma phagocytophilum in Ixodes ricinus under field conditions extrapolated from DNA detection in questing larvae. Parasit Vectors. 2020;13:1–11. doi: 10.1186/s13071-020-04049-7. [DOI] [PMC free article] [PubMed] [Google Scholar]
  53. Hembram PK, Kumar GS, Kumar KGA, Deepa CK, Varghese A, Bora CAF, Nandini A, Malangmei L, Kurbet PS, Dinesh CN, Juliet S, Ghosh S, Ravindran R. Molecular detection of pathogens in the ova and unfed larvae of Rhipicephalus annulatus and Haemaphysalis bispinosa ticks infesting domestic cattle of south India. Acta Trop. 2022;235:106656. doi: 10.1016/j.actatropica.2022.106656. [DOI] [PubMed] [Google Scholar]
  54. Horta MC, Pinter A, Schumaker TT, Labruna MB. Natural infection, transovarial transmission, and transstadial survival of Rickettsia bellii in the tick Ixodes loricatus (Acari: Ixodidae) from Brazil. Ann N Y Acad Sci. 2006;1078:285–290. doi: 10.1196/annals.1374.053. [DOI] [PubMed] [Google Scholar]
  55. Howell JM, Ueti MW, Palmer GH, Scoles GA, Knowles DP. Transovarial transmission efficiency of Babesia bovis tick stages acquired by Rhipicephalus (Boophilus) microplus during acute infection. J Clin Microbiol. 2007;45:426–431. doi: 10.1128/JCM.01757-06. [DOI] [PMC free article] [PubMed] [Google Scholar]
  56. Ica A, Vatansever Z, Yildirim A, Duzlu O, Inci AB. Detection of Theileria and Babesia species in ticks collected from cattle. Vet Parasitol. 2007;148:156–160. doi: 10.1016/j.vetpar.2007.06.003. [DOI] [PubMed] [Google Scholar]
  57. Ikadai H, Sasaki M, Ishida H, Matsuu A, Igarashi I, Fujisaki K, Oyamada T (2007) Molecular evidence of Babesia equi transmission in Haemaphysalis longicornis. Am J Trop Med Hyg 76:694–697. https://pubmed.ncbi.nlm.nih.gov/17426172/ [PubMed]
  58. Islam MF, Rudra PG, Singha S, Das T, Gebrekidan H, Uddin MB, Chowdhury MY. Molecular epidemiology and characterization of Theileria in Goats. Protist. 2021;172:125804. doi: 10.1016/j.protis.2021.125804. [DOI] [PubMed] [Google Scholar]
  59. Jaarsma RI, Sprong H, Takumi K, Kazimirova M, Silaghi C, Mysterud A, Rudolf I, Beck R, Foldvari G, Tomassone L, Groenevelt M. Anaplasma phagocytophilum evolves in geographical and biotic niches of vertebrates and ticks. Parasit Vectors. 2019;12:1–17. doi: 10.1186/s13071-019-3583-8. [DOI] [PMC free article] [PubMed] [Google Scholar]
  60. Jabbar A, Abbas T, Sandhu Z, Saddiqi HA, Qamar MF, Gasser RB (2015) Tick-borne diseases of bovines in Pakistan: major scope for future research and improved control. Parasit Vectors 8:1–13. 10.1186/s13071-015-0894-2 [DOI] [PMC free article] [PubMed]
  61. Jahfari S, Coipan EC, Fonville M, Van Leeuwen AD, Hengeveld P, Heylen D, Heyman P, Van Maanen C, Butler CM, Foldvari G, Szekeres S. Circulation of four Anaplasma phagocytophilum ecotypes in Europe. Parasit Vectors. 2014;7:1–11. doi: 10.1186/1756-3305-7-365. [DOI] [PMC free article] [PubMed] [Google Scholar]
  62. Jalovecka M, Sojka D, Ascencio M, Schnittger L. Babesia life cycle—when phylogeny meets biology. Trends Parasitol. 2019;35:356–368. doi: 10.1016/j.pt.2019.01.007. [DOI] [PubMed] [Google Scholar]
  63. Jenkins A, Kristiansen BE, Allum AG, Aakre RK, Strand L, Kleveland EJ, van de Pol I, Schouls L. Borrelia burgdorferi sensu lato and Ehrlichia spp. in Ixodes ticks from southern Norway. J Clin Microbiol. 2001;39:3666–3671. doi: 10.1128/JCM.39.10.3666-3671.2001. [DOI] [PMC free article] [PubMed] [Google Scholar]
  64. Jiang J, Farris CM, Yeh KB, Richard AL. International Rickettsia Disease surveillance: an example of cooperative research to increase laboratory capability and capacity for risk assessment of rickettsial outbreaks worldwide. Front Med. 2021;8:94. doi: 10.3389/fmed.2021.622015. [DOI] [PMC free article] [PubMed] [Google Scholar]
  65. Jongejan F, Uilenberg G. The global importance of ticks. Parasitology. 2004;129:3–14. doi: 10.1017/s0031182004005967. [DOI] [PubMed] [Google Scholar]
  66. Jongejan F, Su BL, Yang HJ, Berger L, Bevers J, Liu PC, Fang JC, Cheng YW, Kraakman C, Plaxton N. Molecular evidence for the transovarial passage of Babesia gibsoni in Haemaphysalis hystricis (Acari: Ixodidae) ticks from Taiwan: a novel vector for canine babesiosis. Parasit Vectors. 2018;11:1–8. doi: 10.1186/s13071-018-2722-y. [DOI] [PMC free article] [PubMed] [Google Scholar]
  67. Kahl O, Gern L, Eisen L, Lane RS. Ecological research on Borrelia burgdorferi sensu lato: terminology and some methodological pitfalls. In: Gray J, Lane RS, Stanek G, editors. Lyme Borreliosis: Biology, Epidemiology and Control. New York: CABI Publishing; 2002. pp. 29–46. [Google Scholar]
  68. Kakati P, Sarmah PC, Ray D, Bhattacharjee K, Sharma RK, Barkalita LM, Sarma DK, Baishya BC, Borah P, Stanley B. Emergence of oriental theileriosis in cattle and its transmission through Rhipicephalus (Boophilus) microplus in Assam India. Vet World. 2015;8:1099. doi: 10.14202/vetworld.2015.1099-1104. [DOI] [PMC free article] [PubMed] [Google Scholar]
  69. Kamani J. Molecular evidence indicts Haemaphysalis leachi (Acari: Ixodidae) as the vector of Babesia rossi in dogs in Nigeria West Africa. Ticks Tick Borne Dis. 2021;12:101717. doi: 10.1016/j.ttbdis.2021.101717. [DOI] [PubMed] [Google Scholar]
  70. Karbowiak G, Vichova B, Slivinska K, Werszko J, Didyk J, Peťko B, Stanko M, Akimov I. The infection of questing Dermacentor reticulatus ticks with Babesia canis and Anaplasma phagocytophilum in the Chernobyl exclusion zone. Vet Parasitol. 2014;204:372–375. doi: 10.1016/j.vetpar.2014.05.030. [DOI] [PubMed] [Google Scholar]
  71. Khukhuu A, Lan DTB, Long PT, Ueno A, Li Y, Luo Y, Macedo ACC, Matsumoto K, Inokuma H, Kawazu SI, Igarashi I, Yokoyama XX, N, Molecular epidemiological survey of Theileria orientalis in Thua Thien Hue province. Vietnam J Vet Med Sci. 2011;73:701–705. doi: 10.1292/jvms.10-0472. [DOI] [PubMed] [Google Scholar]
  72. Kiara H, Steinaa L, Vishvanath N, Svitek N. Theileria in ruminants. In: Florin-Christensen M, Schnittger L, editors. Parasitic protozoa of farm animals and pets. Berlin: Springer Nature; 2018. pp. 215–239. [Google Scholar]
  73. Kocan KM. Development of Anaplasma marginale in ixodid ticks: coordinated development of a rickettsial organism and its tick host. In: Sauer JR, Hair JA, editors. Morphology, Physiology and Behavioral Ecology of Ticks. England: Ellis Horwood Ltd.; 1986. pp. 472–505. [Google Scholar]
  74. Kocan KM, de la Fuente J. Co-feeding of tick infected with Anaplasma marginale. Vet Parasitol. 2003;112:295–305. doi: 10.1016/s0304-4017(03)00018-9. [DOI] [PubMed] [Google Scholar]
  75. Kocan KM, Goff WL, Stiller D, Claypool PL, Edwards W, Ewing SA, Hair JA, Barron SJ. Persistence of Anaplasma marginale (Rickettsiales: Anaplasmataceae) in male Dermacentor andersoni (Acari: Ixodidae) transferred successively from infected to susceptible cattle. J Med Entomol. 1992;29:657–668. doi: 10.1093/jmedent/29.4.657. [DOI] [PubMed] [Google Scholar]
  76. Kocan KM, Blouin EF, Barbet AF. Anaplasmosis control: past, present and future. Ann NY Acad Sci. 2000;916:501–509. doi: 10.1111/j.1749-6632.2000.tb05329.x. [DOI] [PubMed] [Google Scholar]
  77. Kocan KM, de la Fuente J, Blouin EF, Coetzee JF, Ewing SA. The natural history of Anaplasma marginale. Vet Parasitol. 2010;167:95–107. doi: 10.1016/j.vetpar.2009.09.012. [DOI] [PubMed] [Google Scholar]
  78. Kocan KM, de la Fuente J, Cabezas-Cruz A. The genus Anaplasma: new challenges after reclassification. Rev Sci Tech. 2015;34:577–586. doi: 10.20506/rst.34.2.2381. [DOI] [PubMed] [Google Scholar]
  79. Kocan KM, Hair JA, Ewing SA, Stratton LG (1981) Transmission of Anaplasma marginale Theiler by Dermacentor andersoni Stiles and Dermacentor variabilis Say. Am J Vet Res 42:15–18. https://pubmed.ncbi.nlm.nih.gov/7224310/ [PubMed]
  80. Kocan KM, Barron SJ, Ewing SA, Hair JA (1985) Transmission of Anaplasma marginale by adult Dermacentor andersoni during feeding calves. Am J Vet Res 46:1565–1567. https://pubmed.ncbi.nlm.nih.gov/4026042/ [PubMed]
  81. Krucken J, Schreiber C, Maaz D, Kohn M, Demeler J, Beck S, Schein E, Olias P, Richter D, Matuschka FR, Pachnicke S. A novel high-resolution melt PCR assay discriminates Anaplasma phagocytophilum and “Candidatus Neoehrlichia mikurensis”. J Clin Microbiol. 2013;51:1958–1961. doi: 10.1128/JCM.00284-13. [DOI] [PMC free article] [PubMed] [Google Scholar]
  82. Kumar N, Solanki JB, Varghese A, Jadav MM, Das B, Patel MD, Patel DC. Molecular assessment of Anaplasma marginale in bovine and Rhipicephalus (Boophilus) microplus tick of endemic tribal belt of coastal South Gujarat, India. Acta Parasitol. 2019;64:700–709. doi: 10.2478/s11686-019-00041-z. [DOI] [PubMed] [Google Scholar]
  83. Kumsa B, Signorini M, Teshale S, Tessarin C, Duguma R, Ayana D, Martini M, Cassini R. Molecular detection of piroplasms in ixodid ticks infesting cattle and sheep in western Oromia, Ethiopia. Trop Anim Hlth Prod. 2013;46:27–31. doi: 10.1007/s11250-013-0442-z. [DOI] [PubMed] [Google Scholar]
  84. Labruna MB, Ogrzewalska M, Soares JF, Martins TF, Soares HS, Moraes-Filho J, Nieri-Bastos FA, Almeida AP, Pinter A. Experimental infection of Amblyomma aureolatum ticks with Rickettsia rickettsii. Emerg Infect Dis. 2011;17:829. doi: 10.3201/eid1705.101524. [DOI] [PMC free article] [PubMed] [Google Scholar]
  85. Lawrence KE, Gedye K, McFadden AMJ, Pulford DJ, Pomroy WE. An observational study of the vertical transmission of Theileria orientalis (Ikeda) in a New Zealand pastoral dairy herd. Vet Parasitol. 2016;218:59–65. doi: 10.1016/j.vetpar.2016.01.003. [DOI] [PubMed] [Google Scholar]
  86. Lee SH, Shin NR, Kim CM, Park S, Yun NR, Kim DM, Jung DS. First identification of Anaplasma phagocytophilum in both a biting tick Ixodes nipponensis and a patient in Korea: a case report. BMC Infect Dis. 2020;20:1–10. doi: 10.1186/s12879-020-05522-5. [DOI] [PMC free article] [PubMed] [Google Scholar]
  87. Liberska J, Michalik J, Pers-Kamczyc E, Wierzbicka A, Lane RS, Rączka G, Opalinska P, Skorupski M, Dabert M. Prevalence of Babesia canis DNA in Ixodes ricinus ticks collected in forest and urban ecosystems in west-central Poland. Ticks Tick Borne Dis. 2021;12:101786. doi: 10.1016/j.ttbdis.2021.101786. [DOI] [PubMed] [Google Scholar]
  88. Liu Z, Ma M, Wang Z, Wang J, Peng Y, Li Y, Guan G, Luo J, Yin H. Molecular survey and genetic identification of Anaplasma species in goats from central and southern China. Appl Environ Microbiol. 2012;78:464–470. doi: 10.1128/AEM.06848-11. [DOI] [PMC free article] [PubMed] [Google Scholar]
  89. Luce-Fedrow A, Mullins K, Kostik AP, St John HK, Jiang J, Richards AL. Strategies for detecting rickettsiae and diagnosing rickettsial diseases. Future Microbiol. 2015;10:537–564. doi: 10.2217/fmb.14.141. [DOI] [PubMed] [Google Scholar]
  90. Macaluso KR, Sonenshine DE, Ceraul SM, Azad AF. Infection and transovarial transmission of rickettsiae in Dermacentor variabilis ticks acquired by artificial feeding. Vector-Borne Zoonotic Dis. 2001;1:45–53. doi: 10.1089/153036601750137660. [DOI] [PubMed] [Google Scholar]
  91. Maeda H, Hatta T, Alim MA, Tsubokawa D, Mikami F, Matsubayashi M, Miyoshi T, Umemiya-Shirafuji R, Kawazu SI, Igarashi I, Mochizuki M. Establishment of a novel tick-Babesia experimental infection model. Sci Rep. 2016;6:1–6. doi: 10.1038/srep37039. [DOI] [PMC free article] [PubMed] [Google Scholar]
  92. Mahoney DF, Mirre GB (1979) A note on the transmission of Babesia bovis (syn B. argentina) by the one-host tick, Boophilus microplus. Res Vet Sci 26:253–4. https://pubmed.ncbi.nlm.nih.gov/262611/ [PubMed]
  93. Matsumoto K, Brouqui P, Raoult D, Parola P. Experimental infection models of ticks of the Rhipicephalus sanguineus group with Rickettsia conorii. Vector Borne Zoonotic Dis. 2005;5:363–372. doi: 10.1089/vbz.2005.5.363. [DOI] [PubMed] [Google Scholar]
  94. Matsumoto K, Ogawa M, Brouqui P, Raoult D, Parola P. Transmission of Rickettsia massiliae in the tick, Rhipicephalus turanicus. Med Vet Entomol. 2005;19:263–270. doi: 10.1111/j.1365-2915.2005.00569.x. [DOI] [PubMed] [Google Scholar]
  95. Medlock JM, Hansford KM, Bormane A, Derdakova M, Estrada-Pena A, George JC, Golovljova I, Jaenson TG, Jensen JK, Jensen PM, Kazimirova M. Driving forces for changes in geographical distribution of Ixodes ricinus ticks in Europe. Parasit Vectors. 2013;6:1–11. doi: 10.1186/1756-3305-6-1. [DOI] [PMC free article] [PubMed] [Google Scholar]
  96. Mehlhorn H, Schein E. The piroplasms: life cycle and sexual stages. Adv Parasit. 1984;23:37–103. doi: 10.1016/S0065-308X(08)60285-7. [DOI] [PubMed] [Google Scholar]
  97. Mehlhorn H, Schein E. Redescription of Babesia equi Laveran, 1901 as Theileria equi Mehlhorn, Schein 1998. Parasitol Res. 1998;84:467–475. doi: 10.1007/s004360050431. [DOI] [PubMed] [Google Scholar]
  98. Mekata H, Minamino T, Mikurino Y, Yamamoto M, Yoshida A, Nonaka N, Horii Y. Evaluation of the natural vertical transmission of Theileria orientalis. Vet Parasitol. 2018;263:1–4. doi: 10.1016/j.vetpar.2018.09.017. [DOI] [PubMed] [Google Scholar]
  99. Merhej V, Angelakis E, Socolovschi C, Raoult D. Genotyping, evolution and epidemiological findings of Rickettsia species. Infect Genet Evol. 2014;25:122–137. doi: 10.1016/j.meegid.2014.03.014. [DOI] [PubMed] [Google Scholar]
  100. Mierzejewska EJ, Dwuznik D, Bajer A (2018) Molecular study of transovarial transmission of Babesia canis in the Dermacentor reticulatus tick. Ann Agric Environ Med 25:669–671. 10.26444/aaem/94673 [DOI] [PubMed]
  101. Molad T, Erster O, Fleiderovitz L, Roth A, Leibovitz B, Wolkomirsky R, Mazuz ML, Beha A, Markovics A. Molecular characterization of the Israeli B. bigemina vaccine strain and field isolates. Vet Parasitol. 2015;212:147–155. doi: 10.1016/j.vetpar.2015.06.022. [DOI] [PubMed] [Google Scholar]
  102. Moore TC, Pulscher LA, Caddell L, von Fricken ME, Anderson BD, Gonchigoo B, Gray GC. Evidence for transovarial transmission of tick-borne rickettsiae circulating in Northern Mongolia. PLoS Negl Trop Dis. 2018;12:e0006696. doi: 10.1371/journal.pntd.0006696. [DOI] [PMC free article] [PubMed] [Google Scholar]
  103. Morrison WI, Hemmink JD, Toye PG. Theileria parva: a parasite of African buffalo, which has adapted to infect and undergo transmission in cattle. Int J Parasitol. 2020;50:403–412. doi: 10.1016/j.ijpara.2019.12.006. [DOI] [PMC free article] [PubMed] [Google Scholar]
  104. Morzaria SP, Young AS, Hudson EB. Babesia bigemina in Kenya: experimental transmission by Boophilus decoloratus and the production of tick-dervied stabilates. Parasitology. 1977;74:291–298. doi: 10.1017/S0031182000047910. [DOI] [PubMed] [Google Scholar]
  105. Munderloh UG, Jauron SD, Fingerle V, Leitritz L, Hayes SF, Hautman JM, Nelson CM, Huberty BW, Kurtti TJ, Ahlstrand GG, Greig B. Invasion and intracellular development of the human granulocytic ehrlichiosis agent in tick cell culture. J Clin Microbiol. 1999;37:2518–2524. doi: 10.1128/JCM.37.8.2518-2524.1999. [DOI] [PMC free article] [PubMed] [Google Scholar]
  106. Nimisha M, Devassy JK, Pradeep RK, Pakideery V, Sruthi MK, Pious A, Kurbet PS, Amrutha BM, Chandrasekhar L, Deepa CK, Ajithkumar KG. Ticks and accompanying pathogens of domestic and wild animals of Kerala, South India. Exp Appl Acarol. 2019;79:137–155. doi: 10.1007/s10493-019-00414-z. [DOI] [PubMed] [Google Scholar]
  107. Norval RAI, Perry BD, Young AS. The epidemiology of theileriosis in Africa. ILRI (aka ILCA and ILRAD): Academic Press, London; 1992. [Google Scholar]
  108. Oakes VJ, Yabsley MJ, Schwartz D, LeRoith T, Bissett C, Broaddus C, Schlater JL, Todd SM, Boes KM, Brookhart M, Lahmers KK. Theileria orientalis Ikeda genotype in cattle, Virginia, USA. Emerg Infect Dis. 2019;25:1653. doi: 10.3201/eid2509.190088. [DOI] [PMC free article] [PubMed] [Google Scholar]
  109. Obregon D, Corona-Gonzalez B, Diaz-Sanchez AA, Armas Y, Roque E, de Sena Oliveira MC, Cabezas-Cruz A. Efficient transovarial transmission of Babesia spp. in Rhipicephalus microplus ticks fed on water buffalo (Bubalus bubalis) Pathogens. 2020;9:280. doi: 10.3390/pathogens9040280. [DOI] [PMC free article] [PubMed] [Google Scholar]
  110. Ogden NH, Bown K, Horrocks BK, Woldehiwet Z, Bennett M. Granulocytic Ehrlichia infection in ixodid ticks and mammals in woodlands and uplands of the UK. Med Vet Entomol. 1998;12:423–429. doi: 10.1046/j.1365-2915.1998.00133.x. [DOI] [PubMed] [Google Scholar]
  111. Oliveira MCS, Oliveira-Sequeira TCG, Araujo Jr JP , Amarante AFT, Oliveira HN (2005) Babesia spp. infection in Boophilus microplus engorged females and eggs in Sao Paulo State. Brazil Vet Parasitol 130:61–67. 10.1016/j.vetpar.2005.03.007 [DOI] [PubMed]
  112. Oliveira-Sequeira TCG, Oliveira MCS, Araujo Jr JP , Amarante AFT (2005) PCR-based detection of Babesia bovis and Babesia bigemina in their natural host Boophilus microplus and cattle. Int J Parasitol 35:105–111. 10.1016/j.ijpara.2004.09.002 [DOI] [PubMed]
  113. Orkun O. Molecular investigation of the natural transovarial transmission of tick-borne pathogens in Turkey. Vet Parasitol. 2019;273:97–104. doi: 10.1016/j.vetpar.2019.08.013. [DOI] [PubMed] [Google Scholar]
  114. Pacheco RC, Moraes-Filho J, Guedes E, Silveira I, Richtzenhain LJ, Leite RC, Labruna MB (2011) Rickettsial infections of dogs, horses and ticks in Juiz de Fora, southeastern Brazil, and isolation of Rickettsia rickettsii from Rhipicephalus sanguineus ticks. Med Vet Entomol 25:148–155. 10.1111/j.1365-2915.2010.00915.x [DOI] [PubMed]
  115. Palmer GH, Rurangirwa FR, McElwain TF. Strain composition of the Ehrlichia, Anaplasma marginale within persistently infected cattle, a mammalian reservoir for tick transmission. J Clin Microbiol. 2001;39:631–635. doi: 10.1128/JCM.39.2.631-635.2001. [DOI] [PMC free article] [PubMed] [Google Scholar]
  116. Parola P, Raoult D. Tick-borne bacterial diseases emerging in Europe. Clin Microbiol Infect. 2001;7:80–83. doi: 10.1046/j.1469-0691.2001.00200.x. [DOI] [PubMed] [Google Scholar]
  117. Parola P, Paddock CD, Raoult D. Tick-borne rickettsioses around the world: emerging diseases challenging old concepts. Clin Microbiol Rev. 2005;18:719–756. doi: 10.1128/CMR.18.4.719-756.2005. [DOI] [PMC free article] [PubMed] [Google Scholar]
  118. Parola P, Paddock CD, Socolovschi C, Labruna MB, Mediannikov O, Kernif T, Abdad MY, Stenos J, Bitam I, Fournier P, Raoulta D. Update on tick-borne rickettsioses around the world: a geographic approach. Clin Microbiol Rev. 2013;26:657–702. doi: 10.1128/CMR.00032-13. [DOI] [PMC free article] [PubMed] [Google Scholar]
  119. Perez-Sautu U, Wiley MR, Prieto K, Chitty JA, Haddow AD, Sanchez-Lockhart M, Klein TA, Kim HC, Chong ST, Kim YJ, Choi BS. Novel viruses in hard ticks collected in the Republic of Korea unveiled by metagenomic high-throughput sequencing analysis. Ticks Tick Borne Dis. 2021;12:101820. doi: 10.1016/j.ttbdis.2021.101820. [DOI] [PubMed] [Google Scholar]
  120. Pfaffle M, Petney T, Skuballa J, Taraschewski H. Comparative population dynamics of a generalist (Ixodes ricinus) and specialist tick (I. hexagonus) species from European hedgehogs. Exp Appl Acarol. 2011;54:151–164. doi: 10.1007/s10493-011-9432-x. [DOI] [PubMed] [Google Scholar]
  121. Pfaffle M, Littwin N, Muders SV, Petney TN. The ecology of tick-borne diseases. Int J Parasitol. 2013;43:1059–1077. doi: 10.1016/j.ijpara.2013.06.009. [DOI] [PubMed] [Google Scholar]
  122. Piranda EM, Faccini JLH, Pinter A, Pacheco RC, Cançado PH, Labruna MB. Experimental infection of Rhipicephalus sanguineus ticks with the bacterium Rickettsia rickettsii, using experimentally infected dogs. Vector Borne Zoonotic Dis. 2011;11:29–36. doi: 10.1089/vbz.2009.0250. [DOI] [PubMed] [Google Scholar]
  123. Poolkhetkit S, Chowattanapon W, Sungpradit S, Changbunjong T. Molecular detection of blood protozoa in ticks collected from cattle in the buffer zone of Sai Yok national park, Thailand. Thai J Vet Med. 2015;45:619–625. [Google Scholar]
  124. Portillo A, De Sousa R, Santibáñez S, Duarte A, Edouard S, Fonseca IP, Marques C, Novakova M, Palomar AM, Santos M, Silaghi C. Guidelines for the detection of Rickettsia spp. Vector Borne Zoonotic Dis. 2017;17:23–32. doi: 10.1089/vbz.2016.1966. [DOI] [PubMed] [Google Scholar]
  125. Potgieter FT, Van Rensburg L (1982) The effect of incubation and pre-feeding of infected Rhipicephalus simus nymph and adults on the transmission of Anaplasma marginale. Onderstepoort J Vet Res 49:99–101. https://pubmed.ncbi.nlm.nih.gov/7177588/ [PubMed]
  126. Potgieter FT, Van Rensburg L (1980) Isolation of Anaplasma marginale from Rhipicephalus simus males. Onderstepoort J Vet Res 47:285–286. https://pubmed.ncbi.nlm.nih.gov/7231925/ [PubMed]
  127. Potgieter FT, Kocan KM, McNew RW, Ewing SA (1983) Demonstration of colonies of Anaplasma marginale in the midgut of Rhipicephalus simus. Am J Vet Res 44:2256–2261. https://pubmed.ncbi.nlm.nih.gov/6660614/ [PubMed]
  128. Rajabi S, Esmaeilnejad B, Tavassoli M (2017) A molecular study on Babesia spp. in cattle and ticks in West-Azerbaijan province, Iran. Faculty of Veterinary Medicine, Urmia University, Urmia, Iran. Vet Res Forum 8:299. https://pubmed.ncbi.nlm.nih.gov/29326788/ [PMC free article] [PubMed]
  129. Randolph SE, Gern L, Nuttall PA. Co-feeding ticks: epidemiological significance for tick-borne pathogen transmission. Trends Parasitol. 1996;12:472–479. doi: 10.1016/s0169-4758(96)10072-7. [DOI] [PubMed] [Google Scholar]
  130. Rar V, Golovljova I. Anaplasma, Ehrlichia, and “Candidatus Neoehrlichia” bacteria: pathogenicity, biodiversity, and molecular genetic characteristics, a review. Infect Genet Evol. 2011;11:1842–1861. doi: 10.1016/j.meegid.2011.09.019. [DOI] [PubMed] [Google Scholar]
  131. Ravindran R, Rao JR, Mishra AK. Detection of Babesia bigemina DNA in ticks by DNA hybridization using a nonradioactive probe generated by arbitrary PCR. Vet Parasitol. 2006;141:181–185. doi: 10.1016/j.vetpar.2006.04.033. [DOI] [PubMed] [Google Scholar]
  132. Reichard MV, Meinkoth JH, Edwards AC, Snider TA, Kocan KM, Blouin EF, Little SE. Transmission of Cytauxzoon felis to a domestic cat by Amblyomma americanum. Vet Parasitol. 2009;161:110–115. doi: 10.1016/j.vetpar.2008.12.016. [DOI] [PubMed] [Google Scholar]
  133. Richards AL, Jiang J. Scrub typhus: historic perspective and current status of the worldwide presence of Orientia species. Trop Med Infect Dis. 2020;5:49. doi: 10.3390/tropicalmed5020049. [DOI] [PMC free article] [PubMed] [Google Scholar]
  134. Riek RF. The life cycle of Babesia bigemina (Smith and Kilborne, 1893) in the tick vector Boophilus microplus (Canestrini) Aust J Agric Res. 1964;15:802–821. doi: 10.1071/AR9640802. [DOI] [Google Scholar]
  135. Roy S, Bhandari V, Barman M, Kumar P, Bhanot V, Arora JS, Singh S, Sharma P. Population genetic analysis of the Theileria annulata parasites identified limited diversity and multiplicity of infection in the vaccine from India. Front Microbiol. 2021;11:3477. doi: 10.3389/fmicb.2020.579929. [DOI] [PMC free article] [PubMed] [Google Scholar]
  136. Santos AS, Santos-Silva MM, Almeida VC, Bacellar F, Dumler JS. Detection of Anaplasma phagocytophilum DNA in Ixodes ticks (Acari: Ixodidae) from Madeira island and Setubal district, mainland Portugal. Emerg Infect Dis. 2004;10:1643. doi: 10.3201/eid1009.040276. [DOI] [PMC free article] [PubMed] [Google Scholar]
  137. Saraiva DG, Nieri-Bastos FA, Horta MC, Soares HS, Nicola PA, Pereira LCM, Labruna MB. Rickettsia amblyommii infecting Amblyomma auricularium ticks in Pernambuco, northeastern Brazil: isolation, transovarial transmission, and transstadial perpetuation. Vector Borne Zoonotic Dis. 2013;13:615–618. doi: 10.1089/vbz.2012.1223. [DOI] [PubMed] [Google Scholar]
  138. Schnittger L, Rodriguez AE, Florin-Christensen M, Morrison DA. Babesia: a world emerging. Infect Genet Evol. 2012;12:1788–1809. doi: 10.1016/j.meegid.2012.07.004. [DOI] [PubMed] [Google Scholar]
  139. Schnittger L, Ganzinelli S, Bhoora R, Omondi D, Nijhof AM, Florin-Christensen M (2022) The Piroplasmida Babesia, Cytauxzoon, and Theileria in farm and companion animals: species compilation, molecular phylogeny, and evolutionary insights. Parasitol Res 121:1207–1245. 10.1007/s00436-022-07424-8 [DOI] [PubMed]
  140. Schwint ON, Knowles DP, Ueti MW, Kappmeyer LS, Scoles GA. Transmission of Babesia caballi by Dermacentor nitens (Acari: Ixodidae) is restricted to one generation in the absence of alimentary reinfection on a susceptible equine host. J Med Entomol. 2008;45:1152–1155. doi: 10.1093/jmedent/45.6.1152. [DOI] [PubMed] [Google Scholar]
  141. Shimada MK, Yamamura MH, Kawasaki PM, Tamekuni K, Igarashi M, Vidotto O, Vidotto MC. Detection of Anaplasma marginale DNA in larvae of Boophilus microplus ticks by polymerase chain reaction. Ann N Y Acad Sci. 2004;1026:95–102. doi: 10.1196/annals.1307.012. [DOI] [PubMed] [Google Scholar]
  142. Shirafuji R, Hatta T, Okubo K, Sato M, Maeda H, Kume A, Yokoyama N, Igarashi I, Tsuji N, Fujisaki K, Inoue N. Transovarial persistence of Babesia ovata DNA in a hard tick, Haemaphysalis longicornis, in a semi-artificial mouse skin membrane feeding system. Acta Parasitol. 2017;62:836–841. doi: 10.1515/ap-2017-0100. [DOI] [PubMed] [Google Scholar]
  143. Shkap V, Kocan K, Molad T, Mazuz M, Leibovich B, Krigel Y, Michoytchenko A, Blouin E, de la Fuente J, Samish M, Mtshali M, Zweygarth E, Fleiderovich EL, Fish L. Experimental transmission of field Anaplasma marginale and the A. centrale vaccine strain by Hyalomma excavatum, Rhipicephalus sanguineus and Rhipicephalus (Boophilus) annulatus ticks. Vet Microbiol. 2009;134:254–260. doi: 10.1016/j.vetmic.2008.08.004. [DOI] [PubMed] [Google Scholar]
  144. Shortt HE. Babesia canis: the life cycle and laboratory maintenance in its arthropod and mammalian hosts. Int J Parasitol. 1973;3:119–148. doi: 10.1016/0020-7519(73)90019-2. [DOI] [PubMed] [Google Scholar]
  145. Smith T, Kilbourne FL (1893) Investigations into the nature, causation and prevention of Southern cattle fever. Ninth annual report of the bureau of animal industry, Government printing office, Washington, 177–304. http://resource.nlm.nih.gov/62350480R
  146. Smith RD, Osorno BM, Brener J, De La Rosa R, Ristic M (1978) Bovine babesiosis: severity and reproducibility of Babesia bovis infections induced by Boophilus microplus under laboratory conditions. Res Vet Sci 24:287–92. https://pubmed.ncbi.nlm.nih.gov/674841/ [PubMed]
  147. Soares JF, Soares HS, Barbieri AM, Labruna MB. Experimental infection of the tick Amblyomma cajennense, Cayenne tick, with Rickettsia rickettsii, the agent of Rocky Mountain spotted fever. Med Vet Entomol. 2012;26:139–151. doi: 10.1111/j.1365-2915.2011.00982.x. [DOI] [PubMed] [Google Scholar]
  148. Socolovschi C, Bitam I, Raoult D, Parola P. Transmission of Rickettsia conorii conorii in naturally infected Rhipicephalus sanguineus. Clin Microbiol Infect. 2009;15:319–321. doi: 10.1111/j.1469-0691.2008.02257.x. [DOI] [PubMed] [Google Scholar]
  149. Socolovschi C, Huynh T, Davoust B, Gomez J, Raoult D, Parola P. Transovarial and trans-stadial transmission of Rickettsiae africae in Amblyomma variegatum ticks. Clin Microbiol Infect. 2009;15:317–318. doi: 10.1111/j.1469-0691.2008.02278.x. [DOI] [PubMed] [Google Scholar]
  150. Socolovschi C, Gaudart J, Bitam I, Huynh TP, Raoult D, Parola P (2012) Why are there so few Rickettsia conorii conorii-infected Rhipicephalus sanguineus ticks in the wild? PLoS Negl Trop Dis 6:e1697. 10.1371/journal.pntd.0001697 [DOI] [PMC free article] [PubMed]
  151. Sonenshine DE (1991) Biology of ticks, vol 1. Oxford University Press, New York
  152. Sreekumar C, Anandan R, Balasundaram S, Rajavelu G. Morphology and staining characteristics of Ehrlichia bovis. Comp Immunol Microbiol Infect Dis. 1996;19:79–83. doi: 10.1016/0147-9571(95)00011-9. [DOI] [PubMed] [Google Scholar]
  153. Stich RW, Kocan KM, Palmer GH, Ewing SA, Hair JA, Barron SJ (1989) Transstadial and attempted transovarial transmission of Anaplasma marginale by Dermacentor variabilis. Am J Vet Res 50:1377–1380. https://pubmed.ncbi.nlm.nih.gov/2782719/ [PubMed]
  154. Stiller D, Kocan KM, Edwards W, Ewing SA, Hair JA, Barron SJ (1989) Demonstration of colonies of Anaplasma marginale Theiler in salivary glands of three Dermacentor spp. infected as either nymphs of adults. Am J Vet Res 50:1386–1391. https://pubmed.ncbi.nlm.nih.gov/8427453/ [PubMed]
  155. Strle F. Human granulocytic ehrlichiosis in Europe. Int J Med Microbiol Suppl. 2004;293:27–35. doi: 10.1016/s1433-1128(04)80006-8. [DOI] [PubMed] [Google Scholar]
  156. Stuen S (2003) Anaplasma Phagocytophilum (Formerly Ehrlichia phagocytophila) Infection in Sheep and Wild Ruminants in Norway. A study on clinical manifestation, distribution and persistence. Doctor Philosophiae Thesis, Norwegian School of Veterinary Science.
  157. Sudan V, Singh SK, Jaiswal AK, Parashar R, Shanker D. First molecular evidence of the transplacental transmission of Theileria annulata. Trop Anim Health Prod. 2015;47:1213–1215. doi: 10.1007/s11250-015-0835-2. [DOI] [PubMed] [Google Scholar]
  158. Swilks E, Fell SA, Hammer JF, Sales N, Krebs GL, Jenkins C. Transplacental transmission of Theileria orientalis occurs at a low rate in field-affected cattle: infection in utero does not appear to be a major cause of abortion. Parasit Vectors. 2017;10:1–9. doi: 10.1186/s13071-017-2166-9. [DOI] [PMC free article] [PubMed] [Google Scholar]
  159. Tang YW, Liu DY, Schwartzman J, Sussman M, Poxton I (2015) Molecular medical microbiology. 2nd edn, Academic Press, Amsterdam
  160. Tretina K, Gotia HT, Mann DJ, Silva JC. Theileria-transformed bovine leukocytes have cancer hallmarks. Trends Parasitol. 2015;31:306–314. doi: 10.1016/j.pt.2015.04.001. [DOI] [PubMed] [Google Scholar]
  161. Turell MJ (2007) Role of ticks in the transmission of Crimean-Congo hemorrhagic fever virus. In Crimean-Congo Hemorrhagic Fever. Springer, Dordrecht pp. 143–154. 10.1007/978-1-4020-6106-6_12
  162. Ueti MU, Knowles DP. Equine piroplasmids. In: Florin-Christensen M, Schnittger L, editors. Parasitic protozoa of farm animals and pets. Berlin: Springer Nature; 2018. pp. 259–270. [Google Scholar]
  163. Uilenberg G. Babesia—a historical overview. Vet Parasitol. 2006;138:3–10. doi: 10.1016/j.vetpar.2006.01.035. [DOI] [PubMed] [Google Scholar]
  164. Uilenberg G, Rombach MC, Perie NM, Zwart D. Blood parasites of sheep in the Netherlands. II. Babesia motasi (Sporozoa, Babesiidae) Vet Q. 1980;2:3–14. doi: 10.1080/01652176.1980.9693752. [DOI] [PubMed] [Google Scholar]
  165. Uilenberg G (2000) Tick-borne infections of cattle on Corsica. Newsletter on ticks and tick-borne diseases of livestock in the tropics, No. 14, p. 13. Cited in: L’Hostis M, Seegers H (2002) Tick-borne parasitic diseases in cattle: current knowledge and prospective risk analysis related to the ongoing evolution in French cattle farming systems. Vet Res 33:599–611. 10.1051/vetres:2002041 [DOI] [PubMed]
  166. Woldehiwet Z. The natural history of Anaplasma phagocytophilum. Vet Parasitol. 2010;167:108–122. doi: 10.1016/j.vetpar.2009.09.013. [DOI] [PubMed] [Google Scholar]
  167. Worthington RW, Bigalke RD (2001) A review of the infectious diseases of African wild ruminants. Onderstepoort J Vet Res 68:291–323. https://pubmed.ncbi.nlm.nih.gov/12026064/ [PubMed]
  168. Yeruham I, Hadani A, Galker F. The effect of the ovine host parasitaemia on the development of Babesia ovis (Babes, 1892) in the tick Rhipicephalus bursa (Canestrini and Fanzago, 1877) Vet Parasitol. 2001;96:195–202. doi: 10.1016/s0304-4017(00)00433-7. [DOI] [PubMed] [Google Scholar]
  169. Yoshimoto K, Matsuyama Y, Matsuda H, Sakamoto L, Matsumoto K, Yokoyama N, Inokuma H. Detection of Anaplasma bovis and Anaplasma phagocytophilum DNA from Haemaphysalis megaspinosa in Hokkaido, Japan. Vet Parasitol. 2010;168:170–172. doi: 10.1016/j.vetpar.2009.10.008. [DOI] [PubMed] [Google Scholar]
  170. Zemtsova GE, Killmaster LF, Montgomery M, Schumacher L, Burrows M, Levin ML. First report of Rickettsia identical to R. slovaca in colony-originated D. variabilis in the United States: detection, laboratory animal model, and vector competence of ticks. Vector Borne Zoonotic Dis. 2016;16:77–84. doi: 10.1089/vbz.2015.1844. [DOI] [PMC free article] [PubMed] [Google Scholar]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Data Availability Statement

Not applicable.

Not applicable.

All the required ethical standards were complied with.


Articles from Parasitology Research are provided here courtesy of Nature Publishing Group

RESOURCES