Abstract
Cancer and microbial infections are significant worldwide health challenges. Numerous studies have demonstrated that bacteria may contribute to the emergence of cancer. In this review, we assemble bacterial species discovered in various cancers to describe their variety and specificity. The relationship between bacteria and macrophages in cancer is also highlighted, and we look for ample proof to establish a biological basis for bacterial-induced macrophage polarization. Finally, we quickly go over the potential roles of metabolites, cytokines, and microRNAs in the regulation of the tumor microenvironment by bacterially activated macrophages. The complexity of bacteria and macrophages in cancer will be revealed as we gain a better understanding of their pathogenic mechanisms, which will lead to new therapeutic approaches for both inflammatory illnesses and cancer.
Keywords: bacteria, cancer, tumor-associated macrophages, M1/M2 macrophage polarization, tumor microenvironment
1. Bacterial diversity in different cancers
The immune system was traditionally thought to render tumors sterile. Thanks to technological advancements, numerous investigations in recent years have discovered that bacteria are prevalent in cancer. Many tumors’ early stages are challenging to recognize, and most malignancies have metastasized by the time of initial diagnosis. The classification of these bacteria may be able to provide us with some information. Testing of bacterial DNA has shown that each cancer type, including those not directly related to the external environment, has a different bacterial composition (Nejman et al., 2020). The goal of this section is to give a summary of the bacteria found in cancer tissue. To gather and compile the microorganisms, we specialize in nine common cancer types: colorectal, gastric, esophageal, pancreatic, gallbladder, lung, breast, cervical, and prostate (Table 1). Pathogenic bacteria and human commensal microorganisms frequently coexist in the enormous and complex microbial community that makes up the human gastrointestinal tract. The gastrointestinal microbiome has a significant impact on metabolic health and general health, and it is also the microbiome that has been studied the most in-depth and is used as a model to study host-microbiota interactions and disorders. In addition to being infrequently researched, the quantity of microbiota living in the other organs is substantially lower than that of the gut and stomach (Sepich-Poore et al., 2021). It’s uncertain how many and how diverse the bacteria are in cancer samples as compared to samples taken from healthy people. The quantity and diversity of bacteria are greater in breast tumor samples than in healthy, normal breast samples (Nejman et al., 2020). Breast cancer tissues of various grades and histological classifications and normal breast tissue differ greatly in terms of their bacterial composition (Nejman et al., 2020). Instead, the lung cancer tissue microbiome is less varied than the corresponding normal tissue microbiome (Peters et al., 2019). In reality, only one specific bacterial species, Helicobacter pylori, which is linked to gastric cancer designated by the World Health Organization as a class I carcinogen (Lunn et al., 2022), and research into other bacterial species’ potential roles as biomarkers in the majority of cancer types has not yet produced any conclusive findings (Scott et al., 2019). There is a large variety of microbial taxa with variable abundance but little overlap in studies of males with prostate cancer (Shrestha et al., 2018). Not only is there a microbiota within cancer, but crosstalk occurs in all organs of the body. The proliferation and composition of bacteria where not in direct contact with the outside world, to some extent, represent the bacteria that can be transferred from one organ to another. The microbiological makeup of the lungs is more similar to that of the oropharynx, and enteric organisms are the primary source of bacterial DNA in cancer patients’ pancreas tissue (Dickson and Huffnagle, 2015). Thanks to developments in polymerase chain reaction and metagenomics, we can now identify microbes more precisely. The researchers distinguish the microbiota of lung cancer tissue using different biological materials, such as bronchial or bronchoalveolar lavage fluid or sputum (Gomes et al., 2019), and the microbiota of prostate cancer using feces or urine microbiomes (Sfanos et al., 2008). But in every experiment, skin-associated germs could contaminate the reagents by transferring them from the personnel’s skin. Cancer-associated microbes in general are sometimes difficult to distinguish, and the study of particular bacteria in malignancies is still in its early stages.
Table 1.
Summary of the cancer microbiome.
Cancer | Phylum | Genus | References |
---|---|---|---|
Colorectal cancer | Bacteroidetes | Bacteroides | Nejman et al. (2020), Wu et al. (2013), Bullman et al. (2017), Dejea et al. (2018), Kwong et al. (2018), Yachida et al. (2019) |
Colorectal cancer | Bacteroidetes | Prevotella | Bullman et al. (2017), Dejea et al. (2018), Kwong et al. (2018), Wirbel et al. (2019) |
Colorectal cancer | Bacteroidetes | Porphyromonas | Yachida et al. (2019), Wirbel et al. (2019), Thomas et al. (2019) |
Colorectal cancer | Firmicutes | Peptostreptococcus; Solobacterium | Kwong et al. (2018), Wirbel et al. (2019), Thomas et al. (2019) |
Colorectal cancer | Firmicutes | Streptococcus | Kwong et al. (2018), Yachida et al. (2019) |
Colorectal cancer | Firmicutes | Clostridium; Gemella | Kwong et al. (2018), Wirbel et al. (2019)) |
Colorectal cancer | Firmicutes | Lachnospiraceae | Dejea et al. (2018), Yachida et al. (2019) |
Colorectal cancer | Firmicutes | Roseburia | Coutzac et al. (2020) |
Colorectal cancer | Proteobacteria | Escherichia | Arthur et al. (2012), Dejea et al. (2018), Thomas et al. (2019), Wilson et al. (2019), Pleguezuelos-Manzano et al. (2020) |
Colorectal cancer | Proteobacteria | Campylobacter | He et al. (2019) |
Colorectal cancer | Actinobacteria | Bifidobacterium | Shi et al. (2020) |
Colorectal cancer | Actinobacteria | Parvimonas | Kwong et al. (2018), Yachida et al. (2019), Wirbel et al. (2019), Thomas et al. (2019) |
Colorectal cancer | Fusobacteria | Fusobacterium | Wu et al. (2013), Bullman et al. (2017), Dejea et al. (2018), Kwong et al. (2018), Yachida et al. (2019), Wirbel et al. (2019), Thomas et al. (2019), Mima et al. (2016), Mima et al. (2015), Castellarin et al. (2012), Kostic et al. (2012), Kostic et al. (2013), Rubinstein et al. (2013), Eklof et al. (2017), Yu et al. (2017), Garrett (2019), Abed et al. (2020) |
Stomach cancer | Bacteroidetes | Alloprevotella | Aviles-Jimenez et al. (2014), Roberts et al. (2002) |
Stomach cancer | Firmicutes | Parvimonas | Aviles-Jimenez et al. (2014), Roberts et al. (2002), Coker et al. (2018), Nagano et al. (2019), Baghban and Gupta (2016), Kim et al. (2010) |
Stomach cancer | Firmicutes | Dialister | Aviles-Jimenez et al. (2014), Roberts et al. (2002), Coker et al. (2018), Nagano et al. (2019), Wang L. L. et al. (2014) |
Stomach cancer | Firmicutes | Streptococcus | Coker et al. (2018), Nagano et al. (2019), Hsieh et al. (2018), Li et al. (2016), Zhao et al. (2015) |
Stomach cancer | Firmicutes | Slackia | Aviles-Jimenez et al. (2014), Roberts et al. (2002), Coker et al. (2018), Nagano et al. (2019), Schulz et al. (2019), Contreras et al. (2000) |
Stomach cancer | Firmicutes | Lactobacillus | Aviles-Jimenez et al. (2014), Hsieh et al. (2018) |
Stomach cancer | Firmicutes | Clostridium | Hsieh et al. (2018), Salazar et al. (2013) |
Stomach cancer | Firmicutes | Staphylococcus | Roberts et al. (2002), Weng et al. (2019) |
Stomach cancer | Firmicutes | Veillonella | Dias-Jacome et al. (2016) |
Stomach cancer | Proteobacteria | Helicobacter | Hsieh et al. (2018), Suzuki et al. (2009) |
Stomach cancer | Proteobacteria | Neisseria | Aviles-Jimenez et al. (2014), Li et al. (2016) |
Stomach cancer | Proteobacteria | Sphingobium | Dias-Jacome et al. (2016) |
Stomach cancer | Proteobacteria | Escherichia; Burkholderia | Li et al. (2016) |
Stomach cancer | Fusobacteria | Fusobacterium | Hsieh et al. (2018) |
Esophageal cancer | Firmicutes | Lactobacillus; Streptococcus | Elliott et al. (2017) |
Esophageal cancer | Fusobacteria | Fusobacterium | Yamamura et al. (2016) |
Pancreatic cancer | Bacteroidetes | Porphyromonas | Poore et al. (2020), Riquelme et al. (2019), Pushalkar et al. (2018), Geller et al. (2017) |
Pancreatic cancer | Firmicutes | Streptococcus; Granulicatella | Farrell et al. (2012) |
Pancreatic cancer | Proteobacteria | Pseudoxanthomonas | Riquelme et al. (2019) |
Pancreatic cancer | Proteobacteria | Neisseria | Farrell et al. (2012) |
Pancreatic cancer | Actinobacteria | Saccharopolyspora; Streptomyces | Riquelme et al. (2019), Geller et al. (2017) |
Gallbladder cancer | Bacteroidetes | Bacteroidaceae; Prevotellaceae; Porphyromonadaceae | Molinero et al. (2019) |
Gallbladder cancer | Firmicutes | Veillonellaceae | Molinero et al. (2019) |
Gallbladder cancer | Proteobacteria | Salmonella | Dutta et al. (2000), Nagaraja and Eslick (2014), Nath et al. (2008), Nath et al. (2010) |
Gallbladder cancer | Proteobacteria | Helicobacter | de Martel et al. (2009), Pradhan and Dali (2004), Murata et al. (2004) |
Gallbladder cancer | Proteobacteria | Escherichia | Tsuchiya et al. (2018) |
Gallbladder cancer | Proteobacteria | Enterobacteriaceae | Tsuchiya et al. (2018) |
Gallbladder cancer | Fusobacteria | Fusobacterium | Tsuchiya et al. (2018) |
Lung cancer | Bacteroidetes | Prevotella | Tsay et al. (2018), Dickson et al. (2016), Tsay et al. (2021) |
Lung cancer | Bacteroidetes | Capnocytophaga | Liu et al. (2018), Yan et al. (2015) |
Lung cancer | Firmicutes | Streptococcus | Tsay et al. (2018), Dickson et al. (2016), Tsay et al. (2021), Liu et al. (2018), Apostolou et al. (2011), Laroumagne et al. (2013), Hosgood et al. (2014), Cameron et al. (2017) |
Lung cancer | Firmicutes | Veillonella | Tsay et al. (2018), Dickson et al. (2016), Tsay et al. (2021), Yan et al. (2015), Lee et al. (2016) |
Lung cancer | Firmicutes | Staphylococcus | Dickson et al. (2016), Laroumagne et al. (2013) |
Lung cancer | Firmicutes | Lactobacillus | Tsay et al. (2021), Jin et al. (2019) |
Lung cancer | Firmicutes | Gemella | Tsay et al. (2021) |
Lung cancer | Firmicutes | Selenomonas | Yan et al. (2015) |
Lung cancer | Firmicutes | Enterococcus | Cameron et al. (2017) |
Lung cancer | Firmicutes | Megasphaera | Lee et al. (2016) |
Lung cancer | Proteobacteria | Enterobacter | Dickson and Huffnagle (2015), Gomes et al. (2019), Laroumagne et al. (2013), Cameron et al. (2017) |
Lung cancer | Proteobacteria | Acinetobacter | Gomes et al. (2019), Cameron et al. (2017) |
Lung cancer | Proteobacteria | Haemophilus | Tsay et al. (2021), Laroumagne et al. (2013) |
Lung cancer | Proteobacteria | Burkholderia | Dickson et al. (2016), Tsay et al. (2021) |
Lung cancer | Proteobacteria | Moraxella | Tsay et al. (2021) |
Lung cancer | Proteobacteria | Neisseria | Yan et al. (2015) |
Lung cancer | Proteobacteria | Noviherbaspirillum; Aggregatibacter | Jin et al. (2019) |
Lung cancer | Proteobacteria | Brevundimonas | Dickson and Huffnagle (2015), Gomes et al. (2019) |
Lung cancer | Proteobacteria | Acidovorax | Greathouse et al. (2018) |
Lung cancer | Proteobacteria | Morganella; Escherichia | Le Noci et al. (2018) |
Lung cancer | Proteobacteria | Legionella | Yu et al. (2016) |
Lung cancer | Actinobacteria | Rothia | Tsay et al. (2018), Tsay et al. (2021) |
Lung cancer | Actinobacteria | Propionibacterium | Dickson and Huffnagle (2015), Gomes et al. (2019) |
Lung cancer | Fusobacteria | Fusobacterium | Tsay et al. (2021) |
Lung cancer | Deinococcus-Thermus | Thermus | Yu et al. (2016) |
Lung cancer | Verrucomicrobia | Akkermansia | Derosa et al. (2018), Routy et al. (2018) |
Breast cancer | Firmicutes | Bacillus; Staphylococcus | Urbaniak et al. (2016) |
Breast cancer | Proteobacteria | Enterococcus | Urbaniak et al. (2016) |
Breast cancer | Fusobacteria | Fusobacterium | Parhi et al. (2020) |
Cervical cancer | Bacteroidetes | Prevotella | So et al. (2020), Onderdonk et al. (2016) |
Cervical cancer | Firmicutes | Lactobacillus | Poore et al. (2020), Pearce et al. (2014) |
Cervical cancer | Firmicutes | Dialister; Finegoldia Magna; Peptoniphilus | So et al. (2020) |
Cervical cancer | Firmicutes | Parvimonas; Peptostreptococcus; Anaerococcus | Onderdonk et al. (2016) |
Cervical cancer | Firmicutes | Clostridium | Donders et al. (2017) |
Cervical cancer | Firmicutes | Streptococcus | Donders et al. (2017), Liu et al. (2020) |
Cervical cancer | Firmicutes | Megasphaera | Onderdonk et al. (2016), Fredricks et al. (2005) |
Cervical cancer | Proteobacteria | Hydrogenophilus; Burkholderia | Zhou Y. et al. (2019) |
Cervical cancer | Actinobacteria | Atopobium | So et al. (2020), Onderdonk et al. (2016), Fredricks et al. (2005), Gondwe et al. (2020) |
Cervical cancer | Actinobacteria | Gardnerella | So et al. (2020), Onderdonk et al. (2016), Pearce et al. (2014), Zhou Y. et al. (2019) |
Cervical cancer | Actinobacteria | Eggerthella | Fredricks et al. (2005) |
Cervical cancer | Actinobacteria | Bifidobacterium | Zhou Y. et al. (2019) |
Cervical cancer | Fusobacteria | Sneathia | Onderdonk et al. (2016), Zhou Y. et al. (2019), Gondwe et al. (2020), Lee et al. (2013), Mitra et al. (2015), Audirac-Chalifour et al. (2016), Di Paola et al. (2017), Laniewski et al. (2018) |
Cervical cancer | Fusobacteria | leptotrichia | Fredricks et al. (2005) |
Cervical cancer | Fusobacteria | Fusobacterium | Zhou Y. et al. (2019) |
Prostate cancer | Bacteroidetes | Bacteroides | Keay et al. (1999), Golombos et al. (2018), Liss et al. (2018), Alanee et al. (2019) |
Prostate cancer | Firmicutes | Staphylococcus | Shrestha et al. (2018), Cavarretta et al. (2017) |
Prostate cancer | Firmicutes | Streptococcus | Shrestha et al. (2018), Liss et al. (2018) |
Prostate cancer | Firmicutes | Faecalibacterium | Miquel et al. (2013), Sokol et al. (2008) |
Prostate cancer | Firmicutes | Clostridium | Ridlon et al. (2013) |
Prostate cancer | Proteobacteria | Escherichia | Keay et al. (1999), Leskinen et al. (2003) |
Prostate Cancer | Proteobacteria | Proteus; Aeromonas | Leskinen et al. (2003) |
Prostate cancer | Proteobacteria | Campylobacter | Lara-Tejero and Galan (2000) |
Prostate cancer | Actinobacteria | Propionibacterium | Sfanos et al. (2008), Cavarretta et al. (2017), Cohen et al. (2005) |
Prostate cancer | Actinobacteria | Corynebacterium | Shrestha et al. (2018), Daisley et al. (2020) |
Prostate cancer | Verrucomicrobia | Akkermansiaceae | Daisley et al. (2020) |
The species of bacteria have been reported in studies that present in cancer.
2. Macrophages in the tumor microenvironment
Macrophages are multipurpose immune cells that perform a variety of tasks, such as regulating tissue homeostasis, protecting against infections, and accelerating wound healing (Wynn and Vannella, 2016). Macrophages are found in peripheral organs because these immunological sentinel cells are crucial in keeping an eye out for invasive infections in the surrounding tissue (Sfanos et al., 2008). When a host is infected by a pathogen, monocytes are drawn to the invasion sites and cytokines are released, which prompt additional immune responses from other immune cells. Indeed, bacteria and their metabolites have recently been shown to affect macrophages and tumor microenvironments. Numerous disorders, including cancer and infections for which there is yet no clear direct link, are affected by macrophage activation. Here, we discuss macrophages from three angles: their origin, their activation indicators, and the bacterial collection that causes them to become polarized. We just briefly touch on the preceding two aspects, because they have recently been discussed (Murray et al., 2014; Wynn and Vannella, 2016; Shapouri-Moghaddam et al., 2018; Christofides et al., 2022). Instead, we focus on the results of macrophage polarization caused by certain bacteria.
2.1. The source of macrophages
All tissues have macrophages, a kind of leukocyte that is divided into various subpopulations according to where it is found and how it functions. Macrophages come from two different origins. On the other hand, tissue-resident macrophages derived from erythro-myeloid progenitors in the yolk sac and fetal liver, or monocyte–macrophage DC progenitors in the bone marrow (Cassetta and Pollard, 2020). Peripheral blood monocytes, which are drawn to tissues by chemokines, can also develop into tissue-resident macrophages (Long et al., 2019). One of the numerous and varied cell groups that make up the tumor microenvironment and can affect tumor formation is the tumor-associated macrophages that populate the tumor tissue (Vitale et al., 2019). It is firmly established that TAMs influence tumor development, immunological control, tumor angiogenesis, and metastasis in the tumor microenvironment (Lin et al., 2019). Although the precise timing and process of this remain unknown, the bulk of TAMs are typically produced from blood monocytes, and tumor monocytes recruited via chemokines like CCL2 enter the tumor to develop into TAMs (Mantovani et al., 2008). Additionally, macrophages in metastatic tumors often referred to as metastasis-associated macrophages (MAMs), have different phenotypes and roles from those in primary tumors. TAMs states in patients have predictive relevance, according to some research, as their abundance correlates with various clinical outcomes (Pittet et al., 2022).
2.2. The polarization and markers of macrophages
Macrophage polarization is a biological process that eventually displays a certain phenotype after functionally responding to microenvironmental signals found in particular tissues. M1/M2 is acknowledged as the most straightforward word to describe macrophage phenotypes, based on the types of activation signals, such as immunological signals, tumor metabolism signals, and cell death signals. The M1 macrophage, a type of classical activation macrophage, plays a crucial role in anti-tumor immunity as well as mediating the host’s defense against a variety of bacteria, protozoa, and viruses. It is also involved in several chronic inflammatory and autoimmune illnesses (Murray and Wynn, 2011). Conversely, the M2 macrophage is an alternatively activated macrophage that devours fragmented and apoptotic cells and has anti-inflammatory and pro-angiogenic activity to control wound healing (Murray and Wynn, 2011). Depending on the activating stimuli received, M2 macrophages have been further divided into M2a, M2b, M2c, and M2d (Shapouri-Moghaddam et al., 2018). TAMs are a polarized novel subset of the M2 macrophage population, which was named M2d in recent studies (Mantovani et al., 2002; Duluc et al., 2007). M1-polarized cells produce ROS and NO more effectively, as well as pro-inflammatory cytokines like TNF-α, IL-1, and IL-6, as well as chemokines like CXCL8, CCL2, CXCL9, and CXCL10. M2-polarized cells express the mannose receptor, which triggers the production of chemokines including CCL17, CCL18, CCL22, and CCL24. They also produce anti-inflammatory cytokines like IL-10 and TGF-β. The expression of macrophage activation indicators, as well as cytokines, chemokines, and other secreted mediators, have all been thoroughly discussed in these papers (Mantovani et al., 2004; Murray et al., 2014; Shapouri-Moghaddam et al., 2018). TAM subpopulations are also first categorized as M1 and M2 macrophages based on the expression of certain markers, with functions assumed to be anti-tumor/anti-inflammation and pro-tumor/pro-inflammation development, respectively. It is usually determined that the majority of TAMs isolated from primary and metastatic cancers exhibit a suppressive M2-like phenotype (Murray and Wynn, 2011). However, because numerous subsets of TAMs display the indicators of both M1-and M2-polarization signatures, this simple nomenclature is unable to discriminate between the varied phenotypes of TAMs (Laviron and Boissonnas, 2019). TAMs are not precisely divided into the M1 and M2 phenotypes in vivo. How to select reliable biomarkers to classify TAMs in the marker database remains the main issue of research nowadays.
2.3. Macrophage polarization by bacteria
In response to cues from the immediate milieu, macrophages can change from one functional phenotype to another. Particular signaling sources like pathogenic sources might cause phenotypic flipping in macrophage populations and promote the development of tumors. Although most microorganisms are phagocytosed and killed by macrophages, some bacteria live in macrophages as opportunistic residents and utilize them for replication (Geller et al., 2017). M1 macrophages are mediated by microbial stimuli, including intracellular bacteria, to support cytotoxic activity and infection resistance. To thrive in the microenvironment, some bacteria can increase M2 polarization or interfere with M1 polarization. To avoid cytotoxic effects and circumvent the cellular immune response, microbes like Mycobacterium tuberculosis may mediate M2-polarized macrophages (Kaufmann, 2016). Table 2 lists the phenotypes of macrophages in response to bacterial pathogens in the context of oncology. Our understanding of functional markers may be too simplistic, while the use of complex markers may be confusing for researchers outside of immunology. All things considered, we continue to define pro-tumor/pro-inflammatory macrophages as M1 and anti-tumor/anti-inflammation macrophages as M2. However, it should not be forgotten that a particular live scene is unlikely to fall exactly into the combinations in Table 2, and a deeper study is needed to obtain further information and standardization (Figure 1).
Table 2.
An aggregate list of bacterial-driven macrophage polarization that has been studied is currently available.
Porphyromonas | Porphyromonas gingivalis | M1 | Li et al. (2022) |
Coxiella | Coxiella burnetii | M1 | Abnave et al. (2017), Zarza et al. (2021) |
Escherichia | Escherichia coli | M1 | Liang et al. (2005), Pinheiro da Silva et al. (2007), Christoffersen et al. (2014) |
Yersinia | Yersinia pestis | M1 | Bi et al. (2012) |
Legionella | Legionella pneumophila | M1 | Kusaka et al. (2018) |
Vibrio | Vibrio cholerae | M1 | Khan et al. (2015) |
Shigella | Shigella dysenteriae | M1 | Biswas et al. (2007), Pore et al. (2010) |
Streptococcus | Streptococcus pyogenes | M1 | Kadioglu and Andrew (2004), Goldmann et al. (2007) |
Streptococcus | Streptococcus Gordonii | M1 | Croft et al. (2018) |
Lacticaseibacillus | Lactobacillus rhamnosus GG | M1 | Wang et al. (2020), Duan et al. (2021) |
Bacillus | Bacillus amyloliquefaciens | M1 | Fu et al. (2019) |
Mycobacterium | Mycobacterium ulcerans | M1 | Kiszewski et al. (2006) |
Mycobacterium | Mycobacterium avium | M1 | Murphy et al. (2006) |
Mycobacterium | Mycobacterium tuberculosis | M1/M2 | Ehrt et al. (2001), Chacon-Salinas et al. (2005), Huang et al. (2015), Sha et al. (2021), Lopes et al. (2016), Zhang et al. (2020a) |
Mycobacterium | Mycobacterium leprae | M1/M2 | Fallows et al. (2016) |
Salmonella | Salmonella typhimurium | M1/M2 | Luo et al. (2016), Monack et al. (1996), Bost and Clements (1997), Stapels et al. (2018) |
Fusobacterium | Fusobacterium nucleatum | M1/M2 | Wu et al. (2019), Xu et al. (2021), Chen et al. (2018) |
Streptococcus | Streptococcus pneumonia | M2/M1 | Yerneni et al. (2021), Smith et al. (2007) |
Staphylococcus | Staphylococcus aureus | M2/M1 | Peng et al. (2017), Pidwill et al. (2020), Tuohy et al. (2020) |
Listeria | Listeria monocytogenes | M2/M1 | Lizotte et al. (2014), Shaughnessy and Swanson (2007) |
Tropheryma | Tropheryma whipplei | M2 | Desnues et al. (2005) |
Cutibacterium | Propionibacterium acnes | M2 | Li et al. (2021) |
Bifidobacterium | Bifidobacterium pseudocatenulatum | M2 | Sohn et al. (2015) |
Bacillus | Bacillus subtilis | M2 | Paynich et al. (2017) |
Lacticaseibacillus | Lactobacillus paracasei KW3110 | M2 | Yoshikawa et al. (2021), Moratalla et al. (2016) |
Enterococcus | Enterococcus faecalis | M2 | Polak et al. (2021) |
Brucella | Brucella abortus | M2 | Fernandes et al. (1996), Wang et al. (2022), Dornand et al. (2002), Glowacka et al. (2018), Ma et al. (2020) |
Brucella | Brucella melitensis | M2 | Wang et al. (2022) |
Helicobacter | Helicobacter pylori | M2 | Wang et al. (2017) |
Figure 1.
Summary of macrophages in the tumor microenvironment. (A) Origins of Macrophages. (B) Cytokines associated with macrophage differentiation to the classically and alternatively activated subsets.
3. Molecular mechanisms involved in bacterial-driven macrophage polarization
Since the microbiota has existed in the gut since human birth, the immune system and bacteria may have always been connected. Different bacterial species use both common and distinctive intrinsic mechanisms to either support or kill cancer. When it comes to host-pathogen interactions, living bacteria or bacterial components typically trigger innate immune cell reactions and cause immune cells, such as monocytes and macrophages, to migrate to tumors. Several bacteria are known to be connected to cancer, such as Helicobacter pylori and Salmonella typhi that have been shown to affect tumor growth (Lax and Thomas, 2002). However, the method by which bacteria in tumors interact with macrophages to select for the M1/M2 activation pathway is rarely discussed. In this part, we examine the molecular processes by which typical bacteria influence the polarization of macrophages in tumors, focusing on some of the well-known strains, such as Fusobacterium nucleatum, Helicobacter pylori, and Propionibacterium acnes.
3.1. Bacteria significantly linked to cancer
3.1.1. Fusobacterium nucleatum
A member of the bacterial genus that may cause cancer is called Fusobacterium nucleatum, a Gram-negative anaerobic bacterium. Fusobacterium nucleatum has been discovered as a periodontal pathogen and has been preferentially isolated from the oral cavity. Additionally, it has been extensively addressed how F. nucleatum and colorectal cancer are related (Hashemi Goradel et al., 2019). The Toll-like receptors recognize the molecular characteristics of pathogens, and each TLR elicits a different cellular response to the pathogen. In the microenvironment of colorectal tumors, F. nucleatum has been shown to enhance macrophage M2 polarization through a TLR4-dependent mechanism. Infection with F. nucleatum may also activate the IL-6/p-STAT3/c-MYC signaling pathway in macrophages in a TLR4-dependent manner (Chen et al., 2018). The study further illustrates that F. nucleatum promotes M2 macrophage polarization through activation of the TLR4/NF-κB/S100A9 cascade (Hu et al., 2021). The transcriptional stimulation of downstream NF-κB and STAT3, which can activate the survival pathway of tumor cells, is one of the main functions of TLR signaling. Fusobacterium nucleatum has been demonstrated to promote the growth of colorectal cancer via stimulating TLR4 signaling to MyD88, which then triggers the nuclear factor NF-κB and miR21 production (Yang et al., 2017). Fusobacterium nucleatum regulates miR-1,322/CCL20 through the NF-κB signaling pathway in colorectal cancer cells ultimately inducing macrophage M2 polarization (Xu et al., 2021). By releasing bioactive chemicals, bacteria can impact the host or nearby cells. A potential new marker for colorectal cancer is AI-2 in the gut microbiota (Li et al., 2019). Interestingly, AI-2 of F. nucleatum can promote macrophage M1 polarization via TNFSF9/IL-1β signaling (Wu et al., 2019).
3.1.2. Helicobacter pylori
Helicobacter pylori is a Gram-negative bacterium that when infected can cause chronic gastritis and subsequently increase the risk of developing gastric tumors in infected patients. M2-polarized macrophages identified by the CD163 molecule were substantially expressed in gastric cancer and lowly expressed in marginal tissues, implying that macrophage polarization is intimately related to gastric cancer (Zhu et al., 2020). Macrophages detect the presence of pathogen-associated molecular patterns from H. pylori using PRRs such as TLRs and NLRs. Inflammation caused by H. pylori infection is associated with the expression of TLR4 and TLR9. TLR9 is found in the intracellular compartment and can recognize nucleic acids from bacteria. TLR4 plays a major role in the inflammation of the superficial gastric lining, whereas TLR9 plays a major role in the inflammation of gastric cancer (Wang T. R. et al., 2014). Bacterial peptidoglycan particles are detectable by NOD1. NOD1 collaborates with TLRs to detect bacteria and mediate the production of inflammatory factors. Loss of NOD1 accelerates stomach carcinogenesis in a mouse model. The wild-type phenotype of macrophages rapidly changed from M2 to M1 after the H. pylori infection. While wild-type macrophages convert to a mixed M1-M2 phenotype after infection with H. pylori, NOD1-deficient macrophages exhibit a more pronounced M2 phenotype (Suarez et al., 2019). Another study found that the deletion of MMP7 boosted M1 macrophage polarization and raised the risk of gastric cancer brought on by H. pylori (Krakowiak et al., 2015). Certain miRNAs may play a role in the bacterial infection’s ability to persist. Helicobacter pylori can upregulate miRNAs targeting CIITA, thereby suppressing HLAII expression on macrophages which plays a key role in the presentation of antigens to T lymphocytes (Codolo et al., 2019; Coletta et al., 2021). After an H. pylori infection, macrophages regulate the release of proinflammatory cytokines via the increased expression of miR-155 (Yao et al., 2015).
3.2. Bacteria significantly linked to infection
3.2.1. Propionibacterium acnes
Propionibacterium acnes is a Gram-positive bacterium known as a cutaneous commensal. However, it can also manifest as an opportunistic pathogen, which gives the impression of intrusion. Through TLR4/PI3K/Akt signaling, P. acnes encourages M2 macrophage polarization in gastric cancer (Li et al., 2021). Regardless of the existence of malignancy, P. acnes infection can be found in the macrophages and epithelial cells of the prostate gland. However, persistent inflammation is linked to P. acnes-positive macrophage populations and is most likely a factor in the development of cancer. Both TLR4 and TLR2 are capable of identifying lipids and the LPS that Gram-negative bacteria generate. Interestingly, Kim et al. showed that P. acnes triggered an inflammatory response in macrophages by the activation of TLR2 while the TLR ligand may be the peptidoglycan (Kim et al., 2002). Due to the late discovery of the pathogenicity of P. acnes, little is known about this bacterium.
3.2.2. Staphylococcus aureus
Staphylococcus aureus is the leading causative agent in pneumonia and is initially cleared from the bloodstream by liver macrophages also called Kupffer cells. These infected cells will spread intracellular S. aureus throughout the body if they are unable to kill it, leading to disseminated infection. The virulence regulation of S. aureus is more sophisticated than that of many other bacterial pathogens. When combined with a strong Arg-1 induction, S. aureus biofilms can reduce iNOS expression and drive M2 macrophage polarization (Thurlow et al., 2011). In extramammary Paget S disease, S. aureus may be exacerbated by IL-17 and M2 macrophage polarization (Tuohy et al., 2020; Sakamoto et al., 2021). TGF-β levels were lower and inflammatory cytokines were more prominent in macrophages exposed to S. aureus in co-culture with osteosarcoma (Tuohy et al., 2020). The majority of the time, significant expression of conventional HDAC enzymes are linked to cancer, and it frequently indicates advanced disease and a poor prognosis for the patient. Interestingly, S. aureus-derived lactate inhibits the negative regulator HDAC11 to augment leukocyte IL-10 production in an HDAC6-dependent manner in the mouse prosthetic joint infection model (Heim et al., 2020). IL-10 expression correlated with the expression of HDAC6 and HDAC11 was also reported in M. tuberculosis infection (Wang et al., 2018).
3.3. Engineered bacteria
3.3.1. Bacillus Calmette-Guérin
Natural bacteria have been modified to acquire therapeutic functions as a result of the development of bioengineering technology. Bacillus Calmette-Guérin, a vaccine against tuberculosis, contains live-attenuated and non-toxic M. tuberculosis. The most advanced immunotherapy now available for non-muscle-invasive bladder cancer is BCG (Seow et al., 2010). To prevent the growth of malignancies, BCG instructs monocyte precursor cells to differentiate into functioning mature macrophages (Italiani and Boraschi, 2014). The pathogen BCG activates the MyD88 signaling pathway downstream of the cell surface TLRs, which in turn activates NF-κB and encourages cytokine transcription (de Queiroz et al., 2021). Through the TLR2/TLR4/IRF5 pathway, TRIM59 expression is elevated in BCG-activated macrophages (Jin et al., 2017). TRIM59 is a membrane protein expressed on macrophages that can increase the M1-polarized macrophages inside the tumor (Tian et al., 2019). In addition, BCG inhibits cervical carcinoma progression by promoting M1 macrophage polarization and inhibiting the pro-tumor activation of M2 macrophages via the Rb/E2F1 signaling pathway in Hela cells (Liu et al., 2021).
3.3.2. Salmonella
Salmonella species are facultative intracellular pathogenic bacteria that can invade and proliferate in macrophages and dendritic cells. In Salmonella-infected macrophages, the fatty acid regulator PPARδ is increased and may be linked to M2-polarized macrophages (Eisele et al., 2013) and the PI3K/Akt pathway in gallbladder cancer can facilitate migration and invasion due to CCL18 produced by M2 macrophages (Zhou Z. et al., 2019). While some studies suggest that engineered Salmonella bacteria help tumor-associated macrophage polarization (see Figure 2) to achieve enhanced antitumor immune response in vivo. The anti-tumor effect of engineered Salmonella also appears to induce infiltration of abundant immune cells through TLR4 signaling. Molecular mechanisms suggest that this may be due to the presence of LPS in the outer membrane of Gram-negative bacteria thereby activating the TLR4/MyD88 pathway that mediated CCL2 production (Akhter et al., 2018). Some of the attenuated Salmonella strains and their derivatives used as drug carriers have also been tested in early clinical trials. A newly engineered Salmonella typhimurium strain called YB1 was reported to induce enhanced HLA-DR expression and reduced CD206 expression, and to remodel macrophages from the M2-to M1-polarized (Yang et al., 2018). Additionally, heterologous flagellin from the bacterial pathogen Salmonella activates the TLR5 pathway and changes tumor-infiltrating macrophages into M1-polarized macrophages (Chen et al., 2021). Another engineered bacteria that secrete FlaB via dual pathways, TLR4 and TLR5, also leads to M1-polarized macrophages (Zheng J. H. et al., 2017).
Figure 2.
Schematic representation of mechanisms of bacteria-induced macrophage polarization.
4. Effect of activated macrophages on the tumor microenvironment
While studies targeting the direct relationship between cancer and microbiome are quite limited at present, there have been some interesting studies demonstrating that certain pathogenic processes, such as altered metabolic states and chronic inflammation, display commonality across cancers (Trinchieri, 2012; Andrejeva and Rathmell, 2017). Microbiota participates in shaping an immune-tolerant environment through the recruitment and activation of macrophages and is characterized by the accumulation of pro-inflammatory factors including metabolic intermediates and effectors. These pro-inflammatory factors aid in the development of cancer by promoting angiogenesis, chemoresistance, immune cell suppression, tumor invasion, and metastasis (Coussens and Werb, 2002).
4.1. Dynamic changes in macrophage metabolism
The components of pathogenic organisms, such as LPS are commonly used tools to activate macrophages. LPS stimulation and TLR activation induce a series of biochemical metabolic alterations in macrophages. Metabolomic analysis of LPS-activated macrophages shows downregulation of TCA cycle intermediates and upregulation of aerobic glycolysis, which correlates directly with the expression profiles of altered metabolites (Tannahill et al., 2013; Lauterbach et al., 2019). The TCA cycle is a fragmented process resulting in the secretion of large volumes of metabolites such as lactate and succinate. The production of lactate in LPS-activated macrophages is enhanced and it inhibits the motility of activated T cells in vitro (Haas et al., 2015) and the cytotoxic activity of CD8 + CTLs (Fischer et al., 2007). By activating HIF-1α and MAPK, abundant lactate causes macrophages to produce VEGF and ARG1. Both VEGF and ARG1 promote tumor progressions by inducing angiogenesis and arginase depletion. Succinate is a pro-inflammatory metabolite that inhibits prolyl hydroxylase activity and increases the production of ROS, which stabilizes HIF-1α (Liu et al., 2017). Several genes that promote tumor growth, including MMP9, are also activated by HIF (Zhang et al., 2015). Furthermore, considering that the HIF protein amount is under the control of iron-dependent prolyl hydroxylases (Bruick and McKnight, 2001) and Lcn-2 promotes downstream target gene activation (Bolignano et al., 2010), iron uptake is another mechanism behind the pro-tumorigenic activity of polarized macrophages. Iron is known to regulate the expression of several genes at the transcriptional level, most prominently via the generation of reactive oxygen species and their effects on the activity of NF-κB and other transcription factors (Templeton and Liu, 2003). Iron stimulates cell production of hydroxyl radicals through the overexpression of SOX9, which regulate tumor aggressiveness (Chanvorachote and Luanpitpong, 2016). Under infectious or inflammatory conditions, macrophages increase iron absorption while promoting inflammation (Jung et al., 2015). While macrophages infected with extracellular E. coli K88 reserve iron by elevating hepcidin transcription and increasing iron storage in cells, macrophages infected with intracellular S. typhimurium decrease free iron ions for intracellular bacterial proliferation and utilization (Gan et al., 2019). Reduced intracellular iron levels in macrophages prevent inflammatory cytokines like IL-6 and TNF-α from being translated (Wang et al., 2008). A key mechanism for pathogens to perturb the biochemical metabolism to promote their survival in macrophages is lipid metabolism. Lipid metabolism is a crucial way by which infections disrupt metabolic metabolism to aid in their survival in macrophages. Lipid droplets, which are now acknowledged as a well-established characteristic of many tumors, accumulate excessive amounts of lipids and cholesterol (Beloribi-Djefaflia et al., 2016). By changing the metabolism of host cells, M. tuberculosis encourages the production of macrophages with lipid bodies (Russell et al., 2009). Helicobacter pylori engagement of the intracellular NOD1 leads to the activation of NF-κB, which results in the up-regulation of COX-2 (Chang et al., 2004), and COX-2 plays a key role in the synthesis of lipid inflammatory mediators such as prostaglandins from arachidonic acid. In addition, microbial stimulation triggers the expression of SREBP-1a (Im et al., 2011) and the synthesis of phosphatidylcholine (Sanchez-Lopez et al., 2019), which is linked to the production of IL-1β and IL-18 (Oishi et al., 2017). Increases in dephosphorylation of SHP1 caused by higher levels of oxidative stress from fatty acid oxidation are correlated with tumor progression and involve a variety of immune cell types (Myers et al., 2020; Su et al., 2020).
4.2. Populations and expression of regulatory inflammatory factors in macrophage
In the context of immunity, activated macrophages undergo metabolic adjustments and modify the production of cytokines at the epigenetic, transcriptional, and post-translational levels in response to bacterial sensing. Furthermore, the release of increased concentrations of intermediates and effectors frequently controls the tumor immune microenvironment and aids in the development of tumors. TAMs attract naïve and Th2 lymphocytes and cause inefficient immunological reactions by secreting CCL17, CCL18, and CCL22 (Erreni et al., 2011). Additionally, through producing CCL18, which binds to PITPNM3 on the cancer cell membrane, TAMs in breast cancer increase the invasiveness of cancer cells (Chen et al., 2011). TAMs secrete PD-L1 to inhibit cytotoxic T cells and IL-10 to activate Treg (Zhu et al., 2016; Fang et al., 2021). Additionally, when PD-L1 is inhibited, TAMs may retain tumor immunosuppressive potential by boosting PD-L2 secretion (Umezu et al., 2019). TAMs can directly attract Treg cells to the site of the immunosuppressive milieu by generating CCL20 and CCL22, and they can also activate them by secreting IL-10 and TGF-β (Curiel et al., 2004; Biswas and Mantovani, 2010; Umezu et al., 2019). IL-6 and IL-10 are a group of cytokines, which are inducing tumor invasion and angiogenesis (Tamura et al., 2018). Recent studies showed that TAMs decrease E-cadherin by activating the TLR4/IL-10 signaling pathway promoting epithelial-to-mesenchymal transition in pancreatic cancer (Liu et al., 2013; Yao et al., 2018). Additionally, in transgenic mice models, IL-10 produced by TAMs is the key mediator in tumor resistance to paclitaxel and carboplatin (Ruffell et al., 2014). The IL-6 produced by TAMs promotes chemotherapy resistance in cancer cells by inhibiting the expression of miR-204-5p and activating the STAT3 pathway (Zhu et al., 2017).
4.3. MicroRNA in macrophage exosomes as critical regulators of the tumor microenvironment
Several proteins, including SHIP1, TAB2, and SOCS1, in the innate immune signaling pathways, are targeted by the miR-155 gene, which is increased in macrophages after LPS infection and alters affects the expression of inflammatory mediators (Androulidaki et al., 2009; Ceppi et al., 2009; Cremer et al., 2009). Through a post-transcriptional break, Salmonella can cause the let-7 family to suppress the expression of IL-6 and IL-10 (Schulte et al., 2011). In THP-1 cells infected with M. tuberculosis, miR-206 expression is noticeably elevated, and this raised miR-206 favorably regulates inflammatory cytokines and MMP9 via targeting TIMP3 (Fu et al., 2016). These are shown miRNA could regulate the modulation of innate immunity signaling pathways. The primary mechanism for extracellular miRNA synthesis uses exosomes with energy-dependent active secretion. Exosomes are extremely small extracellular vesicles that contain proteins, lipids and nucleic acids, among other active components (Tan et al., 2020). In pancreatic ductal adenocarcinoma, it has been discovered that TAM-EVs transport miR-501-3p to suppress TGFBR3 expression, activate the TGF-β pathway, and encourage tumor migration and invasion (Yin et al., 2019). The advancement of gastric cancer is aided by M2 macrophage-derived extracellular vesicles through a miR-130b-3p/MLL3/GRHL2 signaling cascade (Zhang et al., 2020b). Exosomal miRNAs may have an impact on the biology of different cell types in TME. The STAT3 pathway is inhibited and Treg/Th17 cell imbalance is produced by TAM-EVs enriched in miR-21-5p and miR-29a-3p (Zhou et al., 2018). MiR-29a-3p controlled the FOXO3/AKT/GSK3 axis to suppress the expression of PD-L1, and PD-L1 expression can impair CD8 + T cell activity, causing immunological escape (Lu et al., 2021). TAM-EVs also contribute significantly to the pathophysiology of tumor chemoresistance (Figure 3). MiR-21 from tumor-associated macrophages that is transferred exosomal provides cisplatin resistance on gastric cancer cells by enhanced activation of PI3K/AKT signaling pathway by down-regulation of PTEN (Zheng P. et al., 2017).
Figure 3.
Potential involvement for macrophages that have been triggered by the microbiome in the tumor microenvironment. (A) By modifying the expression of intermediate metabolites, activated macrophages can modify glucose metabolism, iron cycling, and lipid metabolism and control the tumor microenvironment. (B) Activated macrophages release a variety of cytokines, chemokines, and growth factors that influence tumor formation by boosting cell proliferation and decreasing the activity of immune cells that can destroy tumors, like cytotoxic T cells. (C) Macrophage-derived exosomal miRNAs alter the immunological milieu by targeting proteins and activating molecules.
5. Discussion
Studies on the microbiome have progressed from focusing on the cultivation of oral and intestinal bacteria to mechanistically understanding the link between host and microbiome, and more recently, to microbial profiles of all ecological niches in the body. The use of specific microbial signatures of cancer types may improve early and minimally invasive diagnostic approaches, and in this review, we discuss the bacteria in different cancer. However, the part of cancer most clearly associated with bacterial species remains ill-defined. The speculation of the presence of microbiota within tumors was finally confirmed by sequencing-based diagnosis, but there are many challenges in discriminating tumor-specific bacteria. The most frequent issues are biased results brought on by the use of various tissue sample processing techniques and the confounding of chemicals or environmental pollutants. Exogenous bacteria can now be used as potential immunotherapeutic agents or as a neoadjuvant in the treatment of cancer (St Jean et al., 2008). We will be able to identify distinct pathways that can be exploited for diagnostic, preventative, and therapeutic purposes if we can more precisely identify a particular strain in the tumor.
The host’s metabolism and immunity can be altered by the microbiota and its secreted components, which in turn can affect antitumor immunity. Numerous pathways suggest that bacteria acting as foreign microorganisms may indirectly contribute to the beginning or development of cancer. Unexpectedly, bacteria may multiply in macrophages and control them via a variety of interference tactics (Rosenberger and Finlay, 2003). During tumorigenesis and regression, macrophage polarization appears to act as an intermediate process that is activated by certain signals. Macrophages exhibit different phenotypes after receiving multiple stimulations which act on different receptors and thus exert regulatory effects by acting on multiple signaling pathways. It is a complicated story about how bacteria and macrophages interact. It should be emphasized that host cells are frequently cultivated in vitro for the majority of research against pathogens, including bacteria. Macrophage polarization is a result, and the molecular pathways of bacteria-driven macrophage polarization ought to connect to a particular environment concurrently, as the tumor microenvironment is a special environment that has the potential to preferentially generate macrophage polarization. In this article, we went over the molecular mechanisms of bacterial-induced macrophage polarization as well as the impact of activated macrophages on the tumor microenvironment.
A causal link between microbial enrichment in cancer and cancer itself cannot be shown, but understanding the relationships between microbes, macrophages, and cancer cells requires in-depth functional analysis per microbial scale is necessary. On one hand, one way to increase the efficiency and safety of tumor-targeted medicines is to modify bacteria using research on such pathogen-macrophage interactions. On the other hand, molecular mechanisms of cell polarization provide information and guidance for switching macrophage polarity in cancer.
Author contributions
SX, YX, BF, DG, ZS, XL, and HW contributed to the study’s conception and design and commented on previous versions of the manuscript. Material preparation, data collection, and analysis were performed by BF, DG, and ZS. The first draft of the manuscript was written by SX and YX. All authors contributed to the article and approved the submitted version.
Funding
This work was supported by National Natural Science Foundation of China (No. 81970008 and 82000020), Fundamental Research Funds for the Central Universities (2019CDYGZD009 and 2020CDJYGRH-1005), Natural Science Foundation of Chongqing, China (cstc2020jcyj-bshX0105 and cstc2020jcyj-msxmX0460) and Chongqing Talents: Exceptional Young Talents Project (No. cstc2021ycjh-bgzxm0099). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.
Conflict of interest
The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.
Publisher’s note
All claims expressed in this article are solely those of the authors and do not necessarily represent those of their affiliated organizations, or those of the publisher, the editors and the reviewers. Any product that may be evaluated in this article, or claim that may be made by its manufacturer, is not guaranteed or endorsed by the publisher.
Supplementary material
The Supplementary material for this article can be found online at: https://www.frontiersin.org/articles/10.3389/fmicb.2023.1115556/full#supplementary-material
Glossary
TAMs | Tumor-associated macrophages |
ROS | Reactive oxygen species |
TNF-α | Tumor necrosis factor-α |
IL- | Interleukin- |
CXCL | C-X-C motif chemokine ligand |
CCL | C-C motif chemokine ligand |
TGF-β | Transforming growth factor β |
TLRs | Toll-like receptors |
STAT3 | Signal transducer and activator of transcription 3 |
c-MYC | Cellular myelocytomatosis viral oncogene |
NF-κB | Nuclear factor kappa-B |
MRP14/S100A9 | Myeloid-related protein-14 |
MyD88 | Myeloid differentiation factor 88 |
AI-2 | Autoinducer-2 |
TNFSF9 | TNF receptor superfamily member 9 |
SCARI1/CD163 | Scavenger receptor cysteine-rich type 1 protein M130 |
PRRs | Pattern recognition receptors |
NLRs | NOD-like Receptors |
MMPs | Matrix metalloproteinases |
MHC | Major histocompatibility complex |
miRNAs | micro-RNAs |
CIITA | Major histocompatibility complex (MHC) class II transactivator |
HLAII | Human leukocyte antigen (HLA) class II |
PI3K | Phosphatidylinositide 3-kinases |
AKT/PKB | Protein kinase B |
LPS | Lipopolysaccharides |
iNOS | Inducible nitric oxide synthase |
HDAC | Histone deacetylase |
HLA-DR | Human leukocyte antigen DR |
MR/CD206 | Mannose receptor |
TCA cycle | Tricarboxylic acid cycle |
VEGF | Vascular endothelial growth factor |
ARG-1 | Arginase 1 |
HIF-1α | Hypoxia-inducible factor-1α |
MAPK | Mitogen-activated protein kinase |
Lcn-2 | Lipocalin 2 |
SOX9 | Sex-determining region of the Y chromosome (SRY)-box transcription factor 9 |
COX-2 | Cyclooxygenase-2 |
SREBP-1a | Sterol regulatory element binding proteins transcription factor 1a |
SHP-1/PTPN6 | Protein tyrosine phosphatase |
Th | T helper cell |
Tregs | Regulatory T cells |
PITPNM3 | PITPNM family member 3 |
PD-L1 | Programmed death-ligand 1 |
PD-L2 | Programmed death-ligand 2 |
SHIP1 | Src homology 2‑containing inositol‑5′‑phosphatase 1 |
TAB2 | TGF-β activated kinase 1 (MAP3K7) binding protein 2 |
SOCS1 | Suppressors of cytokine signaling 1 |
TIMP3 | TIMP Metallopeptidase Inhibitor 3 |
TGFBR3 | Transforming growth factor beta receptor 3 |
MLL3 | Myeloid/lymphoid or mixed lineage leukemia 3 |
GRHL2 | Grainy head-like transcription factor 2 |
FOXO3 | Forkhead box O3 |
GSK-3β | Glycogen synthase kinase-3β |
MMAC1/PTEN | Mutated in multiple advanced cancers 1 |
References
- Abed J., Maalouf N., Manson A. L., Earl A. M., Parhi L., Emgard J. E. M., et al. (2020). Colon cancer-associated fusobacterium nucleatum may originate from the Oral cavity and reach colon tumors via the circulatory system. Front. Cell. Infect. Microbiol. 10:400. doi: 10.3389/fcimb.2020.00400, PMID: [DOI] [PMC free article] [PubMed] [Google Scholar]
- Abnave P., Muracciole X., Ghigo E. (2017). Coxiella burnetii lipopolysaccharide: what do we know? Int. J. Mol. Sci. 18:2509. doi: 10.3390/ijms18122509, PMID: [DOI] [PMC free article] [PubMed] [Google Scholar]
- Akhter N., Hasan A., Shenouda S., Wilson A., Kochumon S., Ali S., et al. (2018). TLR4/MyD88 -mediated CCL2 production by lipopolysaccharide (endotoxin): implications for metabolic inflammation. J. Diabetes Metab. Disord. 17, 77–84. doi: 10.1007/s40200-018-0341-y, PMID: [DOI] [PMC free article] [PubMed] [Google Scholar]
- Alanee S., El-Zawahry A., Dynda D., Dabaja A., McVary K., Karr M., et al. (2019). A prospective study to examine the association of the urinary and fecal microbiota with prostate cancer diagnosis after transrectal biopsy of the prostate using 16sRNA gene analysis. Prostate 79, 81–87. doi: 10.1002/pros.23713, PMID: [DOI] [PubMed] [Google Scholar]
- Andrejeva G., Rathmell J. C. (2017). Similarities and distinctions of cancer and immune metabolism in inflammation and tumors. Cell Metab. 26, 49–70. doi: 10.1016/j.cmet.2017.06.004, PMID: [DOI] [PMC free article] [PubMed] [Google Scholar]
- Androulidaki A., Iliopoulos D., Arranz A., Doxaki C., Schworer S., Zacharioudaki V., et al. (2009). The kinase Akt1 controls macrophage response to lipopolysaccharide by regulating microRNAs. Immunity 31, 220–231. doi: 10.1016/j.immuni.2009.06.024, PMID: [DOI] [PMC free article] [PubMed] [Google Scholar]
- Apostolou P., Tsantsaridou A., Papasotiriou I., Toloudi M., Chatziioannou M., Giamouzis G. (2011). Bacterial and fungal microflora in surgically removed lung cancer samples. J. Cardiothorac. Surg. 6:137. doi: 10.1186/1749-8090-6-137, PMID: [DOI] [PMC free article] [PubMed] [Google Scholar]
- Arthur J. C., Perez-Chanona E., Muhlbauer M., Tomkovich S., Uronis J. M., Fan T. J., et al. (2012). Intestinal inflammation targets cancer-inducing activity of the microbiota. Science 338, 120–123. doi: 10.1126/science.1224820, PMID: [DOI] [PMC free article] [PubMed] [Google Scholar]
- Audirac-Chalifour A., Torres-Poveda K., Bahena-Roman M., Tellez-Sosa J., Martinez-Barnetche J., Cortina-Ceballos B., et al. (2016). Cervical microbiome and cytokine profile at various stages of cervical cancer: a pilot study. PLoS One 11:e0153274. doi: 10.1371/journal.pone.0153274, PMID: [DOI] [PMC free article] [PubMed] [Google Scholar]
- Aviles-Jimenez F., Vazquez-Jimenez F., Medrano-Guzman R., Mantilla A., Torres J. (2014). Stomach microbiota composition varies between patients with non-atrophic gastritis and patients with intestinal type of gastric cancer. Sci. Rep. 4:4202. doi: 10.1038/srep04202, PMID: [DOI] [PMC free article] [PubMed] [Google Scholar]
- Baghban A., Gupta S. (2016). Parvimonas micra: a rare cause of native joint septic arthritis. Anaerobe 39, 26–27. doi: 10.1016/j.anaerobe.2016.02.004, PMID: [DOI] [PubMed] [Google Scholar]
- Beloribi-Djefaflia S., Vasseur S., Guillaumond F. (2016). Lipid metabolic reprogramming in cancer cells. Oncogenesis. 5:e189. doi: 10.1038/oncsis.2015.49, PMID: [DOI] [PMC free article] [PubMed] [Google Scholar]
- Bi Y., Wang X., Han Y., Guo Z., Yang R. (2012). Yersinia pestis versus Yersinia pseudotuberculosis: effects on host macrophages. Scand. J. Immunol. 76, 541–551. doi: 10.1111/j.1365-3083.2012.02767.x, PMID: [DOI] [PubMed] [Google Scholar]
- Biswas A., Banerjee P., Mukherjee G., Biswas T. (2007). Porin of Shigella dysenteriae activates mouse peritoneal macrophage through toll-like receptors 2 and 6 to induce polarized type I response. Mol. Immunol. 44, 812–820. doi: 10.1016/j.molimm.2006.04.007, PMID: [DOI] [PubMed] [Google Scholar]
- Biswas S. K., Mantovani A. (2010). Macrophage plasticity and interaction with lymphocyte subsets: cancer as a paradigm. Nat. Immunol. 11, 889–896. doi: 10.1038/ni.1937, PMID: [DOI] [PubMed] [Google Scholar]
- Bolignano D., Donato V., Lacquaniti A., Fazio M. R., Bono C., Coppolino G., et al. (2010). Neutrophil gelatinase-associated lipocalin (NGAL) in human neoplasias: a new protein enters the scene. Cancer Lett. 288, 10–16. doi: 10.1016/j.canlet.2009.05.027, PMID: [DOI] [PubMed] [Google Scholar]
- Bost K. L., Clements J. D. (1997). Intracellular salmonella Dublin induces substantial secretion of the 40-kilodalton subunit of interleukin-12 (IL-12) but minimal secretion of IL-12 as a 70-kilodalton protein in murine macrophages. Infect. Immun. 65, 3186–3192. doi: 10.1128/iai.65.8.3186-3192.1997, PMID: [DOI] [PMC free article] [PubMed] [Google Scholar]
- Bruick R. K., McKnight S. L. (2001). A conserved family of prolyl-4-hydroxylases that modify HIF. Science 294, 1337–1340. doi: 10.1126/science.1066373, PMID: [DOI] [PubMed] [Google Scholar]
- Bullman S., Pedamallu C. S., Sicinska E., Clancy T. E., Zhang X., Cai D., et al. (2017). Analysis of fusobacterium persistence and antibiotic response in colorectal cancer. Science 358, 1443–1448. doi: 10.1126/science.aal5240, PMID: [DOI] [PMC free article] [PubMed] [Google Scholar]
- Cameron S. J. S., Lewis K. E., Huws S. A., Hegarty M. J., Lewis P. D., Pachebat J. A., et al. (2017). A pilot study using metagenomic sequencing of the sputum microbiome suggests potential bacterial biomarkers for lung cancer. PLoS One 12:e0177062. doi: 10.1371/journal.pone.0177062, PMID: [DOI] [PMC free article] [PubMed] [Google Scholar]
- Cassetta L., Pollard J. W. (2020). Tumor-associated macrophages. Curr. Biol. 30, R246–R248. doi: 10.1016/j.cub.2020.01.031, PMID: [DOI] [PubMed] [Google Scholar]
- Castellarin M., Warren R. L., Freeman J. D., Dreolini L., Krzywinski M., Strauss J., et al. (2012). Fusobacterium nucleatum infection is prevalent in human colorectal carcinoma. Genome Res. 22, 299–306. doi: 10.1101/gr.126516.111, PMID: [DOI] [PMC free article] [PubMed] [Google Scholar]
- Cavarretta I., Ferrarese R., Cazzaniga W., Saita D., Luciano R., Ceresola E. R., et al. (2017). The microbiome of the prostate tumor microenvironment. Eur. Urol. 72, 625–631. doi: 10.1016/j.eururo.2017.03.029, PMID: [DOI] [PubMed] [Google Scholar]
- Ceppi M., Pereira P. M., Dunand-Sauthier I., Barras E., Reith W., Santos M. A., et al. (2009). MicroRNA-155 modulates the interleukin-1 signaling pathway in activated human monocyte-derived dendritic cells. Proc. Natl. Acad. Sci. U. S. A. 106, 2735–2740. doi: 10.1073/pnas.0811073106, PMID: [DOI] [PMC free article] [PubMed] [Google Scholar]
- Chacon-Salinas R., Serafin-Lopez J., Ramos-Payan R., Mendez-Aragon P., Hernandez-Pando R., Van Soolingen D., et al. (2005). Differential pattern of cytokine expression by macrophages infected in vitro with different mycobacterium tuberculosis genotypes. Clin. Exp. Immunol. 140, 443–449. doi: 10.1111/j.1365-2249.2005.02797.x, PMID: [DOI] [PMC free article] [PubMed] [Google Scholar]
- Chang Y. J., Wu M. S., Lin J. T., Sheu B. S., Muta T., Inoue H., et al. (2004). Induction of cyclooxygenase-2 overexpression in human gastric epithelial cells by helicobacter pylori involves TLR2/TLR9 and c-Src-dependent nuclear factor-kappaB activation. Mol. Pharmacol. 66, 1465–1477. doi: 10.1124/mol.104.005199, PMID: [DOI] [PubMed] [Google Scholar]
- Chanvorachote P., Luanpitpong S. (2016). Iron induces cancer stem cells and aggressive phenotypes in human lung cancer cells. Am. J. Physiol. Cell Physiol. 310, C728–C739. doi: 10.1152/ajpcell.00322.2015, PMID: [DOI] [PubMed] [Google Scholar]
- Chen T., Li Q., Wu J., Wu Y., Peng W., Li H., et al. (2018). Fusobacterium nucleatum promotes M2 polarization of macrophages in the microenvironment of colorectal tumours via a TLR4-dependent mechanism. Cancer Immunol. Immunother. 67, 1635–1646. doi: 10.1007/s00262-018-2233-x, PMID: [DOI] [PMC free article] [PubMed] [Google Scholar]
- Chen J., Qiao Y., Chen G., Chang C., Dong H., Tang B., et al. (2021). Salmonella flagella confer anti-tumor immunological effect via activating Flagellin/TLR5 signalling within tumor microenvironment. Acta Pharm. Sin. B 11, 3165–3177. doi: 10.1016/j.apsb.2021.04.019, PMID: [DOI] [PMC free article] [PubMed] [Google Scholar]
- Chen J., Yao Y., Gong C., Yu F., Su S., Chen J., et al. (2011). CCL18 from tumor-associated macrophages promotes breast cancer metastasis via PITPNM3. Cancer Cell 19, 541–555. doi: 10.1016/j.ccr.2011.02.006, PMID: [DOI] [PMC free article] [PubMed] [Google Scholar]
- Christoffersen T. E., Hult L. T., Kuczkowska K., Moe K. M., Skeie S., Lea T., et al. (2014). In vitro comparison of the effects of probiotic, commensal and pathogenic strains on macrophage polarization. Probiotics Antimicrob Proteins. 6, 1–10. doi: 10.1007/s12602-013-9152-0, PMID: [DOI] [PubMed] [Google Scholar]
- Christofides A., Strauss L., Yeo A., Cao C., Charest A., Boussiotis V. A. (2022). The complex role of tumor-infiltrating macrophages. Nat. Immunol. 23, 1148–1156. doi: 10.1038/s41590-022-01267-2, PMID: [DOI] [PMC free article] [PubMed] [Google Scholar]
- Codolo G., Toffoletto M., Chemello F., Coletta S., Soler Teixidor G., Battaggia G., et al. (2019). Helicobacter pylori dampens HLA-II expression on macrophages via the up-regulation of miRNAs targeting CIITA. Front. Immunol. 10:2923. doi: 10.3389/fimmu.2019.02923, PMID: [DOI] [PMC free article] [PubMed] [Google Scholar]
- Cohen R. J., Shannon B. A., McNeal J. E., Shannon T., Garrett K. L. (2005). Propionibacterium acnes associated with inflammation in radical prostatectomy specimens: a possible link to cancer evolution? J. Urol. 173, 1969–1974. doi: 10.1097/01.ju.0000158161.15277.78, PMID: [DOI] [PubMed] [Google Scholar]
- Coker O. O., Dai Z., Nie Y., Zhao G., Cao L., Nakatsu G., et al. (2018). Mucosal microbiome dysbiosis in gastric carcinogenesis. Gut 67, 1024–1032. doi: 10.1136/gutjnl-2017-314281, PMID: [DOI] [PMC free article] [PubMed] [Google Scholar]
- Coletta S., Battaggia G., Della Bella C., Furlani M., Hauke M., Faass L., et al. (2021). ADP-heptose enables helicobacter pylori to exploit macrophages as a survival niche by suppressing antigen-presenting HLA-II expression. FEBS Lett. 595, 2160–2168. doi: 10.1002/1873-3468.14156, PMID: [DOI] [PubMed] [Google Scholar]
- Contreras A., Doan N., Chen C., Rusitanonta T., Flynn M. J., Slots J. (2000). Importance of Dialister pneumosintes in human periodontitis. Oral Microbiol. Immunol. 15, 269–272. doi: 10.1034/j.1399-302x.2000.150410.x, PMID: [DOI] [PubMed] [Google Scholar]
- Coussens L. M., Werb Z. (2002). Inflammation and cancer. Nature 420, 860–867. doi: 10.1038/nature01322, PMID: [DOI] [PMC free article] [PubMed] [Google Scholar]
- Coutzac C., Jouniaux J. M., Paci A., Schmidt J., Mallardo D., Seck A., et al. (2020). Systemic short chain fatty acids limit antitumor effect of CTLA-4 blockade in hosts with cancer. Nat. Commun. 11:2168. doi: 10.1038/s41467-020-16079-x, PMID: [DOI] [PMC free article] [PubMed] [Google Scholar]
- Cremer T. J., Ravneberg D. H., Clay C. D., Piper-Hunter M. G., Marsh C. B., Elton T. S., et al. (2009). MiR-155 induction by F. novicida but not the virulent F. tularensis results in SHIP down-regulation and enhanced pro-inflammatory cytokine response. PLoS One 4:e8508. doi: 10.1371/journal.pone.0008508, PMID: [DOI] [PMC free article] [PubMed] [Google Scholar]
- Croft A. J., Metcalfe S., Honma K., Kay J. G. (2018). Macrophage polarization alters Postphagocytosis survivability of the commensal Streptococcus gordonii. Infect. Immun. 86:e00858-17. doi: 10.1128/IAI.00858-17, PMID: [DOI] [PMC free article] [PubMed] [Google Scholar]
- Curiel T. J., Coukos G., Zou L., Alvarez X., Cheng P., Mottram P., et al. (2004). Specific recruitment of regulatory T cells in ovarian carcinoma fosters immune privilege and predicts reduced survival. Nat. Med. 10, 942–949. doi: 10.1038/nm1093, PMID: [DOI] [PubMed] [Google Scholar]
- Daisley B. A., Chanyi R. M., Abdur-Rashid K., Al K. F., Gibbons S., Chmiel J. A., et al. (2020). Abiraterone acetate preferentially enriches for the gut commensal Akkermansia muciniphila in castrate-resistant prostate cancer patients. Nat. Commun. 11:4822. doi: 10.1038/s41467-020-18649-5, PMID: [DOI] [PMC free article] [PubMed] [Google Scholar]
- de Martel C., Plummer M., Parsonnet J., van Doorn L. J., Franceschi S. (2009). Helicobacter species in cancers of the gallbladder and extrahepatic biliary tract. Br. J. Cancer 100, 194–199. doi: 10.1038/sj.bjc.6604780, PMID: [DOI] [PMC free article] [PubMed] [Google Scholar]
- de Queiroz N., Marinho F. V., de Araujo A., Fahel J. S., Oliveira S. C. (2021). MyD88-dependent BCG immunotherapy reduces tumor and regulates tumor microenvironment in bladder cancer murine model. Sci. Rep. 11:15648. doi: 10.1038/s41598-021-95157-6, PMID: [DOI] [PMC free article] [PubMed] [Google Scholar]
- Dejea C. M., Fathi P., Craig J. M., Boleij A., Taddese R., Geis A. L., et al. (2018). Patients with familial adenomatous polyposis harbor colonic biofilms containing tumorigenic bacteria. Science 359, 592–597. doi: 10.1126/science.aah3648, PMID: [DOI] [PMC free article] [PubMed] [Google Scholar]
- Derosa L., Hellmann M. D., Spaziano M., Halpenny D., Fidelle M., Rizvi H., et al. (2018). Negative association of antibiotics on clinical activity of immune checkpoint inhibitors in patients with advanced renal cell and non-small-cell lung cancer. Ann. Oncol. 29, 1437–1444. doi: 10.1093/annonc/mdy103, PMID: [DOI] [PMC free article] [PubMed] [Google Scholar]
- Desnues B., Raoult D., Mege J. L. (2005). IL-16 is critical for Tropheryma whipplei replication in Whipple's disease. J. Immunol. 175, 4575–4582. doi: 10.4049/jimmunol.175.7.4575, PMID: [DOI] [PubMed] [Google Scholar]
- Di Paola M., Sani C., Clemente A. M., Iossa A., Perissi E., Castronovo G., et al. (2017). Characterization of cervico-vaginal microbiota in women developing persistent high-risk human papillomavirus infection. Sci. Rep. 7:10200. doi: 10.1038/s41598-017-09842-6, PMID: [DOI] [PMC free article] [PubMed] [Google Scholar]
- Dias-Jacome E., Libanio D., Borges-Canha M., Galaghar A., Pimentel-Nunes P. (2016). Gastric microbiota and carcinogenesis: the role of non-helicobacter pylori bacteria – a systematic review. Rev. Esp. Enferm. Dig. 108, 530–540. doi: 10.17235/reed.2016.4261/2016, PMID: [DOI] [PubMed] [Google Scholar]
- Dickson R. P., Erb-Downward J. R., Martinez F. J., Huffnagle G. B. (2016). The microbiome and the respiratory tract. Annu. Rev. Physiol. 78, 481–504. doi: 10.1146/annurev-physiol-021115-105238, PMID: [DOI] [PMC free article] [PubMed] [Google Scholar]
- Dickson R. P., Huffnagle G. B. (2015). The lung microbiome: new principles for respiratory bacteriology in health and disease. PLoS Pathog. 11:e1004923. doi: 10.1371/journal.ppat.1004923, PMID: [DOI] [PMC free article] [PubMed] [Google Scholar]
- Donders G. G. G., Bellen G., Grinceviciene S., Ruban K., Vieira-Baptista P. (2017). Aerobic vaginitis: no longer a stranger. Res. Microbiol. 168, 845–858. doi: 10.1016/j.resmic.2017.04.004, PMID: [DOI] [PubMed] [Google Scholar]
- Dornand J., Gross A., Lafont V., Liautard J., Oliaro J., Liautard J. P. (2002). The innate immune response against Brucella in humans. Vet. Microbiol. 90, 383–394. doi: 10.1016/S0378-1135(02)00223-7, PMID: [DOI] [PubMed] [Google Scholar]
- Duan B., Shao L., Liu R., Msuthwana P., Hu J., Wang C. (2021). Lactobacillus rhamnosus GG defense against salmonella enterica serovar typhimurium infection through modulation of M1 macrophage polarization. Microb. Pathog. 156:104939. doi: 10.1016/j.micpath.2021.104939, PMID: [DOI] [PubMed] [Google Scholar]
- Duluc D., Delneste Y., Tan F., Moles M. P., Grimaud L., Lenoir J., et al. (2007). Tumor-associated leukemia inhibitory factor and IL-6 skew monocyte differentiation into tumor-associated macrophage-like cells. Blood 110, 4319–4330. doi: 10.1182/blood-2007-02-072587, PMID: [DOI] [PubMed] [Google Scholar]
- Dutta U., Garg P. K., Kumar R., Tandon R. K. (2000). Typhoid carriers among patients with gallstones are at increased risk for carcinoma of the gallbladder. Am. J. Gastroenterol. 95, 784–787. doi: 10.1111/j.1572-0241.2000.01860.x, PMID: [DOI] [PubMed] [Google Scholar]
- Ehrt S., Schnappinger D., Bekiranov S., Drenkow J., Shi S., Gingeras T. R., et al. (2001). Reprogramming of the macrophage transcriptome in response to interferon-gamma and mycobacterium tuberculosis: signaling roles of nitric oxide synthase-2 and phagocyte oxidase. J. Exp. Med. 194, 1123–1140. doi: 10.1084/jem.194.8.1123, PMID: [DOI] [PMC free article] [PubMed] [Google Scholar]
- Eisele N. A., Ruby T., Jacobson A., Manzanillo P. S., Cox J. S., Lam L., et al. (2013). Salmonella require the fatty acid regulator PPARdelta for the establishment of a metabolic environment essential for long-term persistence. Cell Host Microbe 14, 171–182. doi: 10.1016/j.chom.2013.07.010, PMID: [DOI] [PMC free article] [PubMed] [Google Scholar]
- Eklof V., Lofgren-Burstrom A., Zingmark C., Edin S., Larsson P., Karling P., et al. (2017). Cancer-associated fecal microbial markers in colorectal cancer detection. Int. J. Cancer 141, 2528–2536. doi: 10.1002/ijc.31011, PMID: [DOI] [PMC free article] [PubMed] [Google Scholar]
- Elliott D. R. F., Walker A. W., O'Donovan M., Parkhill J., Fitzgerald R. C. (2017). A non-endoscopic device to sample the oesophageal microbiota: a case-control study. Lancet Gastroenterol. Hepatol. 2, 32–42. doi: 10.1016/S2468-1253(16)30086-3, PMID: [DOI] [PMC free article] [PubMed] [Google Scholar]
- Erreni M., Mantovani A., Allavena P. (2011). Tumor-associated macrophages (TAM) and inflammation in colorectal cancer. Cancer Microenviron. 4, 141–154. doi: 10.1007/s12307-010-0052-5, PMID: [DOI] [PMC free article] [PubMed] [Google Scholar]
- Fallows D., Peixoto B., Kaplan G., Manca C. (2016). Mycobacterium leprae alters classical activation of human monocytes in vitro. J. Inflamm (Lond). 13:8. doi: 10.1186/s12950-016-0117-4, PMID: [DOI] [PMC free article] [PubMed] [Google Scholar]
- Fang W., Zhou T., Shi H., Yao M., Zhang D., Qian H., et al. (2021). Progranulin induces immune escape in breast cancer via up-regulating PD-L1 expression on tumor-associated macrophages (TAMs) and promoting CD8(+) T cell exclusion. J. Exp. Clin. Cancer Res. 40:4. doi: 10.1186/s13046-020-01786-6, PMID: [DOI] [PMC free article] [PubMed] [Google Scholar]
- Farrell J. J., Zhang L., Zhou H., Chia D., Elashoff D., Akin D., et al. (2012). Variations of oral microbiota are associated with pancreatic diseases including pancreatic cancer. Gut 61, 582–588. doi: 10.1136/gutjnl-2011-300784, PMID: [DOI] [PMC free article] [PubMed] [Google Scholar]
- Fernandes D. M., Jiang X., Jung J. H., Baldwin C. L. (1996). Comparison of T cell cytokines in resistant and susceptible mice infected with virulent Brucella abortus strain 2308. FEMS Immunol. Med. Microbiol. 16, 193–203. doi: 10.1111/j.1574-695X.1996.tb00136.x, PMID: [DOI] [PubMed] [Google Scholar]
- Fischer K., Hoffmann P., Voelkl S., Meidenbauer N., Ammer J., Edinger M., et al. (2007). Inhibitory effect of tumor cell-derived lactic acid on human T cells. Blood 109, 3812–3819. doi: 10.1182/blood-2006-07-035972, PMID: [DOI] [PubMed] [Google Scholar]
- Fredricks D. N., Fiedler T. L., Marrazzo J. M. (2005). Molecular identification of bacteria associated with bacterial vaginosis. N. Engl. J. Med. 353, 1899–1911. doi: 10.1056/NEJMoa043802, PMID: [DOI] [PubMed] [Google Scholar]
- Fu A., Mo Q., Wu Y., Wang B., Liu R., Tang L., et al. (2019). Protective effect of bacillus amyloliquefaciens against salmonella via polarizing macrophages to M1 phenotype directly and to M2 depended on microbiota. Food Funct. 10, 7653–7666. doi: 10.1039/C9FO01651A, PMID: [DOI] [PubMed] [Google Scholar]
- Fu X., Zeng L., Liu Z., Ke X., Lei L., Li G. (2016). MicroRNA-206 regulates the secretion of inflammatory cytokines and MMP9 expression by targeting TIMP3 in mycobacterium tuberculosis-infected THP-1 human macrophages. Biochem. Biophys. Res. Commun. 477, 167–173. doi: 10.1016/j.bbrc.2016.06.038, PMID: [DOI] [PubMed] [Google Scholar]
- Gan Z., Tang X., Wang Z., Li J., Wang Z., Du H. (2019). Regulation of macrophage iron homeostasis is associated with the localization of bacteria. Metallomics 11, 454–461. doi: 10.1039/C8MT00301G, PMID: [DOI] [PubMed] [Google Scholar]
- Garrett W. S. (2019). The gut microbiota and colon cancer. Science 364, 1133–1135. doi: 10.1126/science.aaw2367, PMID: [DOI] [PubMed] [Google Scholar]
- Geller L. T., Barzily-Rokni M., Danino T., Jonas O. H., Shental N., Nejman D., et al. (2017). Potential role of intratumor bacteria in mediating tumor resistance to the chemotherapeutic drug gemcitabine. Science 357, 1156–1160. doi: 10.1126/science.aah5043, PMID: [DOI] [PMC free article] [PubMed] [Google Scholar]
- Glowacka P., Zakowska D., Naylor K., Niemcewicz M., Bielawska-Drozd A. (2018). Brucella – virulence factors, pathogenesis and treatment. Pol. J. Microbiol. 67, 151–161. doi: 10.21307/pjm-2018-029, PMID: [DOI] [PMC free article] [PubMed] [Google Scholar]
- Goldmann O., von Kockritz-Blickwede M., Holtje C., Chhatwal G. S., Geffers R., Medina E. (2007). Transcriptome analysis of murine macrophages in response to infection with streptococcus pyogenes reveals an unusual activation program. Infect. Immun. 75, 4148–4157. doi: 10.1128/IAI.00181-07, PMID: [DOI] [PMC free article] [PubMed] [Google Scholar]
- Golombos D. M., Ayangbesan A., O'Malley P., Lewicki P., Barlow L., Barbieri C. E., et al. (2018). The role of gut microbiome in the pathogenesis of prostate cancer: a prospective. Pilot Study. Urology. 111, 122–128. doi: 10.1016/j.urology.2017.08.039, PMID: [DOI] [PubMed] [Google Scholar]
- Gomes S., Cavadas B., Ferreira J. C., Marques P. I., Monteiro C., Sucena M., et al. (2019). Profiling of lung microbiota discloses differences in adenocarcinoma and squamous cell carcinoma. Sci. Rep. 9:12838. doi: 10.1038/s41598-019-49195-w, PMID: [DOI] [PMC free article] [PubMed] [Google Scholar]
- Gondwe T., Ness R., Totten P. A., Astete S., Tang G., Gold M. A., et al. (2020). Novel bacterial vaginosis-associated organisms mediate the relationship between vaginal douching and pelvic inflammatory disease. Sex. Transm. Infect. 96, 439–444. doi: 10.1136/sextrans-2019-054191, PMID: [DOI] [PMC free article] [PubMed] [Google Scholar]
- Greathouse K. L., White J. R., Vargas A. J., Bliskovsky V. V., Beck J. A., von Muhlinen N., et al. (2018). Interaction between the microbiome and TP53 in human lung cancer. Genome Biol. 19:123. doi: 10.1186/s13059-018-1501-6, PMID: [DOI] [PMC free article] [PubMed] [Google Scholar]
- Haas R., Smith J., Rocher-Ros V., Nadkarni S., Montero-Melendez T., D'Acquisto F., et al. (2015). Lactate regulates metabolic and pro-inflammatory circuits in control of T cell migration and effector functions. PLoS Biol. 13:e1002202. doi: 10.1371/journal.pbio.1002202, PMID: [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hashemi Goradel N., Heidarzadeh S., Jahangiri S., Farhood B., Mortezaee K., Khanlarkhani N., et al. (2019). Fusobacterium nucleatum and colorectal cancer: a mechanistic overview. J. Cell. Physiol. 234, 2337–2344. doi: 10.1002/jcp.27250, PMID: [DOI] [PubMed] [Google Scholar]
- He Z., Gharaibeh R. Z., Newsome R. C., Pope J. L., Dougherty M. W., Tomkovich S., et al. (2019). Campylobacter jejuni promotes colorectal tumorigenesis through the action of the cytolethal distending toxin. Gut 68, 289–300. doi: 10.1136/gutjnl-2018-317200, PMID: [DOI] [PMC free article] [PubMed] [Google Scholar]
- Heim C. E., Bosch M. E., Yamada K. J., Aldrich A. L., Chaudhari S. S., Klinkebiel D., et al. (2020). Lactate production by Staphylococcus aureus biofilm inhibits HDAC11 to reprogramme the host immune response during persistent infection. Nat. Microbiol. 5, 1271–1284. doi: 10.1038/s41564-020-0756-3, PMID: [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hosgood H. D., 3rd, Sapkota A. R., Rothman N., Rohan T., Hu W., Xu J., et al. (2014). The potential role of lung microbiota in lung cancer attributed to household coal burning exposures. Environ. Mol. Mutagen. 55, 643–651. doi: 10.1002/em.21878, PMID: [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hsieh Y. Y., Tung S. Y., Pan H. Y., Yen C. W., Xu H. W., Lin Y. J., et al. (2018). Increased abundance of clostridium and fusobacterium in gastric microbiota of patients with gastric cancer in Taiwan. Sci. Rep. 8:158. doi: 10.1038/s41598-017-18596-0, PMID: [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hu L., Liu Y., Kong X., Wu R., Peng Q., Zhang Y., et al. (2021). Fusobacterium nucleatum facilitates M2 macrophage polarization and colorectal carcinoma progression by activating TLR4/NF-kappaB/S100A9 Cascade. Front. Immunol. 12:658681. doi: 10.3389/fimmu.2021.658681, PMID: [DOI] [PMC free article] [PubMed] [Google Scholar]
- Huang Z., Luo Q., Guo Y., Chen J., Xiong G., Peng Y., et al. (2015). Mycobacterium tuberculosis-induced polarization of human macrophage orchestrates the formation and development of tuberculous granulomas in vitro. PLoS One 10:e0129744. doi: 10.1371/journal.pone.0129744, PMID: [DOI] [PMC free article] [PubMed] [Google Scholar]
- Im S. S., Yousef L., Blaschitz C., Liu J. Z., Edwards R. A., Young S. G., et al. (2011). Linking lipid metabolism to the innate immune response in macrophages through sterol regulatory element binding protein-1a. Cell Metab. 13, 540–549. doi: 10.1016/j.cmet.2011.04.001, PMID: [DOI] [PMC free article] [PubMed] [Google Scholar]
- Italiani P., Boraschi D. (2014). From monocytes to M1/M2 macrophages: phenotypical vs functional differentiation. Front. Immunol. 5:514. doi: 10.3389/fimmu.2014.00514, PMID: [DOI] [PMC free article] [PubMed] [Google Scholar]
- Jin C., Lagoudas G. K., Zhao C., Bullman S., Bhutkar A., Hu B., et al. (2019). Commensal microbiota promote lung cancer development via gammadelta T cells. Cells 176, 998–1013.e16. doi: 10.1016/j.cell.2018.12.040, PMID: [DOI] [PMC free article] [PubMed] [Google Scholar]
- Jin Z., Tian Y., Yan D., Li D., Zhu X. (2017). BCG increased membrane expression of TRIM59 through the TLR2/TLR4/IRF5 pathway in RAW264.7 macrophages. Protein Pept. Lett. 24, 765–770. doi: 10.2174/0929866524666170818155524, PMID: [DOI] [PubMed] [Google Scholar]
- Jung M., Mertens C., Brune B. (2015). Macrophage iron homeostasis and polarization in the context of cancer. Immunobiology 220, 295–304. doi: 10.1016/j.imbio.2014.09.011, PMID: [DOI] [PubMed] [Google Scholar]
- Kadioglu A., Andrew P. W. (2004). The innate immune response to pneumococcal lung infection: the untold story. Trends Immunol. 25, 143–149. doi: 10.1016/j.it.2003.12.006, PMID: [DOI] [PubMed] [Google Scholar]
- Kaufmann S. H. (2016). Immunopathology of mycobacterial diseases. Semin. Immunopathol. 38, 135–138. doi: 10.1007/s00281-015-0547-8, PMID: [DOI] [PubMed] [Google Scholar]
- Keay S., Zhang C. O., Baldwin B. R., Alexander R. B. (1999). Polymerase chain reaction amplification of bacterial 16s rRNA genes in prostate biopsies from men without chronic prostatitis. Urology 53, 487–491. doi: 10.1016/S0090-4295(98)00553-6, PMID: [DOI] [PubMed] [Google Scholar]
- Khan J., Sharma P. K., Mukhopadhaya A. (2015). Vibrio cholerae porin OmpU mediates M1-polarization of macrophages/monocytes via TLR1/TLR2 activation. Immunobiology 220, 1199–1209. doi: 10.1016/j.imbio.2015.06.009, PMID: [DOI] [PubMed] [Google Scholar]
- Kim J., Ochoa M. T., Krutzik S. R., Takeuchi O., Uematsu S., Legaspi A. J., et al. (2002). Activation of toll-like receptor 2 in acne triggers inflammatory cytokine responses. J. Immunol. 169, 1535–1541. doi: 10.4049/jimmunol.169.3.1535, PMID: [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kim K. S., Rowlinson M. C., Bennion R., Liu C., Talan D., Summanen P., et al. (2010). Characterization of Slackia exigua isolated from human wound infections, including abscesses of intestinal origin. J. Clin. Microbiol. 48, 1070–1075. doi: 10.1128/JCM.01576-09, PMID: [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kiszewski A. E., Becerril E., Aguilar L. D., Kader I. T., Myers W., Portaels F., et al. (2006). The local immune response in ulcerative lesions of Buruli disease. Clin. Exp. Immunol. 143, 445–451. doi: 10.1111/j.1365-2249.2006.03020.x, PMID: [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kostic A. D., Chun E., Robertson L., Glickman J. N., Gallini C. A., Michaud M., et al. (2013). Fusobacterium nucleatum potentiates intestinal tumorigenesis and modulates the tumor-immune microenvironment. Cell Host Microbe 14, 207–215. doi: 10.1016/j.chom.2013.07.007, PMID: [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kostic A. D., Gevers D., Pedamallu C. S., Michaud M., Duke F., Earl A. M., et al. (2012). Genomic analysis identifies association of fusobacterium with colorectal carcinoma. Genome Res. 22, 292–298. doi: 10.1101/gr.126573.111, PMID: [DOI] [PMC free article] [PubMed] [Google Scholar]
- Krakowiak M. S., Noto J. M., Piazuelo M. B., Hardbower D. M., Romero-Gallo J., Delgado A., et al. (2015). Matrix metalloproteinase 7 restrains helicobacter pylori-induced gastric inflammation and premalignant lesions in the stomach by altering macrophage polarization. Oncogene 34, 1865–1871. doi: 10.1038/onc.2014.135, PMID: [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kusaka Y., Kajiwara C., Shimada S., Ishii Y., Miyazaki Y., Inase N., et al. (2018). Potential role of gr-1+ CD8+ T lymphocytes as a source of interferon-gamma and M1/M2 polarization during the acute phase of murine legionella pneumophila pneumonia. J. Innate Immun. 10, 328–338. doi: 10.1159/000490585, PMID: [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kwong T. N. Y., Wang X., Nakatsu G., Chow T. C., Tipoe T., Dai R. Z. W., et al. (2018). Association between bacteremia from specific microbes and subsequent diagnosis of colorectal cancer. Gastroenterology 155, 383–390.e8. doi: 10.1053/j.gastro.2018.04.028, PMID: [DOI] [PubMed] [Google Scholar]
- Laniewski P., Barnes D., Goulder A., Cui H., Roe D. J., Chase D. M., et al. (2018). Linking cervicovaginal immune signatures, HPV and microbiota composition in cervical carcinogenesis in non-Hispanic and Hispanic women. Sci. Rep. 8:7593. doi: 10.1038/s41598-018-25879-7, PMID: [DOI] [PMC free article] [PubMed] [Google Scholar]
- Lara-Tejero M., Galan J. E. (2000). A bacterial toxin that controls cell cycle progression as a deoxyribonuclease I-like protein. Science 290, 354–357. doi: 10.1126/science.290.5490.354, PMID: [DOI] [PubMed] [Google Scholar]
- Laroumagne S., Lepage B., Hermant C., Plat G., Phelippeau M., Bigay-Game L., et al. (2013). Bronchial colonisation in patients with lung cancer: a prospective study. Eur. Respir. J. 42, 220–229. doi: 10.1183/09031936.00062212, PMID: [DOI] [PubMed] [Google Scholar]
- Lauterbach M. A., Hanke J. E., Serefidou M., Mangan M. S. J., Kolbe C. C., Hess T., et al. (2019). Toll-like receptor signaling rewires macrophage metabolism and promotes histone acetylation via ATP-citrate Lyase. Immunity 51, 997–1011.e7. doi: 10.1016/j.immuni.2019.11.009, PMID: [DOI] [PubMed] [Google Scholar]
- Laviron M., Boissonnas A. (2019). Ontogeny of tumor-associated macrophages. Front Immunol. 10:1799. doi: 10.3389/fimmu.2019.01799, PMID: [DOI] [PMC free article] [PubMed] [Google Scholar]
- Lax A. J., Thomas W. (2002). How bacteria could cause cancer: one step at a time. Trends Microbiol. 10, 293–299. doi: 10.1016/S0966-842X(02)02360-0, PMID: [DOI] [PubMed] [Google Scholar]
- Le Noci V., Guglielmetti S., Arioli S., Camisaschi C., Bianchi F., Sommariva M., et al. (2018). Modulation of pulmonary microbiota by antibiotic or probiotic aerosol therapy: a strategy to promote immunosurveillance against lung metastases. Cell Rep. 24, 3528–3538. doi: 10.1016/j.celrep.2018.08.090, PMID: [DOI] [PubMed] [Google Scholar]
- Lee J. E., Lee S., Lee H., Song Y. M., Lee K., Han M. J., et al. (2013). Association of the vaginal microbiota with human papillomavirus infection in a Korean twin cohort. PLoS One 8:e63514. doi: 10.1371/journal.pone.0063514, PMID: [DOI] [PMC free article] [PubMed] [Google Scholar]
- Lee S. H., Sung J. Y., Yong D., Chun J., Kim S. Y., Song J. H., et al. (2016). Characterization of microbiome in bronchoalveolar lavage fluid of patients with lung cancer comparing with benign mass like lesions. Lung Cancer 102, 89–95. doi: 10.1016/j.lungcan.2016.10.016, PMID: [DOI] [PubMed] [Google Scholar]
- Leskinen M. J., Rantakokko-Jalava K., Manninen R., Leppilahti M., Marttila T., Kylmala T., et al. (2003). Negative bacterial polymerase chain reaction (PCR) findings in prostate tissue from patients with symptoms of chronic pelvic pain syndrome (CPPS) and localized prostate cancer. Prostate 55, 105–110. doi: 10.1002/pros.10218, PMID: [DOI] [PubMed] [Google Scholar]
- Li J. J., Liu Y., Song L. T., Li C. Y., Jiang S. Y. (2022). Regulation of microRNA-126 on the polarization of human macrophages stimulated by Porphyromonas gingivalis lipopolysaccharide. Zhonghua Kou Qiang Yi Xue Za Zhi 57, 390–396. doi: 10.3760/cma.j.cn112144-20210701-00310, PMID: [DOI] [PubMed] [Google Scholar]
- Li Q., Peng W., Wu J., Wang X., Ren Y., Li H., et al. (2019). Autoinducer-2 of gut microbiota, a potential novel marker for human colorectal cancer, is associated with the activation of TNFSF9 signaling in macrophages. Onco. Targets. Ther. 8:e1626192. doi: 10.1080/2162402X.2019.1626192, PMID: [DOI] [PMC free article] [PubMed] [Google Scholar]
- Li S. J., Sun S. J., Gao J., Sun F. B. (2016). Wogonin induces Beclin-1/PI3K and reactive oxygen species-mediated autophagy in human pancreatic cancer cells. Oncol. Lett. 12, 5059–5067. doi: 10.3892/ol.2016.5367, PMID: [DOI] [PMC free article] [PubMed] [Google Scholar]
- Li Q., Wu W., Gong D., Shang R., Wang J., Yu H. (2021). Propionibacterium acnes overabundance in gastric cancer promote M2 polarization of macrophages via a TLR4/PI3K/Akt signaling. Gastric Cancer 24, 1242–1253. doi: 10.1007/s10120-021-01202-8, PMID: [DOI] [PubMed] [Google Scholar]
- Liang M. D., Bagchi A., Warren H. S., Tehan M. M., Trigilio J. A., Beasley-Topliffe L. K., et al. (2005). Bacterial peptidoglycan-associated lipoprotein: a naturally occurring toll-like receptor 2 agonist that is shed into serum and has synergy with lipopolysaccharide. J. Infect. Dis. 191, 939–948. doi: 10.1086/427815, PMID: [DOI] [PubMed] [Google Scholar]
- Lin Y., Xu J., Lan H. (2019). Tumor-associated macrophages in tumor metastasis: biological roles and clinical therapeutic applications. J. Hematol. Oncol. 12:76. doi: 10.1186/s13045-019-0760-3, PMID: [DOI] [PMC free article] [PubMed] [Google Scholar]
- Liss M. A., White J. R., Goros M., Gelfond J., Leach R., Johnson-Pais T., et al. (2018). Metabolic biosynthesis pathways identified from fecal microbiome associated with prostate cancer. Eur. Urol. 74, 575–582. doi: 10.1016/j.eururo.2018.06.033, PMID: [DOI] [PMC free article] [PubMed] [Google Scholar]
- Liu J., Luo M., Zhang Y., Cao G., Wang S. (2020). Association of high-risk human papillomavirus infection duration and cervical lesions with vaginal microbiota composition. Ann. Transl. Med. 8:1161. doi: 10.21037/atm-20-5832, PMID: [DOI] [PMC free article] [PubMed] [Google Scholar]
- Liu L., Shi W., Xiao X., Wu X., Hu H., Yuan S., et al. (2021). BCG immunotherapy inhibits cancer progression by promoting the M1 macrophage differentiation of THP1 cells via the Rb/E2F1 pathway in cervical carcinoma. Oncol. Rep. 46:245. doi: 10.3892/or.2021.8196, PMID: [DOI] [PMC free article] [PubMed] [Google Scholar]
- Liu H. X., Tao L. L., Zhang J., Zhu Y. G., Zheng Y., Liu D., et al. (2018). Difference of lower airway microbiome in bilateral protected specimen brush between lung cancer patients with unilateral lobar masses and control subjects. Int. J. Cancer 142, 769–778. doi: 10.1002/ijc.31098, PMID: [DOI] [PubMed] [Google Scholar]
- Liu P. S., Wang H., Li X., Chao T., Teav T., Christen S., et al. (2017). Alpha-ketoglutarate orchestrates macrophage activation through metabolic and epigenetic reprogramming. Nat. Immunol. 18, 985–994. doi: 10.1038/ni.3796, PMID: [DOI] [PubMed] [Google Scholar]
- Liu C. Y., Xu J. Y., Shi X. Y., Huang W., Ruan T. Y., Xie P., et al. (2013). M2-polarized tumor-associated macrophages promoted epithelial-mesenchymal transition in pancreatic cancer cells, partially through TLR4/IL-10 signaling pathway. Lab. Investig. 93, 844–854. doi: 10.1038/labinvest.2013.69, PMID: [DOI] [PubMed] [Google Scholar]
- Lizotte P. H., Baird J. R., Stevens C. A., Lauer P., Green W. R., Brockstedt D. G., et al. (2014). Attenuated listeria monocytogenes reprograms M2-polarized tumor-associated macrophages in ovarian cancer leading to iNOS-mediated tumor cell lysis. Onco. Targets. Ther. 3:e28926. doi: 10.4161/onci.28926, PMID: [DOI] [PMC free article] [PubMed] [Google Scholar]
- Long K. B., Collier A. I., Beatty G. L. (2019). Macrophages: key orchestrators of a tumor microenvironment defined by therapeutic resistance. Mol. Immunol. 110, 3–12. doi: 10.1016/j.molimm.2017.12.003, PMID: [DOI] [PMC free article] [PubMed] [Google Scholar]
- Lopes R. L., Borges T. J., Zanin R. F., Bonorino C. (2016). IL-10 is required for polarization of macrophages to M2-like phenotype by mycobacterial DnaK (heat shock protein 70). Cytokine 85, 123–129. doi: 10.1016/j.cyto.2016.06.018, PMID: [DOI] [PubMed] [Google Scholar]
- Lu L., Ling W., Ruan Z. (2021). TAM-derived extracellular vesicles containing microRNA-29a-3p explain the deterioration of ovarian cancer. Mol. Ther. Nucleic. Acids 25, 468–482. doi: 10.1016/j.omtn.2021.05.011, PMID: [DOI] [PMC free article] [PubMed] [Google Scholar]
- Lunn R. M., Mehta S. S., Jahnke G. D., Wang A., Wolfe M. S., Berridge B. R. (2022). Cancer Hazard evaluations for contemporary needs: highlights from new National Toxicology Program Evaluations and methodological advancements. J. Natl. Cancer Inst. 114, 1441–1448. doi: 10.1093/jnci/djac164, PMID: [DOI] [PMC free article] [PubMed] [Google Scholar]
- Luo F., Sun X., Qu Z., Zhang X. (2016). Salmonella typhimurium-induced M1 macrophage polarization is dependent on the bacterial O antigen. World J. Microbiol. Biotechnol. 32:22. doi: 10.1007/s11274-015-1978-z, PMID: [DOI] [PubMed] [Google Scholar]
- Ma Z., Li R., Hu R., Deng X., Xu Y., Zheng W., et al. (2020). Brucella abortus BspJ is a Nucleomodulin that inhibits macrophage apoptosis and promotes intracellular survival of Brucella. Front. Microbiol. 11:599205. doi: 10.3389/fmicb.2020.599205, PMID: [DOI] [PMC free article] [PubMed] [Google Scholar]
- Mantovani A., Allavena P., Sica A., Balkwill F. (2008). Cancer-related inflammation. Nature 454, 436–444. doi: 10.1038/nature07205, PMID: [DOI] [PubMed] [Google Scholar]
- Mantovani A., Sica A., Sozzani S., Allavena P., Vecchi A., Locati M. (2004). The chemokine system in diverse forms of macrophage activation and polarization. Trends Immunol. 25, 677–686. doi: 10.1016/j.it.2004.09.015, PMID: [DOI] [PubMed] [Google Scholar]
- Mantovani A., Sozzani S., Locati M., Allavena P., Sica A. (2002). Macrophage polarization: tumor-associated macrophages as a paradigm for polarized M2 mononuclear phagocytes. Trends Immunol. 23, 549–555. doi: 10.1016/S1471-4906(02)02302-5, PMID: [DOI] [PubMed] [Google Scholar]
- Mima K., Nishihara R., Qian Z. R., Cao Y., Sukawa Y., Nowak J. A., et al. (2016). Fusobacterium nucleatum in colorectal carcinoma tissue and patient prognosis. Gut 65, 1973–1980. doi: 10.1136/gutjnl-2015-310101, PMID: [DOI] [PMC free article] [PubMed] [Google Scholar]
- Mima K., Sukawa Y., Nishihara R., Qian Z. R., Yamauchi M., Inamura K., et al. (2015). Fusobacterium nucleatum and T cells in colorectal carcinoma. JAMA Oncol. 1, 653–661. doi: 10.1001/jamaoncol.2015.1377, PMID: [DOI] [PMC free article] [PubMed] [Google Scholar]
- Miquel S., Martin R., Rossi O., Bermudez-Humaran L. G., Chatel J. M., Sokol H., et al. (2013). Faecalibacterium prausnitzii and human intestinal health. Curr. Opin. Microbiol. 16, 255–261. doi: 10.1016/j.mib.2013.06.003, PMID: [DOI] [PubMed] [Google Scholar]
- Mitra A., MacIntyre D. A., Lee Y. S., Smith A., Marchesi J. R., Lehne B., et al. (2015). Cervical intraepithelial neoplasia disease progression is associated with increased vaginal microbiome diversity. Sci. Rep. 5:16865. doi: 10.1038/srep16865, PMID: [DOI] [PMC free article] [PubMed] [Google Scholar]
- Molinero N., Ruiz L., Milani C., Gutierrez-Diaz I., Sanchez B., Mangifesta M., et al. (2019). The human gallbladder microbiome is related to the physiological state and the biliary metabolic profile. Microbiome 7:100. doi: 10.1186/s40168-019-0712-8, PMID: [DOI] [PMC free article] [PubMed] [Google Scholar]
- Monack D. M., Raupach B., Hromockyj A. E., Falkow S. (1996). Salmonella typhimurium invasion induces apoptosis in infected macrophages. Proc. Natl. Acad. Sci. U. S. A. 93, 9833–9838. doi: 10.1073/pnas.93.18.9833, PMID: [DOI] [PMC free article] [PubMed] [Google Scholar]
- Moratalla A., Caparros E., Juanola O., Portune K., Puig-Kroger A., Estrada-Capetillo L., et al. (2016). Bifidobacterium pseudocatenulatum CECT7765 induces an M2 anti-inflammatory transition in macrophages from patients with cirrhosis. J. Hepatol. 64, 135–145. doi: 10.1016/j.jhep.2015.08.020, PMID: [DOI] [PubMed] [Google Scholar]
- Murata H., Tsuji S., Tsujii M., Fu H. Y., Tanimura H., Tsujimoto M., et al. (2004). Helicobacter bilis infection in biliary tract cancer. Aliment. Pharmacol. Ther. 20, 90–94. doi: 10.1111/j.1365-2036.2004.01972.x [DOI] [PubMed] [Google Scholar]
- Murphy J. T., Sommer S., Kabara E. A., Verman N., Kuelbs M. A., Saama P., et al. (2006). Gene expression profiling of monocyte-derived macrophages following infection with Mycobacterium avium subspecies avium and Mycobacterium avium subspecies paratuberculosis. Physiol. Genomics 28, 67–75. doi: 10.1152/physiolgenomics.00098.2006, PMID: [DOI] [PubMed] [Google Scholar]
- Murray P. J., Allen J. E., Biswas S. K., Fisher E. A., Gilroy D. W., Goerdt S., et al. (2014). Macrophage activation and polarization: nomenclature and experimental guidelines. Immunity 41, 14–20. doi: 10.1016/j.immuni.2014.06.008, PMID: [DOI] [PMC free article] [PubMed] [Google Scholar]
- Murray P. J., Wynn T. A. (2011). Protective and pathogenic functions of macrophage subsets. Nat. Rev. Immunol. 11, 723–737. doi: 10.1038/nri3073, PMID: [DOI] [PMC free article] [PubMed] [Google Scholar]
- Myers D. R., Abram C. L., Wildes D., Belwafa A., Welsh A. M. N., Schulze C. J., et al. (2020). Shp1 loss enhances macrophage effector function and promotes anti-tumor immunity. Front. Immunol. 11:576310. doi: 10.3389/fimmu.2020.576310, PMID: [DOI] [PMC free article] [PubMed] [Google Scholar]
- Nagano T., Otoshi T., Hazama D., Kiriu T., Umezawa K., Katsurada N., et al. (2019). Novel cancer therapy targeting microbiome. Onco. Targets. Ther. 12, 3619–3624. doi: 10.2147/OTT.S207546, PMID: [DOI] [PMC free article] [PubMed] [Google Scholar]
- Nagaraja V., Eslick G. D. (2014). Systematic review with meta-analysis: the relationship between chronic salmonella typhi carrier status and gall-bladder cancer. Aliment. Pharmacol. Ther. 39, 745–750. doi: 10.1111/apt.12655, PMID: [DOI] [PubMed] [Google Scholar]
- Nath G., Singh Y. K., Kumar K., Gulati A. K., Shukla V. K., Khanna A. K., et al. (2008). Association of carcinoma of the gallbladder with typhoid carriage in a typhoid endemic area using nested PCR. J. Infect. Dev. Ctries. 2, 302–307. doi: 10.3855/jidc.226, PMID: [DOI] [PubMed] [Google Scholar]
- Nath G., Singh Y. K., Maurya P., Gulati A. K., Srivastava R. C., Tripathi S. K. (2010). Does salmonella Typhi primarily reside in the liver of chronic typhoid carriers? J. Infect. Dev. Ctries. 4, 259–261. doi: 10.3855/jidc.820, PMID: [DOI] [PubMed] [Google Scholar]
- Nejman D., Livyatan I., Fuks G., Gavert N., Zwang Y., Geller L. T., et al. (2020). The human tumor microbiome is composed of tumor-type-specific intracellular bacteria. Science 368, 973–980. doi: 10.1126/science.aay9189, PMID: [DOI] [PMC free article] [PubMed] [Google Scholar]
- Oishi Y., Spann N. J., Link V. M., Muse E. D., Strid T., Edillor C., et al. (2017). SREBP1 contributes to resolution of pro-inflammatory TLR4 signaling by reprogramming fatty acid metabolism. Cell Metab. 25, 412–427. doi: 10.1016/j.cmet.2016.11.009, PMID: [DOI] [PMC free article] [PubMed] [Google Scholar]
- Onderdonk A. B., Delaney M. L., Fichorova R. N. (2016). The human microbiome during bacterial vaginosis. Clin. Microbiol. Rev. 29, 223–238. doi: 10.1128/CMR.00075-15, PMID: [DOI] [PMC free article] [PubMed] [Google Scholar]
- Parhi L., Alon-Maimon T., Sol A., Nejman D., Shhadeh A., Fainsod-Levi T., et al. (2020). Breast cancer colonization by fusobacterium nucleatum accelerates tumor growth and metastatic progression. Nat. Commun. 11:3259. doi: 10.1038/s41467-020-16967-2, PMID: [DOI] [PMC free article] [PubMed] [Google Scholar]
- Paynich M. L., Jones-Burrage S. E., Knight K. L. (2017). Exopolysaccharide from Bacillus subtilis induces anti-inflammatory M2 macrophages that prevent T cell-mediated disease. J. Immunol. 198, 2689–2698. doi: 10.4049/jimmunol.1601641, PMID: [DOI] [PMC free article] [PubMed] [Google Scholar]
- Pearce M. M., Hilt E. E., Rosenfeld A. B., Zilliox M. J., Thomas-White K., Fok C., et al. (2014). The female urinary microbiome: a comparison of women with and without urgency urinary incontinence. MBio 5, e01283–e01214. doi: 10.1128/mBio.01283-14, PMID: [DOI] [PMC free article] [PubMed] [Google Scholar]
- Peng K. T., Hsieh C. C., Huang T. Y., Chen P. C., Shih H. N., Lee M. S., et al. (2017). Staphylococcus aureus biofilm elicits the expansion, activation and polarization of myeloid-derived suppressor cells in vivo and in vitro. PLoS One 12:e0183271. doi: 10.1371/journal.pone.0183271, PMID: [DOI] [PMC free article] [PubMed] [Google Scholar]
- Peters B. A., Hayes R. B., Goparaju C., Reid C., Pass H. I., Ahn J. (2019). The microbiome in lung cancer tissue and recurrence-free survival. Cancer Epidemiol. Biomark. Prev. 28, 731–740. doi: 10.1158/1055-9965.EPI-18-0966, PMID: [DOI] [PMC free article] [PubMed] [Google Scholar]
- Pidwill G. R., Gibson J. F., Cole J., Renshaw S. A., Foster S. J. (2020). The role of macrophages in Staphylococcus aureus infection. Front. Immunol. 11:620339. doi: 10.3389/fimmu.2020.620339, PMID: [DOI] [PMC free article] [PubMed] [Google Scholar]
- Pinheiro da Silva F., Aloulou M., Skurnik D., Benhamou M., Andremont A., Velasco I. T., et al. (2007). CD16 promotes Escherichia coli sepsis through an FcR gamma inhibitory pathway that prevents phagocytosis and facilitates inflammation. Nat. Med. 13, 1368–1374. doi: 10.1038/nm1665, PMID: [DOI] [PubMed] [Google Scholar]
- Pittet M. J., Michielin O., Migliorini D. (2022). Clinical relevance of tumour-associated macrophages. Nat. Rev. Clin. Oncol. 19, 402–421. doi: 10.1038/s41571-022-00620-6, PMID: [DOI] [PubMed] [Google Scholar]
- Pleguezuelos-Manzano C., Puschhof J., Rosendahl Huber A., van Hoeck A., Wood H. M., Nomburg J., et al. (2020). Mutational signature in colorectal cancer caused by genotoxic pks(+) E. coli. Nature 580, 269–273. doi: 10.1038/s41586-020-2080-8, PMID: [DOI] [PMC free article] [PubMed] [Google Scholar]
- Polak D., Yaya A., Levy D. H., Metzger Z., Abramovitz I. (2021). Enterococcus faecalis sustained infection induces macrophage pro-resolution polarization. Int. Endod. J. 54, 1840–1849. doi: 10.1111/iej.13574, PMID: [DOI] [PubMed] [Google Scholar]
- Poore G. D., Kopylova E., Zhu Q., Carpenter C., Fraraccio S., Wandro S., et al. (2020). Microbiome analyses of blood and tissues suggest cancer diagnostic approach. Nature 579, 567–574. doi: 10.1038/s41586-020-2095-1, PMID: [DOI] [PMC free article] [PubMed] [Google Scholar] [Retracted]
- Pore D., Mahata N., Pal A., Chakrabarti M. K. (2010). 34 kDa MOMP of Shigella flexneri promotes TLR2 mediated macrophage activation with the engagement of NF-kappaB and p38 MAP kinase signaling. Mol. Immunol. 47, 1739–1746. doi: 10.1016/j.molimm.2010.03.001, PMID: [DOI] [PubMed] [Google Scholar]
- Pradhan S. B., Dali S. (2004). Relation between gallbladder neoplasm and helicobacter hepaticus infection. Kathmandu Univ Med J (KUMJ). 2, 331–335, PMID: . [PubMed] [Google Scholar]
- Pushalkar S., Hundeyin M., Daley D., Zambirinis C. P., Kurz E., Mishra A., et al. (2018). The pancreatic cancer microbiome promotes oncogenesis by induction of innate and adaptive immune suppression. Cancer Discov. 8, 403–416. doi: 10.1158/2159-8290.CD-17-1134, PMID: [DOI] [PMC free article] [PubMed] [Google Scholar]
- Ridlon J. M., Ikegawa S., Alves J. M., Zhou B., Kobayashi A., Iida T., et al. (2013). Clostridium scindens: a human gut microbe with a high potential to convert glucocorticoids into androgens. J. Lipid Res. 54, 2437–2449. doi: 10.1194/jlr.M038869, PMID: [DOI] [PMC free article] [PubMed] [Google Scholar]
- Riquelme E., Zhang Y., Zhang L., Montiel M., Zoltan M., Dong W., et al. (2019). Tumor microbiome diversity and composition influence pancreatic cancer outcomes. Cells 178, 795–806.e12. doi: 10.1016/j.cell.2019.07.008, PMID: [DOI] [PMC free article] [PubMed] [Google Scholar]
- Roberts P. J., Dickinson R. J., Whitehead A., Laughton C. R., Foweraker J. E. (2002). The culture of lactobacilli species in gastric carcinoma. J. Clin. Pathol. 55:477. doi: 10.1136/jcp.55.6.477, PMID: [DOI] [PMC free article] [PubMed] [Google Scholar]
- Rosenberger C. M., Finlay B. B. (2003). Phagocyte sabotage: disruption of macrophage signalling by bacterial pathogens. Nat. Rev. Mol. Cell Biol. 4, 385–396. doi: 10.1038/nrm1104, PMID: [DOI] [PubMed] [Google Scholar]
- Routy B., Le Chatelier E., Derosa L., Duong C. P. M., Alou M. T., Daillere R., et al. (2018). Gut microbiome influences efficacy of PD-1-based immunotherapy against epithelial tumors. Science 359, 91–97. doi: 10.1126/science.aan3706, PMID: [DOI] [PubMed] [Google Scholar]
- Rubinstein M. R., Wang X., Liu W., Hao Y., Cai G., Han Y. W. (2013). Fusobacterium nucleatum promotes colorectal carcinogenesis by modulating E-cadherin/beta-catenin signaling via its FadA adhesin. Cell Host Microbe 14, 195–206. doi: 10.1016/j.chom.2013.07.012, PMID: [DOI] [PMC free article] [PubMed] [Google Scholar]
- Ruffell B., Chang-Strachan D., Chan V., Rosenbusch A., Ho C. M., Pryer N., et al. (2014). Macrophage IL-10 blocks CD8+ T cell-dependent responses to chemotherapy by suppressing IL-12 expression in intratumoral dendritic cells. Cancer Cell 26, 623–637. doi: 10.1016/j.ccell.2014.09.006, PMID: [DOI] [PMC free article] [PubMed] [Google Scholar]
- Russell D. G., Cardona P. J., Kim M. J., Allain S., Altare F. (2009). Foamy macrophages and the progression of the human tuberculosis granuloma. Nat. Immunol. 10, 943–948. doi: 10.1038/ni.1781, PMID: [DOI] [PMC free article] [PubMed] [Google Scholar]
- Sakamoto R., Kajihara I., Mijiddorj T., Otsuka-Maeda S., Sawamura S., Nishimura Y., et al. (2021). Existence of Staphylococcus aureus correlates with the progression of extramammary Paget's disease: potential involvement of interleukin-17 and M2-like macrophage polarization. Eur. J. Dermatol. 31, 48–54. doi: 10.1684/ejd.2021.3972, PMID: [DOI] [PubMed] [Google Scholar]
- Salazar C. R., Sun J., Li Y., Francois F., Corby P., Perez-Perez G., et al. (2013). Association between selected oral pathogens and gastric precancerous lesions. PLoS One 8:e51604. doi: 10.1371/journal.pone.0051604, PMID: [DOI] [PMC free article] [PubMed] [Google Scholar]
- Sanchez-Lopez E., Zhong Z., Stubelius A., Sweeney S. R., Booshehri L. M., Antonucci L., et al. (2019). Choline uptake and metabolism modulate macrophage IL-1beta and IL-18 production. Cell Metab. 29, 1350–1362.e7. doi: 10.1016/j.cmet.2019.03.011, PMID: [DOI] [PMC free article] [PubMed] [Google Scholar]
- Schulte L. N., Eulalio A., Mollenkopf H. J., Reinhardt R., Vogel J. (2011). Analysis of the host microRNA response to salmonella uncovers the control of major cytokines by the let-7 family. EMBO J. 30, 1977–1989. doi: 10.1038/emboj.2011.94, PMID: [DOI] [PMC free article] [PubMed] [Google Scholar]
- Schulz C., Schutte K., Mayerle J., Malfertheiner P. (2019). The role of the gastric bacterial microbiome in gastric cancer: helicobacter pylori and beyond. Ther. Adv. Gastroenterol. 12:1756284819894062. doi: 10.1177/1756284819894062, PMID: [DOI] [PMC free article] [PubMed] [Google Scholar]
- Scott A. J., Alexander J. L., Merrifield C. A., Cunningham D., Jobin C., Brown R., et al. (2019). International cancer microbiome consortium consensus statement on the role of the human microbiome in carcinogenesis. Gut 68, 1624–1632. doi: 10.1136/gutjnl-2019-318556, PMID: [DOI] [PMC free article] [PubMed] [Google Scholar]
- Seow S. W., Cai S., Rahmat J. N., Bay B. H., Lee Y. K., Chan Y. H., et al. (2010). Lactobacillus rhamnosus GG induces tumor regression in mice bearing orthotopic bladder tumors. Cancer Sci. 101, 751–758. doi: 10.1111/j.1349-7006.2009.01426.x, PMID: [DOI] [PMC free article] [PubMed] [Google Scholar]
- Sepich-Poore G. D., Zitvogel L., Straussman R., Hasty J., Wargo J. A., Knight R. (2021). The microbiome and human cancer. Science 371:6536. doi: 10.1126/science.abc4552 [DOI] [PMC free article] [PubMed] [Google Scholar]
- Sfanos K. S., Sauvageot J., Fedor H. L., Dick J. D., De Marzo A. M., Isaacs W. B. (2008). A molecular analysis of prokaryotic and viral DNA sequences in prostate tissue from patients with prostate cancer indicates the presence of multiple and diverse microorganisms. Prostate 68, 306–320. doi: 10.1002/pros.20680, PMID: [DOI] [PubMed] [Google Scholar]
- Sha S., Shi Y., Tang Y., Jia L., Han X., Liu Y., et al. (2021). Mycobacterium tuberculosis Rv1987 protein induces M2 polarization of macrophages through activating the PI3K/Akt1/mTOR signaling pathway. Immunol. Cell Biol. 99, 570–585. doi: 10.1111/imcb.12436, PMID: [DOI] [PubMed] [Google Scholar]
- Shapouri-Moghaddam A., Mohammadian S., Vazini H., Taghadosi M., Esmaeili S. A., Mardani F., et al. (2018). Macrophage plasticity, polarization, and function in health and disease. J. Cell. Physiol. 233, 6425–6440. doi: 10.1002/jcp.26429, PMID: [DOI] [PubMed] [Google Scholar]
- Shaughnessy L. M., Swanson J. A. (2007). The role of the activated macrophage in clearing listeria monocytogenes infection. Front. Biosci. 12, 2683–2692. doi: 10.2741/2364, PMID: [DOI] [PMC free article] [PubMed] [Google Scholar]
- Shi Y., Zheng W., Yang K., Harris K. G., Ni K., Xue L., et al. (2020). Intratumoral accumulation of gut microbiota facilitates CD47-based immunotherapy via STING signaling. J. Exp. Med. 217:e20192282. doi: 10.1084/jem.20192282, PMID: [DOI] [PMC free article] [PubMed] [Google Scholar]
- Shrestha E., White J. R., Yu S. H., Kulac I., Ertunc O., De Marzo A. M., et al. (2018). Profiling the urinary microbiome in men with positive versus negative biopsies for prostate cancer. J. Urol. 199, 161–171. doi: 10.1016/j.juro.2017.08.001, PMID: [DOI] [PMC free article] [PubMed] [Google Scholar]
- Smith M. W., Schmidt J. E., Rehg J. E., Orihuela C. J., McCullers J. A. (2007). Induction of pro- and anti-inflammatory molecules in a mouse model of pneumococcal pneumonia after influenza. Comp. Med. 57, 82–89. PMID: [PMC free article] [PubMed] [Google Scholar]
- So K. A., Yang E. J., Kim N. R., Hong S. R., Lee J. H., Hwang C. S., et al. (2020). Changes of vaginal microbiota during cervical carcinogenesis in women with human papillomavirus infection. PLoS One 15:e0238705. doi: 10.1371/journal.pone.0238705, PMID: [DOI] [PMC free article] [PubMed] [Google Scholar]
- Sohn W., Jun D. W., Lee K. N., Lee H. L., Lee O. Y., Choi H. S., et al. (2015). Lactobacillus paracasei induces M2-dominant Kupffer cell polarization in a mouse model of nonalcoholic steatohepatitis. Dig. Dis. Sci. 60, 3340–3350. doi: 10.1007/s10620-015-3770-1, PMID: [DOI] [PubMed] [Google Scholar]
- Sokol H., Pigneur B., Watterlot L., Lakhdari O., Bermudez-Humaran L. G., Gratadoux J. J., et al. (2008). Faecalibacterium prausnitzii is an anti-inflammatory commensal bacterium identified by gut microbiota analysis of Crohn disease patients. Proc. Natl. Acad. Sci. U. S. A. 105, 16731–16736. doi: 10.1073/pnas.0804812105, PMID: [DOI] [PMC free article] [PubMed] [Google Scholar]
- St Jean A. T., Zhang M., Forbes N. S. (2008). Bacterial therapies: completing the cancer treatment toolbox. Curr. Opin. Biotechnol. 19, 511–517. doi: 10.1016/j.copbio.2008.08.004, PMID: [DOI] [PMC free article] [PubMed] [Google Scholar]
- Stapels D. A. C., Hill P. W. S., Westermann A. J., Fisher R. A., Thurston T. L., Saliba A. E., et al. (2018). Salmonella persisters undermine host immune defenses during antibiotic treatment. Science 362, 1156–1160. doi: 10.1126/science.aat7148, PMID: [DOI] [PubMed] [Google Scholar]
- Su P., Wang Q., Bi E., Ma X., Liu L., Yang M., et al. (2020). Enhanced lipid accumulation and metabolism are required for the differentiation and activation of tumor-associated macrophages. Cancer Res. 80, 1438–1450. doi: 10.1158/0008-5472.CAN-19-2994, PMID: [DOI] [PMC free article] [PubMed] [Google Scholar]
- Suarez G., Romero-Gallo J., Piazuelo M. B., Sierra J. C., Delgado A. G., Washington M. K., et al. (2019). Nod1 imprints inflammatory and carcinogenic responses toward the gastric pathogen helicobacter pylori. Cancer Res. 79, 1600–1611. doi: 10.1158/0008-5472.CAN-18-2651, PMID: [DOI] [PMC free article] [PubMed] [Google Scholar]
- Suzuki M., Mimuro H., Kiga K., Fukumatsu M., Ishijima N., Morikawa H., et al. (2009). Helicobacter pylori CagA phosphorylation-independent function in epithelial proliferation and inflammation. Cell Host Microbe 5, 23–34. doi: 10.1016/j.chom.2008.11.010, PMID: [DOI] [PubMed] [Google Scholar]
- Tamura R., Tanaka T., Yamamoto Y., Akasaki Y., Sasaki H. (2018). Dual role of macrophage in tumor immunity. Immunotherapy 10, 899–909. doi: 10.2217/imt-2018-0006, PMID: [DOI] [PubMed] [Google Scholar]
- Tan S., Xia L., Yi P., Han Y., Tang L., Pan Q., et al. (2020). Exosomal miRNAs in tumor microenvironment. J. Exp. Clin. Cancer Res. 39:67. doi: 10.1186/s13046-020-01570-6, PMID: [DOI] [PMC free article] [PubMed] [Google Scholar]
- Tannahill G. M., Curtis A. M., Adamik J., Palsson-McDermott E. M., McGettrick A. F., Goel G., et al. (2013). Succinate is an inflammatory signal that induces IL-1beta through HIF-1alpha. Nature 496, 238–242. doi: 10.1038/nature11986, PMID: [DOI] [PMC free article] [PubMed] [Google Scholar]
- Templeton D. M., Liu Y. (2003). Genetic regulation of cell function in response to iron overload or chelation. Biochim. Biophys. Acta 1619, 113–124. doi: 10.1016/S0304-4165(02)00497-X [DOI] [PubMed] [Google Scholar]
- Thomas A. M., Manghi P., Asnicar F., Pasolli E., Armanini F., Zolfo M., et al. (2019). Metagenomic analysis of colorectal cancer datasets identifies cross-cohort microbial diagnostic signatures and a link with choline degradation. Nat. Med. 25, 667–678. doi: 10.1038/s41591-019-0405-7, PMID: [DOI] [PMC free article] [PubMed] [Google Scholar]
- Thurlow L. R., Hanke M. L., Fritz T., Angle A., Aldrich A., Williams S. H., et al. (2011). Staphylococcus aureus biofilms prevent macrophage phagocytosis and attenuate inflammation in vivo. J. Immunol. 186, 6585–6596. doi: 10.4049/jimmunol.1002794, PMID: [DOI] [PMC free article] [PubMed] [Google Scholar]
- Tian Y., Jin Z., Zhu P., Liu S., Zhang D., Tang M., et al. (2019). TRIM59: a membrane protein expressed on bacillus Calmette-Guerin-activated macrophages that induces apoptosis of fibrosarcoma cells by direct contact. Exp. Cell Res. 384:111590. doi: 10.1016/j.yexcr.2019.111590, PMID: [DOI] [PubMed] [Google Scholar]
- Trinchieri G. (2012). Cancer and inflammation: an old intuition with rapidly evolving new concepts. Annu. Rev. Immunol. 30, 677–706. doi: 10.1146/annurev-immunol-020711-075008, PMID: [DOI] [PubMed] [Google Scholar]
- Tsay J. J., Wu B. G., Badri M. H., Clemente J. C., Shen N., Meyn P., et al. (2018). Airway microbiota is associated with upregulation of the PI3K pathway in lung cancer. Am. J. Respir. Crit. Care Med. 198, 1188–1198. doi: 10.1164/rccm.201710-2118OC, PMID: [DOI] [PMC free article] [PubMed] [Google Scholar]
- Tsay J. J., Wu B. G., Sulaiman I., Gershner K., Schluger R., Li Y., et al. (2021). Lower airway Dysbiosis affects lung cancer progression. Cancer Discov. 11, 293–307. doi: 10.1158/2159-8290.CD-20-0263, PMID: [DOI] [PMC free article] [PubMed] [Google Scholar]
- Tsuchiya Y., Loza E., Villa-Gomez G., Trujillo C. C., Baez S., Asai T., et al. (2018). Metagenomics of microbial communities in gallbladder bile from patients with gallbladder cancer or Cholelithiasis. Asian Pac. J. Cancer Prev. 19, 961–967. doi: 10.22034/APJCP.2018.19.4.961, PMID: [DOI] [PMC free article] [PubMed] [Google Scholar]
- Tuohy J. L., Somarelli J. A., Borst L. B., Eward W. C., Lascelles B. D. X., Fogle J. E. (2020). Immune dysregulation and osteosarcoma: Staphylococcus aureus downregulates TGF-beta and heightens the inflammatory signature in human and canine macrophages suppressed by osteosarcoma. Vet. Comp. Oncol. 18, 64–75. doi: 10.1111/vco.12529, PMID: [DOI] [PMC free article] [PubMed] [Google Scholar]
- Umezu D., Okada N., Sakoda Y., Adachi K., Ojima T., Yamaue H., et al. (2019). Inhibitory functions of PD-L1 and PD-L2 in the regulation of anti-tumor immunity in murine tumor microenvironment. Cancer Immunol. Immunother. 68, 201–211. doi: 10.1007/s00262-018-2263-4, PMID: [DOI] [PMC free article] [PubMed] [Google Scholar]
- Urbaniak C., Gloor G. B., Brackstone M., Scott L., Tangney M., Reid G. (2016). The microbiota of breast tissue and its association with breast cancer. Appl. Environ. Microbiol. 82, 5039–5048. doi: 10.1128/AEM.01235-16, PMID: [DOI] [PMC free article] [PubMed] [Google Scholar]
- Vitale I., Manic G., Coussens L. M., Kroemer G., Galluzzi L. (2019). Macrophages and metabolism in the tumor microenvironment. Cell Metab. 30, 36–50. doi: 10.1016/j.cmet.2019.06.001, PMID: [DOI] [PubMed] [Google Scholar]
- Wang L., Johnson E. E., Shi H. N., Walker W. A., Wessling-Resnick M., Cherayil B. J. (2008). Attenuated inflammatory responses in hemochromatosis reveal a role for iron in the regulation of macrophage cytokine translation. J. Immunol. 181, 2723–2731. doi: 10.4049/jimmunol.181.4.2723, PMID: [DOI] [PMC free article] [PubMed] [Google Scholar]
- Wang Y., Li Y., Li H., Song H., Zhai N., Lou L., et al. (2017). Brucella dysregulates monocytes and inhibits macrophage polarization through LC3-dependent autophagy. Front. Immunol. 8:691. doi: 10.3389/fimmu.2017.00691, PMID: [DOI] [PMC free article] [PubMed] [Google Scholar]
- Wang T. R., Peng J. C., Qiao Y. Q., Zhu M. M., Zhao D., Shen J., et al. (2014). Helicobacter pylori regulates TLR4 and TLR9 during gastric carcinogenesis. Int. J. Clin. Exp. Pathol. 7, 6950–6955. PMID: [PMC free article] [PubMed] [Google Scholar]
- Wang X., Wu Y., Jiao J., Huang Q. (2018). Mycobacterium tuberculosis infection induces IL-10 gene expression by disturbing histone deacetylase 6 and histonedeacetylase 11 equilibrium in macrophages. Tuberculosis (Edinb.) 108, 118–123. doi: 10.1016/j.tube.2017.11.008, PMID: [DOI] [PubMed] [Google Scholar]
- Wang B., Wu Y., Liu R., Xu H., Mei X., Shang Q., et al. (2020). Lactobacillus rhamnosus GG promotes M1 polarization in murine bone marrow-derived macrophages by activating TLR2/MyD88/MAPK signaling pathway. Anim. Sci. J. 91:e13439. doi: 10.1111/asj.13439, PMID: [DOI] [PubMed] [Google Scholar]
- Wang Y., Xi J., Yi J., Meng C., Zhao X., Sun Z., et al. (2022). Brucella induces M1 to M2 polarization of macrophages through STAT6 signaling pathway to promote bacterial intracellular survival. Res. Vet. Sci. 145, 91–101. doi: 10.1016/j.rvsc.2022.02.006, PMID: [DOI] [PubMed] [Google Scholar]
- Wang L. L., Yu X. J., Zhan S. H., Jia S. J., Tian Z. B., Dong Q. J. (2014). Participation of microbiota in the development of gastric cancer. World J. Gastroenterol. 20, 4948–4952. doi: 10.3748/wjg.v20.i17.4948, PMID: [DOI] [PMC free article] [PubMed] [Google Scholar]
- Weng M. T., Chiu Y. T., Wei P. Y., Chiang C. W., Fang H. L., Wei S. C. (2019). Microbiota and gastrointestinal cancer. J. Formos. Med. Assoc. 118, S32–S41. doi: 10.1016/j.jfma.2019.01.002 [DOI] [PubMed] [Google Scholar]
- Wilson M. R., Jiang Y., Villalta P. W., Stornetta A., Boudreau P. D., Carra A., et al. (2019). The human gut bacterial genotoxin colibactin alkylates DNA. Science 363:eaar7785. doi: 10.1126/science.aar7785, PMID: [DOI] [PMC free article] [PubMed] [Google Scholar]
- Wirbel J., Pyl P. T., Kartal E., Zych K., Kashani A., Milanese A., et al. (2019). Meta-analysis of fecal metagenomes reveals global microbial signatures that are specific for colorectal cancer. Nat. Med. 25, 679–689. doi: 10.1038/s41591-019-0406-6, PMID: [DOI] [PMC free article] [PubMed] [Google Scholar]
- Wu J., Li K., Peng W., Li H., Li Q., Wang X., et al. (2019). Autoinducer-2 of fusobacterium nucleatum promotes macrophage M1 polarization via TNFSF9/IL-1beta signaling. Int. Immunopharmacol. 74:105724. doi: 10.1016/j.intimp.2019.105724, PMID: [DOI] [PubMed] [Google Scholar]
- Wu N., Yang X., Zhang R., Li J., Xiao X., Hu Y., et al. (2013). Dysbiosis signature of fecal microbiota in colorectal cancer patients. Microb. Ecol. 66, 462–470. doi: 10.1007/s00248-013-0245-9, PMID: [DOI] [PubMed] [Google Scholar]
- Wynn T. A., Vannella K. M. (2016). Macrophages in tissue repair, regeneration, and fibrosis. Immunity 44, 450–462. doi: 10.1016/j.immuni.2016.02.015, PMID: [DOI] [PMC free article] [PubMed] [Google Scholar]
- Xu C., Fan L., Lin Y., Shen W., Qi Y., Zhang Y., et al. (2021). Fusobacterium nucleatum promotes colorectal cancer metastasis through miR-1322/CCL20 axis and M2 polarization. Gut Microbes 13:1980347. doi: 10.1080/19490976.2021.1980347, PMID: [DOI] [PMC free article] [PubMed] [Google Scholar]
- Yachida S., Mizutani S., Shiroma H., Shiba S., Nakajima T., Sakamoto T., et al. (2019). Metagenomic and metabolomic analyses reveal distinct stage-specific phenotypes of the gut microbiota in colorectal cancer. Nat. Med. 25, 968–976. doi: 10.1038/s41591-019-0458-7, PMID: [DOI] [PubMed] [Google Scholar]
- Yamamura K., Baba Y., Nakagawa S., Mima K., Miyake K., Nakamura K., et al. (2016). Human microbiome fusobacterium Nucleatum in esophageal cancer tissue is associated with prognosis. Clin. Cancer Res. 22, 5574–5581. doi: 10.1158/1078-0432.CCR-16-1786, PMID: [DOI] [PubMed] [Google Scholar]
- Yan X., Yang M., Liu J., Gao R., Hu J., Li J., et al. (2015). Discovery and validation of potential bacterial biomarkers for lung cancer. Am. J. Cancer Res. 5, 3111–3122. PMID: [PMC free article] [PubMed] [Google Scholar]
- Yang Y., Weng W., Peng J., Hong L., Yang L., Toiyama Y., et al. (2017). Fusobacterium nucleatum increases proliferation of colorectal cancer cells and tumor development in mice by activating toll-like receptor 4 signaling to nuclear factor-kappaB, and up-regulating expression of MicroRNA-21. Gastroenterology 152, 851–866.e24. doi: 10.1053/j.gastro.2016.11.018, PMID: [DOI] [PMC free article] [PubMed] [Google Scholar]
- Yang M., Xu J., Wang Q., Zhang A. Q., Wang K. (2018). An obligatory anaerobic salmonella typhimurium strain redirects M2 macrophages to the M1 phenotype. Oncol. Lett. 15, 3918–3922. doi: 10.3892/ol.2018.7742, PMID: [DOI] [PMC free article] [PubMed] [Google Scholar]
- Yao Y., Li G., Wu J., Zhang X., Wang J. (2015). Inflammatory response of macrophages cultured with helicobacter pylori strains was regulated by miR-155. Int. J. Clin. Exp. Pathol. 8, 4545–4554. PMID: [PMC free article] [PubMed] [Google Scholar]
- Yao R. R., Li J. H., Zhang R., Chen R. X., Wang Y. H. (2018). M2-polarized tumor-associated macrophages facilitated migration and epithelial-mesenchymal transition of HCC cells via the TLR4/STAT3 signaling pathway. World J. Surg. Oncol. 16:9. doi: 10.1186/s12957-018-1312-y, PMID: [DOI] [PMC free article] [PubMed] [Google Scholar]
- Yerneni S. S., Werner S., Azambuja J. H., Ludwig N., Eutsey R., Aggarwal S. D., et al. (2021). Pneumococcal extracellular vesicles modulate host immunity. MBio 12:e0165721. doi: 10.1128/mBio.01657-21, PMID: [DOI] [PMC free article] [PubMed] [Google Scholar]
- Yin Z., Ma T., Huang B., Lin L., Zhou Y., Yan J., et al. (2019). Macrophage-derived exosomal microRNA-501-3p promotes progression of pancreatic ductal adenocarcinoma through the TGFBR3-mediated TGF-beta signaling pathway. J. Exp. Clin. Cancer Res. 38:310. doi: 10.1186/s13046-019-1313-x, PMID: [DOI] [PMC free article] [PubMed] [Google Scholar]
- Yoshikawa M., Yamada S., Sugamata M., Kanauchi O., Morita Y. (2021). Dectin-2 mediates phagocytosis of lactobacillus paracasei KW3110 and IL-10 production by macrophages. Sci. Rep. 11:17737. doi: 10.1038/s41598-021-97087-9, PMID: [DOI] [PMC free article] [PubMed] [Google Scholar]
- Yu G., Gail M. H., Consonni D., Carugno M., Humphrys M., Pesatori A. C., et al. (2016). Characterizing human lung tissue microbiota and its relationship to epidemiological and clinical features. Genome Biol. 17:163. doi: 10.1186/s13059-016-1021-1, PMID: [DOI] [PMC free article] [PubMed] [Google Scholar]
- Yu T., Guo F., Yu Y., Sun T., Ma D., Han J., et al. (2017). Fusobacterium nucleatum promotes Chemoresistance to colorectal cancer by modulating autophagy. Cells 170, 548–563.e16. doi: 10.1016/j.cell.2017.07.008, PMID: [DOI] [PMC free article] [PubMed] [Google Scholar]
- Zarza S. M., Mezouar S., Mege J. L. (2021). From Coxiella burnetii infection to pregnancy complications: key role of the immune response of placental cells. Pathogens 10:627. doi: 10.3390/pathogens10050627, PMID: [DOI] [PMC free article] [PubMed] [Google Scholar]
- Zhang Z., Amorosa L. F., Coyle S. M., Macor M. A., Lubitz S. E., Carson J. L., et al. (2015). Proteolytic cleavage of AMPKalpha and intracellular MMP9 expression are both required for TLR4-mediated mTORC1 activation and HIF-1alpha expression in leukocytes. J. Immunol. 195, 2452–2460. doi: 10.4049/jimmunol.1500944, PMID: [DOI] [PMC free article] [PubMed] [Google Scholar]
- Zhang Y., Li S., Liu Q., Long R., Feng J., Qin H., et al. (2020a). Mycobacterium tuberculosis heat-shock protein 16.3 induces macrophage M2 polarization through CCRL2/CX3CR1. Inflammation 43, 487–506. doi: 10.1007/s10753-019-01132-9, PMID: [DOI] [PMC free article] [PubMed] [Google Scholar]
- Zhang Y., Meng W., Yue P., Li X. (2020b). M2 macrophage-derived extracellular vesicles promote gastric cancer progression via a microRNA-130b-3p/MLL3/GRHL2 signaling cascade. J. Exp. Clin. Cancer Res. 39:134. doi: 10.1186/s13046-020-01626-7, PMID: [DOI] [PMC free article] [PubMed] [Google Scholar] [Retracted]
- Zhao Q., Hu H., Wang W., Peng H., Zhang X. (2015). Genome sequence of Sphingobium yanoikuyae B1, a polycyclic aromatic hydrocarbon-degrading strain. Genome Announc. 3:e01522-14. doi: 10.1128/genomeA.01522-14, PMID: [DOI] [PMC free article] [PubMed] [Google Scholar]
- Zheng P., Chen L., Yuan X., Luo Q., Liu Y., Xie G., et al. (2017). Exosomal transfer of tumor-associated macrophage-derived miR-21 confers cisplatin resistance in gastric cancer cells. J. Exp. Clin. Cancer Res. 36:53. doi: 10.1186/s13046-017-0528-y, PMID: [DOI] [PMC free article] [PubMed] [Google Scholar]
- Zheng J. H., Nguyen V. H., Jiang S. N., Park S. H., Tan W., Hong S. H., et al. (2017). Two-step enhanced cancer immunotherapy with engineered Salmonella typhimurium secreting heterologous flagellin. Sci. Transl. Med. 9:eaak9537. doi: 10.1126/scitranslmed.aak9537, PMID: [DOI] [PubMed] [Google Scholar]
- Zhou J., Li X., Wu X., Zhang T., Zhu Q., Wang X., et al. (2018). Exosomes released from tumor-associated macrophages transfer miRNAs that induce a Treg/Th17 cell imbalance in epithelial ovarian cancer. Cancer Immunol. Res. 6, 1578–1592. doi: 10.1158/2326-6066.CIR-17-0479, PMID: [DOI] [PubMed] [Google Scholar]
- Zhou Z., Peng Y., Wu X., Meng S., Yu W., Zhao J., et al. (2019). CCL18 secreted from M2 macrophages promotes migration and invasion via the PI3K/Akt pathway in gallbladder cancer. Cell. Oncol. (Dordr.) 42, 81–92. doi: 10.1007/s13402-018-0410-8, PMID: [DOI] [PubMed] [Google Scholar]
- Zhou Y., Wang L., Pei F., Ji M., Zhang F., Sun Y., et al. (2019). Patients with LR-HPV infection have a distinct vaginal microbiota in comparison with healthy controls. Front. Cell. Infect. Microbiol. 9:294. doi: 10.3389/fcimb.2019.00294, PMID: [DOI] [PMC free article] [PubMed] [Google Scholar]
- Zhu X., Shen H., Yin X., Long L., Chen X., Feng F., et al. (2017). IL-6R/STAT3/miR-204 feedback loop contributes to cisplatin resistance of epithelial ovarian cancer cells. Oncotarget 8, 39154–39166. doi: 10.18632/oncotarget.16610, PMID: [DOI] [PMC free article] [PubMed] [Google Scholar]
- Zhu Q., Wu X., Tang M., Wu L. (2020). Observation of tumor-associated macrophages expression in gastric cancer and its clinical pathological relationship. Medicine (Baltimore) 99:e19839. doi: 10.1097/MD.0000000000019839, PMID: [DOI] [PMC free article] [PubMed] [Google Scholar]
- Zhu Q., Wu X., Wu Y., Wang X. (2016). Interaction between Treg cells and tumor-associated macrophages in the tumor microenvironment of epithelial ovarian cancer. Oncol. Rep. 36, 3472–3478. doi: 10.3892/or.2016.5136, PMID: [DOI] [PubMed] [Google Scholar]
Associated Data
This section collects any data citations, data availability statements, or supplementary materials included in this article.