Highlights
-
•
HCoV-NL63 being the most prevalent human coronaviruses after HCoV-OC43.
-
•
HCoV-NL63 cause upper and lower respiratory tract infections mainly in young children.
-
•
HCoV-NL63 shares a common host cell virus receptor (ACE2) with SARS-like coronaviruses.
-
•
HCoV-NL63 is a safe surrogate to study disease mechanisms and develop therapeutic interventions against SARS-like-CoV.
Keywords: Human coronavirus NL63, HCoV-NL63, Infection, Replication
Abstract
Human coronavirus NL63 (HCoV-NL63) is spread globally, causing upper and lower respiratory tract infections mainly in young children. HCoV-NL63 shares a host receptor (ACE2) with severe acute respiratory syndrome coronavirus (SARS-CoV) and SARS-CoV-2 but, unlike them, HCoV-NL63 primarily develops into self-limiting mild to moderate respiratory disease. Although with different efficiency, both HCoV-NL63 and SARS-like CoVs infect ciliated respiratory cells using ACE2 as receptor for binding and cell entry. Working with SARS-like CoVs require access to BSL-3 facilities, while HCoV-NL63 research can be performed at BSL-2 laboratories. Thus, HCoV-NL63 could be used as a safer surrogate for comparative studies on receptor dynamics, infectivity and virus replication, disease mechanism, and potential therapeutic interventions against SARS-like CoVs. This prompted us to review the current knowledge on the infection mechanism and replication of HCoV-NL63. Specifically, after a brief overview on the taxonomy, genomic organization and virus structure, this review compiles the current HCoV-NL63-related research in virus entry and replication mechanism, including virus attachment, endocytosis, genome translation, and replication and transcription. Furthermore, we reviewed cumulative knowledge on the susceptibility of different cells to HCoV-NL63 infection in vitro, which is essential for successful virus isolation and propagation, and contribute to address different scientific questions from basic science to the development and assessment of diagnostic tools, and antiviral therapies. Finally, we discussed different antiviral strategies that have been explored to suppress replication of HCoV-NL63, and other related human coronaviruses, by either targeting the virus or enhancing host antiviral mechanisms.
1. Introduction
The ongoing COVID-19 pandemic caused by the severe acute respiratory syndrome coronavirus type 2 (SARS-CoV-2) has resulted in ∼6.7 million deaths globally, raising concerns about coronavirus (CoV) infections (WHO, 2021). Although human coronaviruses (HCoVs) were initially thought to cause mild symptoms, such as with HCoV-229E, or HCoV-OC43, new emerging diseases have evolved into severe forms like the original SARS outbreak in 2003 (Drosten et al., 2003; Ksiazek et al., 2003), Middle East respiratory syndrome (MERS) in 2012 (Zaki et al., 2012), and COVID-19 in 2019 (WHO, 2020). Although less severe, other HCoVs have also been recently discovered, including HCoV-NL63 in 2004 (Fouchier et al., 2004; van der Hoek et al., 2004) and HCoV-HKU1 in 2005 (Woo et al., 2005), HCoV-NL63 being the most prevalent HCoV after HCoV-OC43 (Canducci et al., 2008).
Patients affected with HCoV-NL63, primarily develops into mild to moderate respiratory disease symptomatically featuring fever, cough, and runny nose, or into croup and pneumonia (Bastien et al., 2005; Forster et al., 2004; König et al., 2004; Vabret et al., 2005; van der Hoek et al., 2005). HCoV-NL63, like other CoVs, was thought to be a zoonotic pathogen with an origin in bats (Huynh et al., 2012; Tao et al., 2017). Bats not only work as a reservoir but also as a home for interspecies genetic recombination in the development of new genotypes or new emerging viruses (Al-Khannaq et al., 2016; Tao et al., 2017). These genetic changes cause HCoV-NL63 to have a seasonal/repeated infection pattern every year, although with low frequencies of about 2% and self-limiting respiratory infections (Al-Khannaq et al., 2016; Chiu et al., 2005; Kiyuka et al., 2018; Sipulwa et al., 2016).
HCoV-NL63 shares a common host cell virus receptor (ACE2) with SARS-CoV and SARS-CoV-2 (Hofmann et al., 2005). It is also known that both HCoV-NL63 and SARS-like CoVs infect ciliated respiratory cells, although with different efficiency, using the same virus receptor (Dijkman et al., 2013; Banach et al., 2009; Zhu et al., 2020). Working with SARS-like CoVs require access to a high-containment level biosafety laboratory (BSL-3), while HCoV-NL63 work can be performed in BSL-2 facilities. Therefore, HCoV-NL63 can be used as one of the safe surrogates for comparative studies on viral infectivity and replication capacity, disease mechanisms and therapeutic interventions against the emerged SARS-CoV-2. This prompted us to review the current research towards the mechanism of infection and replication of HCoV-NL63.
2. Taxonomy
HCoV-NL63 belongs to the order Nidovirales, family Coronaviridae, subfamily Orthocoronavirinae, genus Alphacoronavirus, subgenus Setracovirus (ICTV, 2020), a virus order with the largest number of RNA genomes currently known (Fig. 1). HCoV-NL63 is closely related to other alphacoronaviruses, including transmissible gastroenteritis virus (TEGV), porcine epidemic diarrhea virus (PEDV), feline infectious peritonitis virus (FIPV), canine coronavirus (CCoV), and HCoV-229E. The Orthocoronavirinae subfamily also includes 3 important zoonotic viruses, all within the genus Betacoronavirus: SARS-CoV and MERS-CoV, introduced to humans earlier in the 21st century, and the recently discovered SARS-CoV-2.
Fig. 1.
Taxonomy of HCoV-NL63. HCoV-NL63 belongs the order Nidovirales, the largest single-stranded RNA genomes of positive polarity, family Coronaviridae, subfamily Orthocoronavirinae which has four genera: Alphacoronavirus, Betacoronavirus, Deltacoronavirus, and Gammacoronavirus. HCoV-NL63 is included in the subgenus Setracovirus within the Alphacoronavirus genus.
The recombination between different HCoV-NL63 strains or with other CoVs have resulted in different clades (A, B, C) and seven subclades (A1, A2, A3, B, C1, C2, and C3) described so far. The present review includes an updated phylogenetic analysis on the complete gene sequences of HCoV-NL63 (Fig. 2). The internal variability is mainly based on the amino (N)-terminal domain of the spike gene and the nsp2/nsp3 sequence of the ORF1a (Arden et al., 2005; Chiu et al., 2005; Dominguez et al., 2012; Minosse et al., 2008; Moës et al., 2005; Wang et al., 2020), while the nucleotide sequence from 1b gene is rather conserved (Arden et al., 2005). The different genotypes co-circulate as a mixture of variants strains (Chiu et al., 2005; Minosse et al., 2008), with a prevalence of ∼1–3% among symptomatic patients with respiratory disease, with genotype A associated with most of the hospitalizations due to life-threatening acute respiratory disease (Arden et al., 2005; Dominguez et al., 2012; Minosse et al., 2008). The highly prevalent circulation of HCoV-NL63 might result in widespread, newly emerging subgenotypes showing more severe respiratory symptoms (Wang et al., 2020).
Fig. 2.
Phylogenetic analyses based on complete gene sequences of HCoV-NL63. A total of 58 whole genome sequences of HCoV-NL63 were used for phylogenetic analysis using Geneious Prime® 2021.2.2. Genomes were aligned with MAFFT (v7.450) and Neighbor Joining tree was constructed with PhyML (3.3.20180621) with 1000 Bootstrap. Three clades (A, B and C) were identified with using genome NCBI accession DQ445911.1 as root. Subclades were identified with bootstrap value of over 99% where Clades A and C were clustered into 3 subclades each. FigTree phylogenetic drawing tool (V1.4.4) was used to build the tree.
3. Virus isolates for research purposes
Different HCoV-NL63 sequences have been submitted to the GenBank database, but few studies reported virus isolation and propagation in vitro. Van der Hoek. (2004) was the first isolating the virus (“Amsterdam-1 isolate”) from a nasopharyngeal swab of a 7-month-old child in January 2003 in Amsterdam, Netherlands (van der Hoek et al., 2004). One month later, Fouchier (2004) reported the isolation of HCoV-NL63 from a nasal swab obtained from a 8-month-old child in Rotterdam, Netherlands (Fouchier et al., 2004). Later, Lednicky (2013) isolated the virus from a contaminated stock of renal proximal tubule epithelial cells (RPTEC) in 2004 (Lednicky et al., 2013), while Beau De Rochars (2017) isolated the virus from blood samples of four children of Haiti in 2014–2015 (Beau De Rochars et al., 2017). Most recently, in Japan, Komabayashi (2021) isolated the virus from six frozen nasopharyngeal swabs collected between 2012 and 2020 (Komabayashi et al., 2021). Among all the isolates described in the literature, only the Amsterdam-1 isolate originally described (van der Hoek et al., 2004) is broadly available for the research community via BEI Resources Repository (NIAID, NIH: HCoV-NL63, NR-470), a global provider of materials for infectious disease research, which might limit the pathogenic comparison between studies.
Phylogenetic studies from sequenced viral genomes reported that three genotypes (A, B, C) with probable different disease severity (Dominguez et al., 2012; Shao et al., 2022; Wang et al., 2020). The greatest variability was found in the receptor binding domain (RBD) of the S protein, followed by nsp3. Interestingly, a single mutation within the S protein (I507L) was identified in the subgenotype C3, which was associated with enhancing virus entry in cell culture (Wang et al., 2020).
4. Genomic organization
Like other members of the order Nidovirales, HCoV-NL63 is an enveloped single-stranded positive-sense RNA virus (27,553 bases in size) that is capped and polyadenylated (van der Hoek et al., 2004). Following the typical Nidovirus genome organization: 5′-ORF1a-ORF1b-spike (S)-ORF3-envelope (E)-membrane (M)-nucleocapsid (N)-polyadenylated Tail-3′ (Pyrc et al., 2004), the HCoV-NL63 genome includes a large ORF 1ab (two-thirds of the genome) on the 5′ terminal encoding the proteases and most proteins (non-structural proteins, nsp1-nsp16) necessary for controlling gene expression and replication. The ORF 1a overlaps with the 1b gene region, which encodes an RNA-dependent RNA polymerase (van der Hoek et al., 2006). HCoV-NL63 ORF1a/1b contains a putative elaborated pseudoknot structure (ribosomal frameshifting element between ORF 1a and ORF1b) that triggers a –1 ribosomal frameshift to translate the complete 1ab polyprotein (Namy et al., 2006; Pyrc et al., 2004). Likewise, the 3′ terminal contains the regions for structural proteins (one-third of the genome) S, E, M, and N (van der Hoek et al., 2006). The HCoV-NL63 genome encodes for only one accessory N-glycosylated protein known as ORF3, which is expressed from a distinct subgenomic RNA, one of at least 6 distinct mRNAs (Pyrc et al., 2004). The ORF3 gene has a unique nucleotide composition and appears as a U-rich and A-poor region within the genome, indicating a recent transfer event from another viral or cellular origin (Pyrc et al., 2004).
5. Virion structure
Members of family Coronaviridae are roughly spherical with virion size ranging from 120 to 160 nm in diameter, and envelop showing petal shaped surface projections of the S protein decorating the surface of the virion (ICTV, 2020). The viral envelope is supported by the M protein and contains a small amount of the E protein (Liu and Inglis, 1991; Schoeman and Fielding, 2019; Yu et al., 1994). Inside the viral envelope, the genome is bound by the nucleocapsid N protein and forms a helical symmetric nucleocapsid (Masters, 2006).
5.1. S protein
The HCoV-NL63 S protein mediates both cell attachment and membrane fusion; it is the major determinant of host and tissue tropism and may contribute to viral pathogenesis by activating the endoplasmic reticulum (ER) stress response (Chan et al., 2006; Zheng et al., 2006). The S protein is a large type I single-chain transmembrane glycoprotein, which forms a homotrimer with a molecular weight of 128–160 KDa before glycosylation and 150–200 KDa after N-linked glycosylation (Holmes et al., 1981; Rottier et al., 1981). The HCoV-NL63 S protein is a class I fusion protein similar to influenza virus hemagglutinin and the HIV-1 Env glycoprotein gp120/gp41 (Bosch et al., 2003; Pyrc, 2007; Weis et al., 1988; Weissenhorn et al., 1997). As a class I viral fusion protein, the S protein forms homotrimer and is cleaved by host proteases into the N-terminal subunit (S1; bulb) for receptor binding and the carboxyl-terminal subunit (S2; stalk) for membrane fusion. Disulfide bonds modify the exterior ectodomain of the S protein, whereas the conserved cysteine residues in the very short cytosolic tail are modified by palmitoylation (Fung and Liu, 2018). The variable S1 subunit constitutes the receptor-binding domain (RBD) and contains a unique 179-amino-acid domain not present in other CoVs (Li et al., 2007; van der Hoek et al., 2004). The conserved S2 subunit contains a membrane-spanning region (transmembrane and cytoplasmic domains); 2 generally conserved heptad repeat regions (HR1 and HR2) forming a 6-helix bundle that is critical during virus fusion; and the fusion peptide, which is similar to other class I fusion proteins (van der Hoek et al., 2006).
5.2. M protein
The M protein (25–30 KDa) is the most abundant structural protein, embedding in the envelope via 3 transmembrane domains (Masters, 2006). The M protein forms homodimer and interacts with other viral structural proteins to orchestrate the assembly of the CoV particle. In HCoV-NL63 and most other CoVs including the related HCoV-229E, the short N-terminal ectodomain of M protein is modified by N-linked glycosylation (Dea et al., 1990; Hogue and Nayak, 1990; Naskalska et al., 2018; Stern and Sefton, 1982; Utiger et al., 1995). However, in some animal CoVs, like the mouse hepatitis virus (MHV) and the bovine coronavirus (BCoV) or in HCoV-OC43, this ectodomain is modified by O-linked glycosylation (Deregt et al., 1987; Holmes et al., 1981; Lapps et al., 1987; Mounir and Talbot, 1992). The M protein may also contribute to viral pathogenesis. For example, the retinoic acid-inducible gene 1 (RIG-I)-dependent induction of type I interferon (IFN) is observed in cells overexpressing the M protein of SARS-CoV but not HCoV-HKU1 (Siu et al., 2014b).
5.3. E protein
The E protein is a small (8–12 KDa) integral membrane protein found in low amounts in the virion (Corse and Machamer, 2000; Liu and Inglis, 1991). Current evidence on avian infectious bronchitis coronavirus (IBV) strongly suggests that the E protein adopts an N-ecto/C-endo topology with one transmembrane domain (Corse and Machamer, 2000; Yuan et al., 2006). In SARS-CoV, the E protein is modified by N-linked glycosylation, and 3 cysteine residues in its endodomain are modified by palmitoylation (Liao et al., 2006; Yuan et al., 2006). Additionally, different studies have shown that the E protein of both SARS-CoV and IBV forms homopentamers with ion channel (IC) activity (viroporins) (Nieto-Torres et al., 2014; Wilson et al., 2004), where the IC activity could modulate the process of virion release and contribute to viral pathogenesis. Although the deletion of the E gene is not lethal for SARS-CoV, the resultant mutant virus was severely defective in virion morphogenesis and attenuated in vivo, compared with the wild-type virus (DeDiego et al., 2007).
5.4. N protein
The N protein is a multidomain, multifunctional protein essential for viral replication and a number of cellular processes, including RNA packaging, viral genome replication, and evasion of the immune response (Lu et al., 2011; Szelazek et al., 2017; Zhou et al., 2008). The N-terminal domain is responsible for nucleic acid binding, and the C-terminal domain is involved in protein oligomerization. Interestingly, as with SARS-CoV, the HCoV-NL63 N protein is not translocated in the nucleus of infected cells (Zuwala et al., 2015).
The N protein (43–50 KDa) forms a dimer and binds to the genomic RNA in a beads-on-a-string fashion, forming a helically symmetric nucleocapsid (Chang et al., 2006; Fan et al., 2005; Tan et al., 2006). As with other CoVs, the sgRNA coding the HCoV-NL63 N protein is the most abundant among the different viral proteins (Pyrc et al., 2004). In SARS-CoV and other CoVs, the N protein is phosphorylated by cellular kinases such as glycogen synthase kinase 3 (GSK3) and ataxia-telangiectasia mutated and Rad3-related (ATR) kinase (Fang et al., 2013; Wu et al., 2009a). Other modifications such as SUMOylation, ADP-ribosylation, and proteolytic cleavage by caspases have also been demonstrated in the N proteins of some CoVs (Eléouët et al., 2000; Grunewald et al., 2018; Li et al., 2005). Moreover, the N protein of some CoVs (i.e., IBV, SARS-CoV) can affect cell cycle progression, cytoskeleton organization, gene transcription, and apoptosis induction in infected cells (Harrison et al., 2007; Surjit et al., 2006, 2004; Zhao et al., 2006; Zhou et al., 2008). Contrastingly, no significant alteration of cell cycle progression has been reported in HCoV-NL63 (Zuwala et al., 2015).
Multiple crystallization attempts of the full-length HCoV-NL63 N protein have been unsuccessful because the rigid β-sheets within this region restrict its plasticity compared to those of the interrupted β-structures in SARS-CoV and MHV (Szelazek et al., 2017). The significance of the aforementioned differences for nucleic acid binding remains unknown. The HCoV-NL63 nucleoprotein forms oligomers via its C-terminal domain (CTD) and binds nucleic acids via its N-terminal domain (NTD) (Zuwala et al., 2015). The CTD exists as a dimer in solution and tends to aggregate in solution, which may reflect further steps of nucleocapsid assembly (Zuwala et al., 2015). Nevertheless, in the case of the HCoV-NL63 CTD, interaction is weak if present at all (Zuwala et al., 2015). The HCoV-NL63 NTD contains a large, positively charged groove implicated in RNA binding. Each monomer within the structure coordinates several sulfate ions derived from the crystallization buffer. Sulfate ions chemically resemble phosphate moieties present within the structure of RNA and are therefore likely to be located at the same binding sites (Szelazek et al., 2017). HCoV-NL63 NTD has little or no specificity for particular sequences, or even the type of nucleic acid (i.e., RNA vs. DNA) (Zuwala et al., 2015). Interestingly, in the case of the swine alphacoronavirus TGEV, the RNA-binding ability of the N protein is important, not only for genome encapsidation but also for discontinuous transcription and polymerase template switching (Mateos-Gómez et al., 2011; Zúñiga et al., 2010).
5.5. ORF3 accessory protein
Poorly characterized overall, the N-glycosylated ORF3 protein has been detected within the ER/Golgi intermediate secretory compartment (ERGIC), where CoV assembly and budding occur. HCoV-NL63 ORF3 is incorporated into virions colocalized with E and M proteins in the same compartment and facing towards the extracellular space. This further suggests an important function, particularly in virus assembly and/or budding from infected cells (Müller et al., 2010).
6. Virus entry and replication mechanism
6.1. Virus attachment
The airway epithelium, particularly ciliated and secretory cells of the nasal, bronchial, and alveolar epithelium, constitutes the major target for most known CoVs, including HCoV-NL63 (Dijkman et al., 2013; Sungnak et al., 2020; Ziegler et al., 2020). Respiratory epithelial cells abundantly express angiotensin-converting enzyme 2 (ACE2), the host receptor for HCoV-NL63 and SARS-like CoVs binding and cell entry (Hofmann et al., 2005; Jia et al., 2005; Sims et al., 2005) (Fig. 3). Genome-wide CRIPSR screen in Calu-3 and Caco-2 cells revealed that adaptin AP1G1 and flippase ATP8B1 are general CoV co-factors for HCoV-NL63, HCoV-229E, and SARS-CoV-2. An additional co-factors more specific for HCoV-NL63 was the histone acetyltransferase EP300 regulating ACE2 expression (Rebendenne et al., 2021).
Fig. 3.
Life cycle of HCoV-NL63. a) Virion structure consists of spike (S), membrane (M), envelope (E), nucleocapsid (N), and open reading frame (ORF) 3 protein, with (+) single-stranded RNA genome. b) (1) The virion interacts with the attachment factor heparan sulfate proteoglycans (HSPG) and DC-SIGN to enhance binding of the S protein with the viral receptor ACE2 on surface of target cells. (2) Virus-ACE2 interaction triggers receptor mediated endocytosis, with acidification in the endosome. (3) Spike protein priming is carried out with TMPRSS2 in the early endosome or cathepsins in the late endosome, and viral membranes fuse with the endosome to release the viral genome into the cytoplasm. (4) Nucleocapsid protein is degraded to release the uncoated viral genome ready for translation with the ribosomes to produce the two viral polyproteins (pp) 1a and 1ab through ribosome −1 frameshifting. (5) Viral polyproteins induce autoproteolytically cleavage with their proteases nsp3 and nsp5. (6) Membrane-spanning non-structural proteins (nsp) nsp3 and nsp4 mediates the zippering of the rough endoplasmic reticulum (RER) membrane to generate double membrane structures (DMS). (7) Virus genome and nsps initiates the viral replication and transcription within the DMS, releasing the sgRNA outside to translate the viral structural proteins. (8) N protein accumulated in inclusion bodies (IB), while other structural proteins are processed into the ERGIC. Viral genome release from DMS is coated with N protein and directed to ERGIC and Golgi where new virions are assembled and packaged into vesicles. (9) Virions can be released either via exocytosis or through cell lysis.
The HCoV-NL63 S protein shares more than 50% of amino acid (aa) identity with the HCoV-229E, and both viruses belong to the same genus, but they use different viral receptors (Pöhlmann et al., 2006). Conversely, HCoV-NL63 S protein shares only 25% and 17.1% of aa sequence identity with SARS-CoV and SARS-CoV-2, respectively. However, these 3 viruses use ACE2 as a host receptor with different binding affinities (Brielle et al., 2020; Smith et al., 2006). The RBD of the HCoV-NL63 S-protein has 3 non-linear binding motifs located at the C-terminus S1 subunit (aa 476–616), and these in conjunction with distinct aa from the central regions of the CTD of S1 interact with ACE2 (Hofmann et al., 2006; Lin et al., 2008; Pöhlmann et al., 2006). These regions largely overlap based on sequence homology and show comparable binding affinities with SARS-CoV RBDs (Li et al., 2007; Lin et al., 2008), probably because of the linear and monomeric nature of both RBDs, indicating that in the full-length S-protein of HCoV-NL63, the non-linear RBD has weaker interaction than linear RBD from SARS-CoV (Mathewson et al., 2008; Wong et al., 2004; Wu et al., 2011). Initial proteolytic studies of the S2 fusion core identified an α-helical domain consisting of a trimer of the HR segments N57 and C42. The resolved crystal structure of this trimer complex shows distinctive high-affinity conformations of interacting cross-sectional layers of 6 helices. It has been suggested that the larger HR regions of the alphacoronavirus may be required to prime the S proteins for the fusion-activating conformational changes during entry of the virus (Zheng et al., 2006).
Variations in aa composition and glycosylation are crucial for CoV infectivity and interaction with the host immune system. In HCoV-NL63, a deletion of 18 aa from the C-terminus of the S protein, corresponding to an intracellular retention signal, has been shown to enhance (1.5 times) its accumulation and facilitating virus entry. Further deletion of residue 29 has also been shown to enhance the amount of S protein on both the cell surface and virion yet reducing virus entry by 25%, suggesting that residues 19–29 may contribute to membrane fusion. A 29 aa-deletion mutant had a defect in anchoring on the plasma membrane, which led to a dramatic decrease of S protein in virion and virus entry; a total of 15 residues (Y498, V499, V531, G534, G537, D538, S540, G575, S576, E582, W585, Y590, T591, V593, and G594) within the RBD were necessary for receptor binding and virus entry (Lin et al., 2011). They probably form 3 receptor-binding motifs, being the 3rd motif highly conserved between HCoV-NL63 and SARS-CoV (Lin et al., 2011; Wu et al., 2009b). Ren et al. (2022) reported that ACE2 polymorphisms could impact susceptibility to infection by SARS-CoV-2, SARS-CoV, and HCoV-NL63. For example, ACE2 variants D355N and G352V restrict the S protein-ACE2 interaction and limit infection, where HCoV-NL63 S protein binds to ACE2 less efficiently (Ren et al., 2022).
Furthermore, the C-terminal region (aa 153–226) of the HCoV-NL63 M protein is responsible for attaching heparan sulfate proteoglycans to target cells (Milewska et al., 2014; Naskalska et al., 2019), and C-type lectin receptors like DC-SIGN could work as co-receptors (Hofmann et al., 2006). Most recently, genome-wide CRISPR screens in Vero-E6 identified HMGB1 as a novel regulator of ACE2 involved in virus entry of HCoV-NL63, SARS-CoV, and SARS-CoV-2. This nuclear protein translocates to the cytoplasm under cellular stress conditions (Wei et al., 2021).
6.2. Endocytosis
After HCoV-NL63 attachment to host cell receptors, virions undergo clathrin-mediated endocytosis, which is pH-sensitive and requires acidification of the endosome, subsequent severance by dynamin, leading to viral genome release (Hofmann et al., 2005; Huang et al., 2006; Milewska et al., 2018b) (Fig. 3), similar to what has been described for HCoV-229E, and SARS-CoV (Blau and Holmes, 2001; Hofmann et al., 2004; Simmons et al., 2004). Whether HCoV-NL63 enters cells through early endosomes using cell surface proteases (e.g., TMPRSS2, TMRSS11D, ADAM17) or late endosomes using lysosomal proteases (cathepsins) remains unclear. Different studies have suggested that clinical isolates of HCoV-229E, HCoV-OC43, and HCoV-HKU1 prefer cell surface proteases to cathepsins. Conversely, lab-adapted viruses use cathepsins for cell entry (Bertram et al., 2013, 2011; Shirato et al., 2017, 2018), which could explain the low infectivity of lab-adapted viruses in human airway epithelium (HAE) cell cultures. It is noteworthy that proteases like proprotein convertase (e.g., furin, PACE4, PC4, PC5, PC7), which activates MERS-CoV, and SARS-CoV-2 but not SARS-CoV (Hoffmann et al., 2020a; Millet and Whittaker, 2014; Shang et al., 2020), are less likely to exert an influence on HCoV-NL63 entry, given that the S protein lacks a furin motif (arginine-rich residues) to be activated (Pyrc et al., 2007). The role of other non-membrane-associated proteases like elastase or coagulation factor Xa, which enhance SARS-CoV infectivity through cleavage of the S protein (Du et al., 2007; Matsuyama et al., 2005), has not been investigated in HCoV-NL63 infections.
Generally, once the virions are internalized into endosomes, the interaction between viral N protein and cellular host proteins is required to release the viral genome from its capsid, which has not yet been demonstrated for HCoV-NL63 (Fig. 3). It has been proposed for HCoV-229E and IBV that valosin-containing protein (p97) would help in the maturation of early endosomes and decomposition of the nucleocapsid (Wong et al., 2015). The mechanism of the subsequent transduction response after ACE2 engagement in relation to HCoV-NL63 pathogenesis has not been investigated.
6.3. Genome translation
Like other CoVs, the HCoV-NL63 non-segmented positive RNA genome cap binds ribosomes to initiate the translation of ORF1a and produce polyprotein pp1a (replicase 1a), which contains nsp1 to nsp11 (Fig. 3). At the end of the nsp10 in ORF1a, it is localized in an RNA pseudoknot that enables ribosomes to undergo a –1 frameshifting to generate replicase 1ab, which contains nsp1 to nsp16 (Pyrc et al., 2005). The exact frameshifting efficiency remains unknown for many CoVs, including HCoV-NL63. However, some CoVs like MHV have shown 48–69% efficiency (Irigoyen et al., 2016) or 45–70% efficiency for SARS-CoV-2 (Finkel et al., 2021).
Following translation, the HCoV-NL63 polyprotein contains two nsp with proteolytic domains: nsp3 and nsp5 (Pyrc et al., 2005). These proteases autocatalytically cleavage the polyproteins into 16 nsp (Pyrc et al., 2004). The nsp3 of HCoV-NL63, HCoV-229E, HCoV-OC43, and HCoV-HKU1 contains two proteolytic domains, known as papain-like protease 1 (PLP1pro), which autocleavage the polyprotein at the nsp1/nsp2 site to release nsp1, and PLP2pro, that cleaves polyproteins at the nsp2/nsp3 and nsp3/nsp4 sites to release nsp2 and nsp3, respectively (Chen et al., 2007). Moreover, although less efficient than PLP1, PLP2 can also autocleavage the polyprotein at the nsp1/nsp2 site (Lim and Liu, 1998; Ziebuhr et al., 2007). Other CoVs like MERS-CoV or SARS-CoV contain only one proteolytic domain (PLpro) within the nsp3 (Ziebuhr et al., 2000). The second protease nsp5, known as the main protease (Mpro) or 3-Chymotrypsin-like protease (3CLpro), is a highly conserved endopeptidase with a serine‑like domain responsible for cleaving and releasing the remaining 13 non-structural proteins (Piñón et al., 1999; Pyrc et al., 2005; Ziebuhr et al., 2000). The HCoV-NL63 Mpro is active when forming homodimers containing 3 domains each, where the catalytic site (Cys144 and His 41) is located in a cleft formed between Domain I and Domain II, while Domain III allows the homodimer formation (Wang et al., 2016). Further analysis of substrate specificities of Mpro of HCoV-NL63 found histidine at position P1 instead of glutamine present in other CoVs (Wang et al., 2016). Overall, CoV 3C-like protease substrate profiling has identified glutamine preference for the P1 position, leucine at the P2 position, basic residues at the P3 position, small hydrophobic residues at the P4 position, and small residues at the P1′ and P2′ positions (Chuck et al., 2011).
A genome-wide CRISPR knockout screen in Huh-7.5 found TMEM41B as a pan-CoV host factor required for a post-entry step in the CoV life cycle. This poorly studied ER transmembrane protein was the only gene implicated in autophagy. The specific host factors of HCoV-NL63 rely on a core set of host chromatin regulators like EP300, KMD6A, KMT2D, MED23, MED24, MEN1, PAXIP1, and SETDB1, which were proposed to reprogram the host transcriptome for successful infection (Schneider et al., 2021).
6.4. Replication compartments
Similar to other CoVs like IBV, MHC, MERS-CoV and SARS-CoV, HCoV-NL63 generates an ER-derived network such as double-membrane vesicles (DMVs), convoluted membranes (CM), and double-membrane spherules (DMSs) (Knoops et al., 2008; Orenstein et al., 2008; Oudshoorn et al., 2017; Snijder et al., 2020) (Fig. 3). Within these double-membrane structures is where replication and transcription occur to avoid innate immune recognition (Knoops et al., 2008; Snijder et al., 2020). Three membrane-associated non-structural proteins, i.e., nsp3, nsp4, and nsp6, that together induce the formation of the double-membrane compartments (Hagemeijer et al., 2014). The non-structural proteins nsp3 and nsp4 recruit nsp6 to start the process of anchoring more nsps, thus creating the replication-transcription complex (RTC) within the double-membrane compartments (Kanjanahaluethai et al., 2007; Oostra et al., 2008). Host molecules like Golgi-specific brefeldin A-resistance guanine nucleotide exchange factor 1 (GBF1) and ADP ribosylation factor 1 (ARF1) are also required for the double-membrane formation for MHV virion (Verheije et al., 2008).
Nsp3 is a multifunctional protein involved in viral replication (Lei et al., 2018; Neuman et al., 2008). Among its eight domains, the ubiquitin-like domain (Ubl1) facilitates RNA synthesis through binding nsp3 and RTC to the viral genome (Serrano et al., 2007) via a serine‑ and arginine-rich linker region of the residual N protein (Hurst et al., 2013; Keane and Giedroc, 2013), and promotes the initiation complex (Verheije et al., 2010; Zúñiga et al., 2007).
6.5. Replication and transcription
As in IBV, MERS-CoV, and SARS-CoV infection, HCoV-NL63 RNA synthesis occurs within replication compartments (Snijder et al., 2020), and the replication is mediated by the common negative-strand intermediates to make either viral genome for new virions and sgRNAs for coding structural proteins through a continuous or discontinuous strategy, respectively (Pyrc et al., 2004) (Fig. 3). Both processes require the formation of the RTC assembled by the recruitment of many nsps and then binding to the 3′-end of the viral genome within the replication compartments (Züst et al., 2008). The precise mechanism of how the RTC switches to generate a viral genome or sgRNAs in HCoV-NL63 replication has not yet been elucidated. However, a proposed model in TGEV has suggested that N protein facilitates sgRNAs transcription (Zúñiga et al., 2010) and that the viral genome synthesis in MHV requires phosphorylation of the viral nucleocapsid by the host GSK-3 with the help of a helicase (Wu et al., 2014).
The generation of sgRNAs in alphacoronavirus is initiated with the formation of short RNA primers (∼6 nucleotides) by nsp7 and nsp8, which are essential co-factors for the viral RNA polymerase (nsp12) (Xiao et al., 2012). To maintain fidelity on CoV genomes like SARS-CoV, the exoribonuclease nsp14 functions as a proofreading enzyme (Minskaia et al., 2006), highly enhanced by nsp10 (Bouvet et al., 2012; Ma et al., 2015). Together, these proteins are part of the RTC, which recognizes specific sequences on the viral RNA to conduct replication or transcription. The RTC recognizes the anti-leader sequence at the 3′-end and starts synthesizing the negative-strand intermediates but pauses at transcription regulatory sequences (TRSs) on the genome (leader-TRS) for making templates for new genomes, or between them (body-TRS), to generate templates for sgRNAs (Pyrc et al., 2007). These negative-strand intermediates are synthesized at very low amounts, at around only 1% of the positive strands like in TGEV (Sethna et al., 1991), and they contain both polyuridylate and anti-leader sequences. Additionally, nsp9 might stabilize newly forming RNA strands to avoid their degradation (Egloff et al., 2004; Sutton et al., 2004).
Although negative strands produce some double-strand intermediates, nsp13 has been found to have C-terminal superfamily-1 helicase domains in HCoV-229E to continue transcription (Seybert et al., 2000). Once positive-strands are formed in SARS-CoV, they undergo 5′ capping through RNA phosphorylation with nsp13 (Ivanov and Ziebuhr, 2004) and follow methylation with nsp14 and nsp16 in association with nsp10 (Bouvet et al., 2010, 2012; Chen et al., 2011; Decroly et al., 2011). Polyadenylation is also carried out at the 3′ end through the adenylyl transferase activity of nsp8 as found in HCoV-229E (Tvarogová et al., 2019).
As for MHV and SARS-CoV-2, once newly formed HCoV-NL63 RNA strands are synthesized, nsp3 mediates the formation of a molecular pore in -infected cells (Wolff et al., 2020). Viral pores allow controlled release of viral RNA transcripts from replication compartments to the cytosol for protein translation. Finally, the translation of the viral proteins is initiated, and the HCoV-NL63 S protein is incorporated into virions through microtubule interaction near the nucleus (Rüdiger et al., 2016), while the RNA-binding N protein exhibits a tendency to aggregate into the cytoplasm, suggesting virion assembly (Zuwala et al., 2015) (Fig. 3).
6.5.1. Cell susceptibility to infection in vitro
Several cell lines derived from the kidneys, lungs, or intestines, including LLC-MK2, Vero E6, Vero B4, Vero FM, MRC-5, Caco-2, tertiary monkey kidney cells, renal proximal tubule epithelial cells, human renal epithelial cells, and human airway epithelial cells (HAE), are permissive of HCoV-NL63 growth (Fouchier et al., 2004; Herzog et al., 2008; Komabayashi et al., 2021; Lednicky et al., 2013; Schildgen et al., 2006; van der Hoek et al., 2004) (Table 1). While the expression of ACE2 receptors in these cells correlates with the permissiveness of HCoV-NL63 infection (Milewska et al., 2014; Smith et al., 2006), the soluble form of ACE2 might abrogate infection (Hofmann et al., 2005; Jia et al., 2009), constituting a potential non-functional truncated form of ACE2 (Onabajo et al., 2020).
Table 1.
Susceptible cells to HCoV-NL63.
| Cell type | Description | Purpose | Method of evaluation | Refs. |
|---|---|---|---|---|
| tMK | Monkey Kidney epithelial, tertiary Monkey kidney cells, Macaca fascicularis | Isolation | CPEa, EMb | Fouchier, 2004; van der Hoek, 2004 |
| Vero | Monkey Kidney epithelial, Cercopithecus aethiops | Propagation | CPE, EM, RT-qPCRc | Fouchier, 2004 |
| LLC-MK2 | Monkey Kidney epithelial, Macaca mulatta | Propagation | CPE, EM, IFAd, RT-qPCR | van der Hoek, 2004; Hofmann, 2005; Schildgen, 2006; Banach, 2009 |
| Vero E6 | Monkey Kidney epithelial, Cercopithecus aethiops | Propagation | CPE, RT-qPCR | Lednicky, 2013; Herzog, 2008 |
| Vero B4 | Monkey Kidney epithelial, Cercopithecus sabaeus | Propagation | CPE, RT-qPCR | Schildgen, 2006 |
| Vero FM | Monkey Kidney epithelial | Propagation | CPE, RT-qPCR | Herzog, 2008 |
| Caco-2 | Human Colon epithelial, Homo sapiens | Propagation | CPE, RT-qPCR | Herzog, 2008 |
| Huh-7 | Human Liver epithelial, Homo sapiens | Propagation | CPE, RT-qPCR | Hofmann, 2005 |
| WI-38 | Human Lung fibroblast, Homo sapiens | Propagation | CPE | Lednicky, 2013 |
| RPTEC | Human Kidney epithelial, Homo sapiens | Propagation | CPE, EM, RT-qPCR | Lednicky, 2013 |
| HRE | Human Kidney epithelial, Homo sapiens | Propagation | CPE, RT-qPCR | Lednicky, 2013 |
| NHBE | Human Lung epithelial, Normal Human Bronchial Epithelial cells, Homo sapiens | Isolation/ Propagation | CPE, EM, IFA, RT-qPCR | Dijkman, 2013; Banach, 2009 |
Cytopathic effect (CPE) is characterized with rounded cells and cytoplasmic stranding, clump and detachment of dead cells. The first signs of CPE mostly appeared between 48 - 72 hpi with variations according to the titer of the viral inoculum.b Electron microscopy (EM).c Reverse Transcriptase quantitative PCR.d Immunofluorescence assay.
HCoV-NL63 is hardly more isolated than other CoVs with variable replication kinetics (Dijkman et al., 2013), and mild cytopathic effect (CPE) if present, which can be visualized throughout the cell culture, with a refractive, rounding appearance and vacuolization, followed by detachment (Fouchier et al., 2004; Herzog et al., 2008; Lednicky et al., 2013; Milewska et al., 2014; Orenstein et al., 2008; Schildgen et al., 2006; Smith et al., 2006; van der Hoek et al., 2004). In these studies, the first signs of CPE start between 24–72 h post-inoculation (hpi) and peak between 72 and 96 hpi, with around 25 - 50% of infected cells and an estimated yield of ∼105 TCID50/mL. Trypsin treatment showed no enhancement of the infection, and infected freeze-thawed cells were thought to have less infectivity than supernatant alone (Lednicky et al., 2013).
Differentiated human bronchial epithelial cell cultures of HCoV-NL63 revealed a polarized apical release of new virions (Dijkman et al., 2013), with viral proteins nsp3 and nsp4 localized in discrete foci of ciliated cells showing punctuated and perinuclear distribution (Chen et al., 2007; Banach et al., 2009), but also found at the base of the cilia. Immature virions are packaged in vesicles near the rough ER (RER), associated with double-membrane vesicles or areas of granular nucleocapsid material (Lednicky et al., 2013). Assembly seems to occur through sequential budding of virions from a nucleocapsid lined membrane, a pinching off, and then envelope acquisition, with further accumulation of mature virion-laden vesicles into RER or Golgi cisternae that might rupture and release virions into the cytosol, resulting in cell death through either necrosis or apoptosis (Orenstein et al., 2008; Banach et al., 2009).
6.5.2. Infection models in vivo
Precedents of in vivo infection models for HCoV-NL63 are scarce. In a previous study, Bently et. al. (2021) reported the use of K18-hACE2 mice. The virus was initially propagated in vitro in Caco-2 cells and inoculated intranasally in 8–10 weeks-old mice. The inoculation triggered a classical acute inflammatory response in lungs, and active viral propagation that reached plateau levels at 4 days post-inoculation. Moreover, a more recent study reported the use of immunocompromised (STAT1-/-) or sensitized (IFNAR-/-) mice transduced with the viral receptor hACE2 to generate an infection model for HCoV-NL63 (Liu et al., 2023). This study described that BALB/c mice were more susceptible to HCoV-NL63 infection than C57BL/6 mice, and both models were capable of produce specific CD8+ T cells against the virus N protein.
7. Virus-host interactions: induction and evasion of host innate immunity
The structural analysis of HCoV-NL63 S protein revealed that the RBD is buried or masked by glycosylation in a native trimer conformation, which might protect the virus from host immune recognition (Walls et al., 2016). However, when recognized by antigen-presenting cells, HCoV-NL63 can trigger a strong cytokine and chemokine mediated immune response, which self-limits the spread of the infection (Lister, 2009).
The S protein of HCoV-OC43, HCoV-HKU1, or SARS-CoV triggers ER stress, and activates unfolded protein response (UPR) in virus-infected cells (Favreau et al., 2009; Siu et al., 2014a). This signaling pathway eventually leads to apoptosis to limit viral replication (DeDiego et al., 2011; Favreau et al., 2009), although not yet studied in HCoV-NL63 (Chan et al., 2006). Apoptosis is also mediated by MAP kinases during CoV infection with HCoV-229E, MERS-CoV, and SARS-CoV (Kono et al., 2008; Mizutani et al., 2005; Yeung et al., 2016).
The role of autophagy in CoV replication is not clear since virus can manipulate cell machinery for DMV formations (Reggiori et al., 2010). Infected cells with TGEV activates autophagy cells to protect from oxidative stress and avoid apoptosis (Zhu et al., 2016), but promotes viral replication in certain cases like in PEDV infection (Guo et al., 2017). The activation of autophagy depends on the activation of the microtubule-associated protein 1A/1B-light chain 3 (LC3) by the HCoV-NL63 PLP2 transmembrane protein (TM), independently of the catalytic site (Chen et al., 2014). Although the catalytic site has a robust deubiquitinating action on STING, RIG-I, TBK1, and IRF-3 to avoid IFN signaling activation, it is not required to antagonize the STING-mediated activation of IRF-3 (Chen et al., 2007; Clementz et al., 2010; Nicholson et al., 2008; Sun et al., 2012). PLP2-TM interacts with Beclin1 to inhibit STING and impair the autophagosomes' maturation through interference with lysosome fusion (Chen et al., 2014). HCoV-NL63 PLP2-TM also promotes IFN inhibition through ubiquitination of the cellular oncoprotein MDM2. The stabilized form of MDM2 induces proteasomal degradation of p53, which is responsible for activating IRF7 (Yuan et al., 2015).
Host protein shutdown mediated by nsp1 is another strategy commonly used by different HCoVs, including MERS-CoV, SARS-CoV, HCoV-229E, and HCoV-NL63 during replication and propagation in their host cells (Jauregui et al., 2013; Krähling et al., 2009; Lokugamage et al., 2015; Narayanan et al., 2008). HCoV-NL63 (or HCoV-229E) nsp1 interacts with the host ribosomal 40S subunit, blocking mRNA binding, inhibiting cell protein synthesis (Wang et al., 2010). Despite the fact that IRF-3 phosphorylation is not affected, interferon signaling is inhibited transcriptionally but mainly translationally. Furthermore, nsp15 (EndoU), although it has not yet been studied in HCoV-NL63, is conserved among CoVs (e.g., MHV and PEDV) and shows an endoribonuclease activity that excises the 5′ poly-uridine sequence from negative RNA strands, avoiding host MDA5 recognition and associated interferon response (Hackbart et al., 2020). The innate immune evasion also occurs through Mac1 domain within the nsp3 of MHV, HCoV-229E, or SARS-CoV countering IFN mediated responses such as ADP-ribosylation, and facilitating viral replication (Fehr et al., 2015; Grunewald et al., 2019; Li et al., 2016).
8. Antiviral strategies
Effective antiviral treatment is required when HCoV-NL63-infected patients undergo clinical complications. Despite the fact that intravenous administration of immunoglobulins seemed to be protective (Pyrc et al., 2006), they might not be available for high numbers of patients during outbreaks. Thus, different strategies have been proposed to suppress HCoV-NL63 replication by either targeting the virus or enhancing host antiviral mechanisms (Table 2).
Table 2.
Antiviral agents against HCoV-NL63.
| Antiviral | Target | Mechanism | Refs. |
|---|---|---|---|
| Oligopeptides derived from RBD | ACE2 | Competitive binding | Struck et al., 2012 |
| Chitosan derivatives, Thymoquinone | ACE2 | Receptor blocking | Milewska et al., 2013, 2016; Xu et al., 2021 |
| Brilacidin | HSPGs | Entry inhibition | Hu et al., 2022 |
| Anti-sense oligonucleotides (ASO) | ACE2 | Receptor downregulation or modulation | Rehman et al., 2020 |
| Iminosugars | ER glycan processing | ER glucosidase inhibition | Zhao et al., 2015 |
| Oligopeptides derived from HR2 | HR1 | Competitive binding | Pyrc et al., 2006 |
| Camostat | TMPRSS2 | Protease inhibition | Kawase et al., 2012 |
| Tryptanthrin | PLP2pro | Protease inhibition | Tsai et al., 2020 |
| Caffeic acid | ACE2 | Competitive binding | Weng et al., 2019 |
| Michael aceptor inhibitor N3 | Nsp5 | Protease inhibition | Yang et al., 2005 |
| Pyrimidine nucleoside analogue | Nsp12 | Replication inhibition | Pyrc et al., 2006 |
| Fleximer 2 | Nsp12 | Replication inhibition | Peters et al., 2015 |
| IFITM proteins | Endosome | Virus entry inhibition | Wrensch et al., 2014 |
| Immunophilins inhibitors | Calcineurin | Cellular immunosupression | Pfefferle et al., 2011; Carbajo-Lozoya et al., 2014, 2012 |
| APOBEC3 | Cytidine | Genome editing | Milewska et al., 2018 |
| Boceprevir, Calpain inhibitor II, XII, and GC-376, Dyphylline, Naphthoquine, AT7519, calpeptin, ifenprodil, MUT056399, pelitinib, tolperisone, and triglycidyl isocyanurate, Shikonin | Nsp5 | Protease inhibition | Hu et al., 2021; Song et al., 2022; Wang et al., 2022b; Günther et al., 2021; Zhang et al., 2022 |
| Stenoparib | Poly (ADP-ribose) polymerase | Virus entry inhibition | Stone et al., 2021 |
8.1. Receptor blockers
The similarities between RBD of HCoV-NL63 and SARS-CoV have revealed a cross-inhibition of the ACE2 transduction by the S protein (Wu et al., 2011). For instance, in one study, a linear peptide (YKYRYL) derived from the SARS-CoV RBD was able to block the interaction of HCoV-NL63 S protein with the ACE2 receptor, being the KYR motif critical for binding (Struck et al., 2012). Other studies have demonstrated that the interaction of HCoV-NL63 S protein and ACE2 could be prevented by using N-(2-hydroxypropyl)−3-trimethylammonium chitosan chloride (HTCC), a chitosan derivative with antisense oligonucleotides targeting residues of ACE2 responsible for its interaction with RBD (Milewska et al., 2013, 2016) or with phenolic compounds like caffeic acid from plant extract (Weng et al., 2019). The phytochemical compound Thymoquinone from Nigella sativa binds to ACE2 to block the entry of HCoV-NL63, SARS-CoV, and SARS-CoV-2 (Xu et al., 2021). In another example, methylene blue inhibits the interaction between SARS-CoV-2 and HCoV-NL63 spike protein and ACE2, IL-2R, TNFR, or CD40, including delta (B.1.617.2) variant through entry and replication inhibition (Chuang et al., 2022).
The use of splice-switching antisense oligonucleotides modulates alternative isoforms of ACE2 that limit infection (Rehman and Tabish, 2020). Alternately, the inhibition of ER glucosidases with iminosugars impairs the N-glycosylation and transduction of ACE2, but it also affects ACE2 expression and virion production (Zhao et al., 2015).
The heptad repeats (HR1 and HR2) of the S protein are critical during the fusion step of virus entry in conjunction with host proteases like TMPRSS2 for S protein priming. Therefore, they make attractive targets for the development and assessment of entry inhibitors. Heptad repeats' (HRs') interaction with the spike protein is also required to promote viral membrane fusion. Heptad repeat-derived peptides from HR2 are designed to block HR interaction (Pyrc et al., 2006), while the selective cysteine protease inhibitor-camostats antagonize TMPRSS2 (Hoffmann et al., 2020b; Kawase et al., 2012).
Host defense peptides (HDPs) are typically 12- 50 aa length expressed in neutrophils and mucosa, and serve as the first line of defense against foreign pathogens. Brilacidin, a synthetic HDP, demonstrates broad-spectrum antiviral against HCoV-OC43, −229E, -NL63, and SARS-CoV-2 but not influenza or enterovirus (Hu et al., 2022) through blocking virus attachment and early entry targeting heparan sulfate proteoglycans (HSPGs).
8.2. Replication blockers
Viral proteases develop a critical role in polyprotein processing, which is essential for viral replication. The HCoV-NL63 PLP2 shares substrates with other CoVs like SARS-CoV, but understanding the differences therein could drive the development of potent and selective inhibitors (Báez-Santos et al., 2014). For example, the inhibitor GRL0617 binds the catalytic site of SARS-CoV PLpro to produce inversion in the six-residue loop (G267-NYQC-G272) between residues Tyr269 and Gln270, but this does not occur on HCoV-NL63 PLP2 where different residues (G253-SFDN-G258) are used (Chaudhuri et al., 2011). A large screen of antiviral compounds from main protease from SARS-CoV-2 identified 37 compounds that inhibit PLpro, with seven (i.e., AT7519, calpeptin, ifenprodil, MUT056399, pelitinib, tolperisone, and triglycidyl isocyanurate) exhibiting >100-fold virion reduction and very low cytotoxicity (Günther et al., 2021).
Furthermore, natural active molecules like tryptanthrin or shikonin have been proposed as HCoV-NL63 PLP2 and SARS-CoV-2 Mpro inhibitors (Tsai et al., 2020; Zhang et al., 2022), and also inhibition on binding of SARS-CoV-2 S1 to ACE2 (Hagiyama et al., 2022). Large screening of natural products against pan-CoV main protease identified 12 compounds in vitro such as hypericin, rosmarinic acid, isorhamnetin, and luteolin for SARS-CoV-2 main protease (Shahhamzehei et al., 2022).
Other inhibitors like Michael acceptor N3 target the main protease (nsp5), which is highly conserved among CoVs (Wang et al., 2016; Yang et al., 2005). For the active replication, some nucleoside analogs have been developed for HCoV-NL63, such as the pyrimidine nucleoside analogs β-D-N4-hydroxycytidine and 6-azauridine (Pyrc et al., 2006) and Fleximer 2, which have shown good inhibition (Peters et al., 2015).
Boceprevir, Calpain inhibitor II and XII, GC-376, dyphylline, and naphthoquine have shown broad-spectrum antiviral activity against CoV main protease, inhibiting both viral Mpro and host cathepsin L, with additive antiviral effect when combined with remdesivir (RNA-dependent RNA polymerase inhibitor) (Hu et al., 2021; Song et al., 2022; Wang et al., 2022b). Although, recently identified protease inhibitor, GC376 or Nirmatrelvir, shows good promising results than boceprevir in inhibiting SARS-CoV-2 and HCoV-NL63, −229E, and -OC43 replication (Wang et al., 2022a; Weil et al., 2022).
With regard to replication blockers, Stenoparib is an inhibitor of cellular poly (ADP-ribose) polymerase (PARP) that blocks SARS-CoV-2 and HCoV-NL63 replication by reducing virus entry and complete inhibition of plaque formation. In addition, this drug showed a synergistic effect with remdesivir with more than 90% virus suppression on HCoV-NL63 (Stone et al., 2021).
8.3. Other antiviral strategies
Among the host factors, the interferon-inducible transmembrane (IFITM) proteins inhibit the entry of most CoVs, including HCoV-NL63, HCoV-229E, and SARS-CoV, probably through cholesterol accumulation on late endosomes (Huang et al., 2011; Wrensch et al., 2014). However, it has the opposite effect in other CoVs like HCoV-OC43 (Zhao et al., 2014). These differences are explained by differential response of S proteins with specific motifs in IFITMs that control viral entry (Zhao et al., 2018).
When a virus reaches the cytoplasm, the ubiquitous immunophilins play an important role in controlling HCoV-NL63 replication. Immunosuppressive ligands like cyclosporine A and FK506 (tacrolimus) or non-immunosuppressive derivatives like alisporivir and NIM811 have shown inhibitory effects for HCoV-NL63, HCoV-229E, and SARS-CoV (Carbajo-Lozoya et al., 2014, 2012; de Wilde et al., 2011; Pfefferle et al., 2011). Another important enzymatic superfamily is APOBEC3, from which the A3C, A3F, and A3H members have shown viral inhibition (Milewska et al., 2018a), but the exact inhibitory mechanism has still not been discovered.
The alkalizing molecule and autophagy inhibitor ROC-325 blocks lysosome acidification. The partial siRNA knockdown of ATP6V0D1 reduced LLC-MK2 cells HCoV-NL63 CPE by 60% highlighting the role of blocking acidification to inhibit co-infection (Gorshkov et al., 2021).
Novel anti-SARS-CoV-2 fusion inhibitory IPB19 lipopeptide derivatives based on MPER (membrane-proximal external region) peptide from the S protein also cross inhibited other HCoVs including HCoV-NL63 (Yu et al., 2021).
8.4. Cross-protection between HCoV-NL63 and other coronaviruses
Overall, literature review shows that baseline antibodies to common human coronaviruses like OC43, HKU1, 229E, and NL63 are not associated with cross-neutralization and potential protection against SARS-CoV-2 infection. Authors found a correlation between the antibody levels of SARS-CoV-2 N protein and the severity of the disease, but not correlation with antibody levels to other low pathogenic seasonal coronaviruses (HCoV-OC43, HCoV-HKU1, HCoV-229E, and HCoV-NL63) (Adams et al., 2022). Using neutralization assays, antibodies generated against HCoV-OC43, HCoV-NL63, and HCoV-229E seemed not to be protective against SARS-CoV-2 infections in young children (Dhochak et al., 2022). However, Wells et al. (2022) reported that SARS-CoV-2 infection or vaccination boosted the level of NL63 neutralizing antibodies. Moreover, it was reported that SARS-CoV-2 and HCoV-NL63 neutralizing antibodies waned over time, although vaccination support protection against SARS-CoV-2 but not to HCoV-NL63 (Hastert et al., 2022). Vaccination against SARS-CoV-2 showed efficient cross-neutralization of SARS-CoV-1, but partial cross-protection against endemic seasonal coronavirus like HCoV-OC43, -NL63, and −229E (Lawrenz et al., 2022).
Additionally, immunization with spike proteins before SARS-CoV-2 immunization impedes the generation of SARS-CoV-2 neutralizing antibodies in mice, thus, they amplify cross-reactive antibodies that are non-neutralizing antibodies (Lin et al., 2022). Inconsistencies in humoral immunity response is that prior studies did not examine the level of human common coronaviruses antibodies in the same individual before and after SARS-CoV-2 infection.
In connection to cell mediated immunity, a cross-reactive T cell response to SARS-CoV-2 and HCoV-NL63 and OC43 was demonstrated in a cohort of convalescent patients. However, they also displayed an increased number of CD4+ T cells than unexposed group throughout the 9-month study period (Wirsching et al., 2022).
Beyond the cross-protection between coronaviruses, other studies reported a decrease on the antibody (IgG, and IgA) levels to respiratory syncytial virus and influenza virus was reported during COVID-19 lockdowns (Grobben et al., 2022). In this study, decreased antibody levels to common respiratory viruses in human milk was also observed during COVID-19 pandemic, which translated in lower passive immunity in children.
9. General conclusions
This article constitutes a comprehensive review on the infection mechanism and replication of HCoV-NL63, compiling the current HCoV-NL63-related research related to virus entry and replication mechanism, including virus attachment, endocytosis, genome translation, and replication and transcription, in comparison with other coronaviruses. Moreover, cumulative knowledge on the susceptibility of different cells to HCoV-NL63 infection in vitro, was also reviewed, which is essential for successful virus isolation and propagation, and contribute to address different scientific questions from basic science to the development and assessment of diagnostic tools, and antiviral therapies. Finally, this review discussed different antiviral strategies that have been explored to suppress replication of HCoV-NL63, and other related human coronaviruses, by either targeting the virus or enhancing host antiviral mechanisms.
Funding
NA.
Declaration of Competing Interest
Authors declared no potential conflicts of interest with respect to the research, authorship, and/or publication of this article.
Acknowledgments
NA.
Data availability
Data will be made available on request.
References
- Adams O., Andrée M., Rabl D., Ostermann P.N., Schaal H., Lehnert E., Ackerstaff S., Müller L., Fischer J.C. Humoral response to SARS-CoV-2 and seasonal coronaviruses in COVID-19 patients. J. Med. Virol. 2022;94(3):1096–1103. doi: 10.1002/jmv.27427. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Al-Khannaq M.N., Ng K.T., Oong X.Y., Pang Y.K., Takebe Y., Chook J.B., Hanafi N.S., Kamarulzaman A., Tee K.K. Diversity and evolutionary histories of human coronaviruses NL63 and 229E associated with acute upper respiratory tract symptoms in Kuala Lumpur, Malaysia. Am. J. Trop. Med. Hyg. 2016;94(5):1058–1064. doi: 10.4269/ajtmh.15-0810. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Arden K.E., Nissen M.D., Sloots T.P., Mackay I.M. New human coronavirus, HCoV-NL63, associated with severe lower respiratory tract disease in Australia. J. Med. Virol. 2005;75(3):455–462. doi: 10.1002/jmv.20288. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Báez-Santos Y.M., Barraza S.J., Wilson M.W., Agius M.P., Mielech A.M., Davis N.M., Baker S.C., Larsen S.D., Mesecar A.D. X-ray structural and biological evaluation of a series of potent and highly selective inhibitors of human coronavirus papain-like proteases. J. Med. Chem. 2014;57(6):2393–2412. doi: 10.1021/jm401712t. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Bastien N., Robinson J.L., Tse A., Lee B.E., Hart L., Li Y. Human coronavirus NL-63 infections in children: a 1-year study. J. Clin. Microbiol. 2005;43(9):4567–4573. doi: 10.1128/JCM.43.9.4567-4573.2005. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Beau De Rochars V.M., Lednicky J., White S., Loeb J., Elbadry M.A., Telisma T., Chavannes S., Anilis M.G., Cella E., Ciccozzi M., Okech B.A., Salemi M., Morris J.G., Jr. Isolation of Coronavirus NL63 from blood from children in rural haiti: phylogenetic similarities with recent isolates from Malaysia. Am. J. Trop. Med. Hyg. 2017;96(1):144–147. doi: 10.4269/ajtmh.16-0585. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Bentley, J.K., Han, M., Stroupe, C., Breckenridge, H., Mello, A., Jazaeri, Z., Goldsmith, A., Baker, S., Lumeng, C., Hershenson, M.B., 2021. Development of a mouse model of human coronavirus NL63 (HCoV-NL63) infection, TP117. TP117 COVID-19 PATHOPHYSIOLOGY AND MODELLING, pp. A4462-A4462.
- Bertram S., Dijkman R., Habjan M., Heurich A., Gierer S., Glowacka I., Welsch K., Winkler M., Schneider H., Hofmann-Winkler H. TMPRSS2 activates the human coronavirus 229E for cathepsin-independent host cell entry and is expressed in viral target cells in the respiratory epithelium. J. Virol. 2013;87(11):6150–6160. doi: 10.1128/JVI.03372-12. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Bertram S., Glowacka I., Müller M.A., Lavender H., Gnirss K., Nehlmeier I., Niemeyer D., He Y., Simmons G., Drosten C. Cleavage and activation of the severe acute respiratory syndrome coronavirus spike protein by human airway trypsin-like protease. J. Virol. 2011;85(24):13363–13372. doi: 10.1128/JVI.05300-11. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Blau D.M., Holmes K.V. The Nidoviruses. Springer; 2001. Human Coronavirus HCoV-229E enters susceptible cells via the endocytic pathway; pp. 193–198. [DOI] [PubMed] [Google Scholar]
- Bosch B.J., van der Zee R., de Haan C.A.M., Rottier P.J.M. The coronavirus spike protein is a class I virus fusion protein: structural and functional characterization of the fusion core complex. J. Virol. 2003;77(16):8801–8811. doi: 10.1128/JVI.77.16.8801-8811.2003. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Bouvet M., Debarnot C., Imbert I., Selisko B., Snijder E.J., Canard B., Decroly E. In vitro reconstitution of SARS-coronavirus mRNA cap methylation. PLoS Pathog. 2010;6(4) doi: 10.1371/journal.ppat.1000863. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Bouvet M., Imbert I., Subissi L., Gluais L., Canard B., Decroly E. RNA 3′-end mismatch excision by the severe acute respiratory syndrome coronavirus nonstructural protein nsp10/nsp14 exoribonuclease complex. Proc. Natl. Acad. Sci. 2012;109(24):9372–9377. doi: 10.1073/pnas.1201130109. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Brielle E.S., Schneidman-Duhovny D., Linial M. The SARS-CoV-2 Exerts a Distinctive Strategy for Interacting with the ACE2 Human Receptor. Viruses. 2020;12(5):497. doi: 10.3390/v12050497. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Canducci F., Debiaggi M., Sampaolo M., Marinozzi M.C., Berrè S., Terulla C., Gargantini G., Cambieri P., Romero E., Clementi M. Two-year prospective study of single infections and co-infections by respiratory syncytial virus and viruses identified recently in infants with acute respiratory disease. J. Med. Virol. 2008;80(4):716–723. doi: 10.1002/jmv.21108. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Carbajo-Lozoya J., Ma-Lauer Y., Malešević M., Theuerkorn M., Kahlert V., Prell E., von Brunn B., Muth D., Baumert T.F., Drosten C., Fischer G., von Brunn A. Human coronavirus NL63 replication is cyclophilin A-dependent and inhibited by non-immunosuppressive cyclosporine A-derivatives including Alisporivir. Virus Res. 2014;184:44–53. doi: 10.1016/j.virusres.2014.02.010. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Carbajo-Lozoya J., Müller M.A., Kallies S., Thiel V., Drosten C., von Brunn A. Replication of human coronaviruses SARS-CoV, HCoV-NL63 and HCoV-229E is inhibited by the drug FK506. Virus Res. 2012;165(1):112–117. doi: 10.1016/j.virusres.2012.02.002. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Chan C.P., Siu K.L., Chin K.T., Yuen K.Y., Zheng B., Jin D.Y. Modulation of the unfolded protein response by the severe acute respiratory syndrome coronavirus spike protein. J. Virol. 2006;80(18):9279–9287. doi: 10.1128/JVI.00659-06. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Chang C.K., Sue S.C., Yu T.H., Hsieh C.M., Tsai C.K., Chiang Y.C., Lee S.J., Hsiao H.H., Wu W.J., Chang W.L. Modular organization of SARS coronavirus nucleocapsid protein. J. Biomed. Sci. 2006;13(1):59–72. doi: 10.1007/s11373-005-9035-9. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Chaudhuri R., Tang S., Zhao G., Lu H., Case D.A., Johnson M.E. Comparison of SARS and NL63 papain-like protease binding sites and binding site dynamics: inhibitor design implications. J. Mol. Biol. 2011;414(2):272–288. doi: 10.1016/j.jmb.2011.09.030. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Chen X., Wang K., Xing Y., Tu J., Yang X., Zhao Q., Li K., Chen Z. Coronavirus membrane-associated papain-like proteases induce autophagy through interacting with Beclin1 to negatively regulate antiviral innate immunity. Protein Cell. 2014;5(12):912–927. doi: 10.1007/s13238-014-0104-6. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Chen Y., Su C., Ke M., Jin X., Xu L., Zhang Z., Wu A., Sun Y., Yang Z., Tien P. Biochemical and structural insights into the mechanisms of SARS coronavirus RNA ribose 2′-O-methylation by nsp16/nsp10 protein complex. PLoS Pathog. 2011;7(10) doi: 10.1371/journal.ppat.1002294. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Chen Z., Wang Y., Ratia K., Mesecar A.D., Wilkinson K.D., Baker S.C. Proteolytic processing and deubiquitinating activity of papain-like proteases of human coronavirus NL63. J. Virol. 2007;81(11):6007–6018. doi: 10.1128/JVI.02747-06. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Chiu S.S., Chan K.H., Chu K.W., Kwan S.W., Guan Y., Poon L.L.M., Peiris J.S.M. Human coronavirus NL63 infection and other coronavirus infections in children hospitalized with acute respiratory disease in Hong Kong, China. Clin. Infect. Dis. 2005;40(12):1721–1729. doi: 10.1086/430301. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Chuang S.T., Papp H., Kuczmog A., Eells R., Condor Capcha J.M., Shehadeh L.A., Jakab F., Buchwald P. Methylene blue is a nonspecific protein-protein interaction inhibitor with potential for repurposing as an antiviral for COVID-19. Pharmaceuticals (Basel) 2022;15(5):621. doi: 10.3390/ph15050621. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Chuck C.P., Chow H.F., Wan D.C., Wong K.B. Profiling of substrate specificities of 3C-like proteases from group 1, 2a, 2b, and 3 coronaviruses. PLoS One. 2011;6(11):e27228. doi: 10.1371/journal.pone.0027228. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Clementz M.A., Chen Z., Banach B.S., Wang Y., Sun L., Ratia K., Baez-Santos Y.M., Wang J., Takayama J., Ghosh A.K., Li K., Mesecar A.D., Baker S.C. Deubiquitinating and interferon antagonism activities of coronavirus papain-like proteases. J. Virol. 2010;84(9):4619–4629. doi: 10.1128/JVI.02406-09. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Corse E., Machamer C.E. Infectious bronchitis virus E protein is targeted to the Golgi complex and directs release of virus-like particles. J. Virol. 2000;74(9):4319–4326. doi: 10.1128/jvi.74.9.4319-4326.2000. [DOI] [PMC free article] [PubMed] [Google Scholar]
- de Wilde A.H., Zevenhoven-Dobbe J.C., van der Meer Y., Thiel V., Narayanan K., Makino S., Snijder E.J., van Hemert M.J. Cyclosporin A inhibits the replication of diverse coronaviruses. J. Gen. Virol. 2011;92(11):2542–2548. doi: 10.1099/vir.0.034983-0. Pt. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Dea S., Verbeek A.J., Tijssen P. Antigenic and genomic relationships among turkey and bovine enteric coronaviruses. J. Virol. 1990;64(6):3112–3118. doi: 10.1128/jvi.64.6.3112-3118.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Decroly E., Debarnot C., Ferron F., Bouvet M., Coutard B., Imbert I., Gluais L., Papageorgiou N., Sharff A., Bricogne G. Crystal structure and functional analysis of the SARS-coronavirus RNA cap 2′-O-methyltransferase nsp10/nsp16 complex. PLoS Pathog. 2011;7(5) doi: 10.1371/journal.ppat.1002059. [DOI] [PMC free article] [PubMed] [Google Scholar]
- DeDiego M.L., Alvarez E., Almazán F., Rejas M.T., Lamirande E., Roberts A., Shieh W.J., Zaki S.R., Subbarao K., Enjuanes L. A severe acute respiratory syndrome coronavirus that lacks the E gene is attenuated in vitro and in vivo. J. Virol. 2007;81(4):1701–1713. doi: 10.1128/JVI.01467-06. [DOI] [PMC free article] [PubMed] [Google Scholar]
- DeDiego M.L., Nieto-Torres J.L., Jiménez-Guardeño J.M., Regla-Nava J.A., Alvarez E., Oliveros J.C., Zhao J., Fett C., Perlman S., Enjuanes L. Severe acute respiratory syndrome coronavirus envelope protein regulates cell stress response and apoptosis. PLoS Pathog. 2011;7(10) doi: 10.1371/journal.ppat.1002315. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Deregt D., Sabara M., Babiuk L.A. Structural proteins of bovine coronavirus and their intracellular processing. J. Gen. Virol. 1987;68(11):2863–2877. doi: 10.1099/0022-1317-68-11-2863. [DOI] [PubMed] [Google Scholar]
- Dhochak N., Agrawal T., Shaman H., Khan N.A., Kumar P., Kabra S.K., Medigeshi G.R., Lodha R. Humoral cross-reactivity towards SARS-CoV-2 in young children with acute respiratory infection with low-pathogenicity coronaviruses. J. Clin. Virol. Plus. 2022;2(1) doi: 10.1016/j.jcvp.2022.100061. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Dijkman R., Jebbink M.F., Koekkoek S.M., Deijs M., Jonsdottir H.R., Molenkamp R., Ieven M., Goossens H., Thiel V., van der Hoek L. Isolation and characterization of current human coronavirus strains in primary human epithelial cell cultures reveal differences in target cell tropism. J. Virol. 2013;87(11):6081–6090. doi: 10.1128/JVI.03368-12. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Dominguez S.R., Sims G.E., Wentworth D.E., Halpin R.A., Robinson C.C., Town C.D., Holmes K.V. Genomic analysis of 16 Colorado human NL63 coronaviruses identifies a new genotype, high sequence diversity in the N-terminal domain of the spike gene and evidence of recombination. J. Gen. Virol. 2012;93(11):2387–2398. doi: 10.1099/vir.0.044628-0. Pt. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Drosten C., Günther S., Preiser W., van der Werf S., Brodt H.R., Becker S., Rabenau H., Panning M., Kolesnikova L., Fouchier R.A., Berger A., Burguière A.M., Cinatl J., Eickmann M., Escriou N., Grywna K., Kramme S., Manuguerra J.C., Müller S., Rickerts V., Stürmer M., Vieth S., Klenk H.D., Osterhaus A.D., Schmitz H., Doerr H.W. Identification of a novel coronavirus in patients with severe acute respiratory syndrome. N. Engl. J. Med. 2003;348(20):1967–1976. doi: 10.1056/NEJMoa030747. [DOI] [PubMed] [Google Scholar]
- Du L., Kao R.Y., Zhou Y., He Y., Zhao G., Wong C., Jiang S., Yuen K.Y., Jin D.Y., Zheng B.J. Cleavage of spike protein of SARS coronavirus by protease factor Xa is associated with viral infectivity. Biochem. Biophys. Res. Commun. 2007;359(1):174–179. doi: 10.1016/j.bbrc.2007.05.092. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Egloff M.P., Ferron F., Campanacci V., Longhi S., Rancurel C., Dutartre H., Snijder E.J., Gorbalenya A.E., Cambillau C., Canard B. The severe acute respiratory syndrome-coronavirus replicative protein nsp9 is a single-stranded RNA-binding subunit unique in the RNA virus world. Proc. Natl. Acad. Sci. USA. 2004;101(11):3792. doi: 10.1073/pnas.0307877101. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Eléouët J.F., Slee E.A., Saurini F., Castagné N., Poncet D., Garrido C., Solary E., Martin S.J. The viral nucleocapsid protein of transmissible gastroenteritis coronavirus (TGEV) is cleaved by caspase-6 and -7 during TGEV-induced apoptosis. J. Virol. 2000;74(9):3975–3983. doi: 10.1128/jvi.74.9.3975-3983.2000. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Fan H., Ooi A., Tan Y.W., Wang S., Fang S., Liu D.X., Lescar J. The nucleocapsid protein of coronavirus infectious bronchitis virus: crystal structure of its N-terminal domain and multimerization properties. Structure. 2005;13(12):1859–1868. doi: 10.1016/j.str.2005.08.021. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Fang S., Xu L., Huang M., Li F.Q., Liu D.X. Identification of two ATR-dependent phosphorylation sites on coronavirus nucleocapsid protein with nonessential functions in viral replication and infectivity in cultured cells. Virology. 2013;444(1–2):225–232. doi: 10.1016/j.virol.2013.06.014. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Favreau D.J., Desforges M., St-Jean J.R., Talbot P.J. A human coronavirus OC43 variant harboring persistence-associated mutations in the S glycoprotein differentially induces the unfolded protein response in human neurons as compared to wild-type virus. Virology. 2009;395(2):255–267. doi: 10.1016/j.virol.2009.09.026. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Fehr A.R., Athmer J., Channappanavar R., Phillips J.M., Meyerholz D.K., Perlman S. The nsp3 macrodomain promotes virulence in mice with coronavirus-induced encephalitis. J. Virol. 2015;89(3):1523–1536. doi: 10.1128/JVI.02596-14. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Finkel Y., Mizrahi O., Nachshon A., Weingarten-Gabbay S., Morgenstern D., Yahalom-Ronen Y., Tamir H., Achdout H., Stein D., Israeli O., Beth-Din A., Melamed S., Weiss S., Israely T., Paran N., Schwartz M., Stern-Ginossar N. The coding capacity of SARS-CoV-2. Nature. 2021;589(7840):125–130. doi: 10.1038/s41586-020-2739-1. [DOI] [PubMed] [Google Scholar]
- Forster J., Ihorst G., Rieger C.H.L., Stephan V., Frank H.D., Gurth H., Berner R., Rohwedder A., Werchau H., Schumacher M. Prospective population-based study of viral lower respiratory tract infections in children under 3 years of age (the PRI. DE study) Eur. J. Pediatr. 2004;163(12):709–716. doi: 10.1007/s00431-004-1523-9. [DOI] [PubMed] [Google Scholar]
- Fouchier R.A.M., Hartwig N.G., Bestebroer T.M., Niemeyer B., de Jong J.C., Simon J.H., Osterhaus A.D.M.E. A previously undescribed coronavirus associated with respiratory disease in humans. Proc. Natl. Acad. Sci. USA. 2004;101(16):6212–6216. doi: 10.1073/pnas.0400762101. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Fung T.S., Liu D.X. Post-translational modifications of coronavirus proteins: roles and function. Future Virol. 2018;13(6):405–430. doi: 10.2217/fvl-2018-0008. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Gorshkov K., Chen C.Z., Bostwick R., Rasmussen L., Tran B.N., Cheng Y.S., Xu M., Pradhan M., Henderson M., Zhu W., Oh E., Susumu K., Wolak M., Shamim K., Huang W., Hu X., Shen M., Klumpp-Thomas C., Itkin Z., Shinn P., Carlos de la Torre J., Simeonov A., Michael S.G., Hall M.D., Lo D.C., Zheng W. The SARS-CoV-2 cytopathic effect is blocked by lysosome alkalizing small molecules. ACS Infect. Dis. 2021;7(6):1389–1408. doi: 10.1021/acsinfecdis.0c00349. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Grobben M., Juncker H.G., van der Straten K., Lavell A.H.A., Schinkel M., Buis D.T.P., Wilbrink M.F., Tejjani K., Claireaux M.A.F., Aartse A., de Groot C.J.M., Pajkrt D., Bomers M.K., Sikkens J.J., van Gils M.J., van Goudoever J.B., van Keulen B.J. Decreased passive immunity to respiratory viruses through human milk during the COVID-19 pandemic. Microbiol. Spectr. 2022;10(4) doi: 10.1128/spectrum.00405-22. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Grunewald M.E., Chen Y., Kuny C., Maejima T., Lease R., Ferraris D., Aikawa M., Sullivan C.S., Perlman S., Fehr A.R. The coronavirus macrodomain is required to prevent PARP-mediated inhibition of virus replication and enhancement of IFN expression. PLoS Pathog. 2019;15(5) doi: 10.1371/journal.ppat.1007756. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Grunewald M.E., Fehr A.R., Athmer J., Perlman S. The coronavirus nucleocapsid protein is ADP-ribosylated. Virology. 2018;517:62–68. doi: 10.1016/j.virol.2017.11.020. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Günther S., Reinke P.Y.A., Fernández-García Y., Lieske J., Lane T.J., Ginn H.M., Koua F.H.M., Ehrt C., Ewert W., Oberthuer D., Yefanov O., Meier S., Lorenzen K., Krichel B., Kopicki J.D., Gelisio L., Brehm W., Dunkel I., Seychell B., Gieseler H., Norton-Baker B., Escudero-Pérez B., Domaracky M., Saouane S., Tolstikova A., White T.A., Hänle A., Groessler M., Fleckenstein H., Trost F., Galchenkova M., Gevorkov Y., Li C., Awel S., Peck A., Barthelmess M., Schluenzen F., Lourdu Xavier P., Werner N., Andaleeb H., Ullah N., Falke S., Srinivasan V., França B.A., Schwinzer M., Brognaro H., Rogers C., Melo D., Zaitseva-Doyle J.J., Knoska J., Peña-Murillo G.E., Mashhour A.R., Hennicke V., Fischer P., Hakanpää J., Meyer J., Gribbon P., Ellinger B., Kuzikov M., Wolf M., Beccari A.R., Bourenkov G., von Stetten D., Pompidor G., Bento I., Panneerselvam S., Karpics I., Schneider T.R., Garcia-Alai M.M., Niebling S., Günther C., Schmidt C., Schubert R., Han H., Boger J., Monteiro D.C.F., Zhang L., Sun X., Pletzer-Zelgert J., Wollenhaupt J., Feiler C.G., Weiss M.S., Schulz E.C., Mehrabi P., Karničar K., Usenik A., Loboda J., Tidow H., Chari A., Hilgenfeld R., Uetrecht C., Cox R., Zaliani A., Beck T., Rarey M., Günther S., Turk D., Hinrichs W., Chapman H.N., Pearson A.R., et al. X-ray screening identifies active site and allosteric inhibitors of SARS-CoV-2 main protease. Science. 2021;372:642–646. doi: 10.1126/science.abf7945. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Guo X., Zhang M., Zhang X., Tan X., Guo H., Zeng W., Yan G., Memon A.M., Li Z., Zhu Y. Porcine epidemic diarrhea virus induces autophagy to benefit its replication. Viruses. 2017;9(3):53. doi: 10.3390/v9030053. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hackbart M., Deng X., Baker S.C. Coronavirus endoribonuclease targets viral polyuridine sequences to evade activating host sensors. Proc. Natl. Acad. Sci. 2020;117(14):8094. doi: 10.1073/pnas.1921485117. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hagemeijer M.C., Monastyrska I., Griffith J., van der Sluijs P., Voortman J., van Bergen en Henegouwen P.M., Vonk A.M., Rottier P.J.M., Reggiori F., de Haan C.A.M. Membrane rearrangements mediated by coronavirus nonstructural proteins 3 and 4. Virology. 2014;458-459:125–135. doi: 10.1016/j.virol.2014.04.027. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hagiyama M., Takeuchi F., Sugano A., Yoneshige A., Inoue T., Wada A., Kajiyama H., Takaoka Y., Sasaki K., Ito A. Indigo plant leaf extract inhibits the binding of SARS-CoV-2 spike protein to angiotensin-converting enzyme 2. Exp. Ther. Med. 2022;23(4):274. doi: 10.3892/etm.2022.11200. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Harrison S.M., Dove B.K., Rothwell L., Kaiser P., Tarpey I., Brooks G., Hiscox J.A. Characterisation of cyclin D1 down-regulation in coronavirus infected cells. FEBS Lett. 2007;581(7):1275–1286. doi: 10.1016/j.febslet.2007.02.039. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hastert F.D., Henss L., von Rhein C., Gerbeth J., Wieters I., Borgans F., Khodamoradi Y., Zacharowski K., Rohde G., Vehreschild M., Schnierle B.S. Longitudinal analysis of coronavirus-neutralizing activity in COVID-19 patients. Viruses. 2022;14(5):882. doi: 10.3390/v14050882. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Herzog P., Drosten C., Müller M.A. Plaque assay for human coronavirus NL63 using human colon carcinoma cells. Virol. J. 2008;5(1):138. doi: 10.1186/1743-422X-5-138. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hoffmann M., Kleine-Weber H., Pöhlmann S. A multibasic cleavage site in the spike protein of SARS-CoV-2 is essential for infection of human lung cells. Mol. Cell. 2020;78(4):779–784. doi: 10.1016/j.molcel.2020.04.022. .e775. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hoffmann M., Kleine-Weber H., Schroeder S., Krüger N., Herrler T., Erichsen S., Schiergens T.S., Herrler G., Wu N.H., Nitsche A., Müller M.A., Drosten C., Pöhlmann S. SARS-CoV-2 cell entry depends on ACE2 and TMPRSS2 and is blocked by a clinically proven protease inhibitor. Cell. 2020;181(2):271–280. doi: 10.1016/j.cell.2020.02.052. .e278. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hofmann H., Hattermann K., Marzi A., Gramberg T., Geier M., Krumbiegel M., Kuate S., Überla K., Niedrig M., Pöhlmann S. S protein of severe acute respiratory syndrome-associated coronavirus mediates entry into hepatoma cell lines and is targeted by neutralizing antibodies in infected patients. J. Virol. 2004;78(12):6134–6142. doi: 10.1128/JVI.78.12.6134-6142.2004. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hofmann H., Pyrc K., van der Hoek L., Geier M., Berkhout B., Pöhlmann S. Human coronavirus NL63 employs the severe acute respiratory syndrome coronavirus receptor for cellular entry. Proc. Natl. Acad. Sci. USA. 2005;102(22):7988–7993. doi: 10.1073/pnas.0409465102. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hofmann H., Simmons G., Rennekamp A.J., Chaipan C., Gramberg T., Heck E., Geier M., Wegele A., Marzi A., Bates P. Highly conserved regions within the spike proteins of human coronaviruses 229E and NL63 determine recognition of their respective cellular receptors. J. Virol. 2006;80(17):8639–8652. doi: 10.1128/JVI.00560-06. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hogue B.G., Nayak D.P. Springer; 1990. Expression of the Porcine Transmissible Gastroenteritis Coronavirus M protein, Coronaviruses and Their Diseases; pp. 121–126. [DOI] [PubMed] [Google Scholar]
- Holmes K.V., Doller E.W., Sturman L.S. Tunicamycin resistant glycosylation of a coronavirus glycoprotein: demonstration of a novel type of viral glycoprotein. Virology. 1981;115(2):334–344. doi: 10.1016/0042-6822(81)90115-X. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hu Y., Jo H., DeGrado W.F., Wang J. Brilacidin, a COVID-19 drug candidate, demonstrates broad-spectrum antiviral activity against human coronaviruses OC43, 229E, and NL63 through targeting both the virus and the host cell. J. Med. Virol. 2022;94(5):2188–2200. doi: 10.1002/jmv.27616. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hu Y., Ma C., Szeto T., Hurst B., Tarbet B., Wang J. Boceprevir, calpain inhibitors II and XII, and GC-376 have broad-spectrum antiviral activity against coronaviruses. ACS Infect. Dis. 2021;7(3):586–597. doi: 10.1021/acsinfecdis.0c00761. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Huang I.C., Bailey C.C., Weyer J.L., Radoshitzky S.R., Becker M.M., Chiang J.J., Brass A.L., Ahmed A.A., Chi X., Dong L. Distinct patterns of IFITM-mediated restriction of filoviruses, SARS coronavirus, and influenza A virus. PLoS Pathog. 2011;7(1) doi: 10.1371/journal.ppat.1001258. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Huang I.C., Bosch B.J., Li F., Li W., Lee K.H., Ghiran S., Vasilieva N., Dermody T.S., Harrison S.C., Dormitzer P.R. SARS coronavirus, but not human coronavirus NL63, utilizes cathepsin L to infect ACE2-expressing cells. J. Biol. Chem. 2006;281(6):3198–3203. doi: 10.1074/jbc.M508381200. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hurst K.R., Koetzner C.A., Masters P.S. Characterization of a critical interaction between the coronavirus nucleocapsid protein and nonstructural protein 3 of the viral replicase-transcriptase complex. J. Virol. 2013;87(16):9159–9172. doi: 10.1128/JVI.01275-13. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Huynh J., Li S., Yount B., Smith A., Sturges L., Olsen J.C., Nagel J., Johnson J.B., Agnihothram S., Gates J.E., Frieman M.B., Baric R.S., Donaldson E.F. Evidence supporting a zoonotic origin of human coronavirus strain NL63. J. Virol. 2012;86(23):12816–12825. doi: 10.1128/JVI.00906-12. [DOI] [PMC free article] [PubMed] [Google Scholar]
- ICTV, I.C.o.T.o.V., 2020. ICTV Taxonomy history: Human Coronavirus NL63.
- Irigoyen N., Firth A.E., Jones J.D., Chung B.Y.W., Siddell S.G., Brierley I. High-resolution analysis of coronavirus gene expression by RNA sequencing and ribosome profiling. PLoS Pathog. 2016;12(2) doi: 10.1371/journal.ppat.1005473. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Ivanov K.A., Ziebuhr J. Human coronavirus 229E nonstructural protein 13: characterization of duplex-unwinding, nucleoside triphosphatase, and RNA 5′-triphosphatase activities. J. Virol. 2004;78(14):7833–7838. doi: 10.1128/JVI.78.14.7833-7838.2004. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Jauregui A.R., Savalia D., Lowry V.K., Farrell C.M., Wathelet M.G. Identification of residues of SARS-CoV nsp1 that differentially affect inhibition of gene expression and antiviral signaling. PLoS One. 2013;8(4):e62416. doi: 10.1371/journal.pone.0062416. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Jia H.P., Look D.C., Shi L., Hickey M., Pewe L., Netland J., Farzan M., Wohlford-Lenane C., Perlman S., McCray P.B., Jr. ACE2 receptor expression and severe acute respiratory syndrome coronavirus infection depend on differentiation of human airway epithelia. J. Virol. 2005;79(23):14614–14621. doi: 10.1128/JVI.79.23.14614-14621.2005. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Jia H.P., Look D.C., Tan P., Shi L., Hickey M., Gakhar L., Chappell M.C., Wohlford-Lenane C., McCray P.B., Jr. Ectodomain shedding of angiotensin converting enzyme 2 in human airway epithelia. Am. J. Physiol. Lung Cell. Mol. Physiol. 2009;297(1):L84–L96. doi: 10.1152/ajplung.00071.2009. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kanjanahaluethai A., Chen Z., Jukneliene D., Baker S.C. Membrane topology of murine coronavirus replicase nonstructural protein 3. Virology. 2007;361(2):391–401. doi: 10.1016/j.virol.2006.12.009. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kawase M., Shirato K., van der Hoek L., Taguchi F., Matsuyama S. Simultaneous treatment of human bronchial epithelial cells with serine and cysteine protease inhibitors prevents severe acute respiratory syndrome coronavirus entry. J. Virol. 2012;86(12):6537. doi: 10.1128/JVI.00094-12. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Keane S.C., Giedroc D.P. Solution structure of mouse hepatitis virus (MHV) nsp3a and determinants of the interaction with MHV nucleocapsid (N) protein. J. Virol. 2013;87(6):3502–3515. doi: 10.1128/JVI.03112-12. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kiyuka P.K., Agoti C.N., Munywoki P.K., Njeru R., Bett A., Otieno J.R., Otieno G.P., Kamau E., Clark T.G., van der Hoek L., Kellam P., Nokes D.J., Cotten M. Human Coronavirus NL63 molecular epidemiology and evolutionary patterns in rural coastal Kenya. J. Infect. Dis. 2018;217(11):1728–1739. doi: 10.1093/infdis/jiy098. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Knoops K., Kikkert M., Van Den Worm S.H.E., Zevenhoven-Dobbe J.C., Van Der Meer Y., Koster A.J., Mommaas A.M., Snijder E.J. SARS-coronavirus replication is supported by a reticulovesicular network of modified endoplasmic reticulum. PLoS Biol. 2008;6(9):e226. doi: 10.1371/journal.pbio.0060226. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Komabayashi K., Matoba Y., Seto J., Ikeda Y., Tanaka W., Aoki Y., Ikeda T., Matsuzaki Y., Itagaki T., Shirato K., Mizuta K. Isolation of human coronaviruses OC43, HKU1, NL63, and 229E in Yamagata, Japan, using primary human airway epithelium cells cultured by employing an air-liquid interface culture. Jpn. J. Infect. Dis. 2021;74(4):285–292. doi: 10.7883/yoken.JJID.2020.776. [DOI] [PubMed] [Google Scholar]
- König B., König W., Arnold R., Werchau H., Ihorst G., Forster J. Prospective study of human metapneumovirus infection in children less than 3 years of age. J. Clin. Microbiol. 2004;42(10):4632–4635. doi: 10.1128/JCM.42.10.4632-4635.2004. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kono M., Tatsumi K., Imai A.M., Saito K., Kuriyama T., Shirasawa H. Inhibition of human coronavirus 229E infection in human epithelial lung cells (L132) by chloroquine: involvement of p38 MAPK and ERK. Antivir. Res. 2008;77(2):150–152. doi: 10.1016/j.antiviral.2007.10.011. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Krähling V., Stein D.A., Spiegel M., Weber F., Mühlberger E. Severe acute respiratory syndrome coronavirus triggers apoptosis via protein kinase R but is resistant to its antiviral activity. J. Virol. 2009;83(5):2298–2309. doi: 10.1128/JVI.01245-08. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Ksiazek T.G., Erdman D., Goldsmith C.S., Zaki S.R., Peret T., Emery S., Tong S., Urbani C., Comer J.A., Lim W., Rollin P.E., Dowell S.F., Ling A.E., Humphrey C.D., Shieh W.J., Guarner J., Paddock C.D., Rota P., Fields B., DeRisi J., Yang J.Y., Cox N., Hughes J.M., LeDuc J.W., Bellini W.J., Anderson L.J. A novel coronavirus associated with severe acute respiratory syndrome. N. Engl. J. Med. 2003;348(20):1953–1966. doi: 10.1056/NEJMoa030781. [DOI] [PubMed] [Google Scholar]
- Lapps W., Hogue B.G., Brian D.A. Springer; 1987. Deduced Amino Acid Sequence and Potential O-glycosylation Sites for the Bovine Coronavirus Matrix Protein, Coronaviruses; pp. 123–129. [DOI] [PubMed] [Google Scholar]
- Lawrenz J., Xie Q., Zech F., Weil T., Seidel A., Krnavek D., van der Hoek L., Münch J., Müller J.A., Kirchhoff F. Severe acute respiratory syndrome coronavirus 2 vaccination boosts neutralizing activity against seasonal human coronaviruses. Clin. Infect. Dis. 2022;75(1):e653–e661. doi: 10.1093/cid/ciac057. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Lednicky J.A., Waltzek T.B., McGeehan E., Loeb J.C., Hamilton S.B., Luetke M.C. Isolation and genetic characterization of human coronavirus NL63 in primary human renal proximal tubular epithelial cells obtained from a commercial supplier, and confirmation of its replication in two different types of human primary kidney cells. Virol. J. 2013;10:213. doi: 10.1186/1743-422X-10-213. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Lei J., Kusov Y., Hilgenfeld R. Nsp3 of coronaviruses: structures and functions of a large multi-domain protein. Antivir. Res. 2018;149:58–74. doi: 10.1016/j.antiviral.2017.11.001. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Li C., Debing Y., Jankevicius G., Neyts J., Ahel I., Coutard B., Canard B. Viral macro domains reverse protein ADP-ribosylation. J. Virol. 2016;90(19):8478. doi: 10.1128/JVI.00705-16. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Li F.Q., Xiao H., Tam J.P., Liu D.X. Sumoylation of the nucleocapsid protein of severe acute respiratory syndrome coronavirus. FEBS Lett. 2005;579(11):2387–2396. doi: 10.1016/j.febslet.2005.03.039. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Li W., Sui J., Huang I.C., Kuhn J.H., Radoshitzky S.R., Marasco W.A., Choe H., Farzan M. The S proteins of human coronavirus NL63 and severe acute respiratory syndrome coronavirus bind overlapping regions of ACE2. Virology. 2007;367(2):367–374. doi: 10.1016/j.virol.2007.04.035. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Liao Y., Yuan Q., Torres J., Tam J.P., Liu D.X. Biochemical and functional characterization of the membrane association and membrane permeabilizing activity of the severe acute respiratory syndrome coronavirus envelope protein. Virology. 2006;349(2):264–275. doi: 10.1016/j.virol.2006.01.028. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Lim K.P., Liu D.X. Characterization of the two overlapping papain-like proteinase domains encoded in gene 1 of the coronavirus infectious bronchitis virus and determination of the C-terminal cleavage site of an 87-kDa protein. Virology. 1998;245(2):303–312. doi: 10.1006/viro.1998.9164. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Lin C.Y., Wolf J., Brice D.C., Sun Y., Locke M., Cherry S., Castellaw A.H., Wehenkel M., Crawford J.C., Zarnitsyna V.I., Duque D., Allison K.J., Allen E.K., Brown S.A., Mandarano A.H., Estepp J.H., Taylor C., Molina-Paris C., Schultz-Cherry S., Tang L., Thomas P.G., McGargill M.A. Pre-existing humoral immunity to human common cold coronaviruses negatively impacts the protective SARS-CoV-2 antibody response. Cell Host Microbe. 2022;30(1):83–96. doi: 10.1016/j.chom.2021.12.005. .e84. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Lin H.X., Feng Y., Tu X., Zhao X., Hsieh C.H., Griffin L., Junop M., Zhang C. Characterization of the spike protein of human coronavirus NL63 in receptor binding and pseudotype virus entry. Virus Res. 2011;160(1–2):283–293. doi: 10.1016/j.virusres.2011.06.029. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Lin H.X., Feng Y., Wong G., Wang L., Li B., Zhao X., Li Y., Smaill F., Zhang C. Identification of residues in the receptor-binding domain (RBD) of the spike protein of human coronavirus NL63 that are critical for the RBD-ACE2 receptor interaction. J. Gen. Virol. 2008;89(4):1015–1024. doi: 10.1099/vir.0.83331-0. Pt. [DOI] [PubMed] [Google Scholar]
- Lister E. McMaster University; 2009. Coronavirus 229E, NL63 and OC43 Infection of Human Monocyte-Derived Dendritic Cells: Modulation of Immune Effector Function. [Google Scholar]
- Liu D., Chen C., Chen D., Zhu A., Li F., Zhuang Z., Mok C.K.P., Dai J., Li X., Jin Y., Chen Z., Sun J., Wang Y., Li Y., Zhang Y., Wen L., Zhang Z., Zhuo J., Wang J., Ran W., Wang D., Zhang S., Tang Y., Li S., Lai X., Wei P., Yuan J., Chen F., Huang S., Sun F., Qian Z., Tan W., Zhao J., Peiris M., Zhao J. Mouse models susceptible to HCoV-229E and HCoV-NL63 and cross protection from challenge with SARS-CoV-2. Proc. Natl. Acad. Sci. 2023;120(4) doi: 10.1073/pnas.2202820120. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Liu D.X., Inglis S.C. Association of the infectious bronchitis virus 3c protein with the virion envelope. Virology. 1991;185(2):911–917. doi: 10.1016/0042-6822(91)90572-S. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Lokugamage K.G., Narayanan K., Nakagawa K., Terasaki K., Ramirez S.I., Tseng C.T., Makino S. Middle east respiratory syndrome coronavirus nsp1 inhibits host gene expression by selectively targeting mRNAs transcribed in the nucleus while sparing mRNAs of cytoplasmic origin. J. Virol. 2015;89(21):10970–10981. doi: 10.1128/JVI.01352-15. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Lu X., Pan J.a., Tao J., Guo D. SARS-CoV nucleocapsid protein antagonizes IFN-β response by targeting initial step of IFN-β induction pathway, and its C-terminal region is critical for the antagonism. Virus Genes. 2011;42(1):37–45. doi: 10.1007/s11262-010-0544-x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Ma Y., Wu L., Shaw N., Gao Y., Wang J., Sun Y., Lou Z., Yan L., Zhang R., Rao Z. Structural basis and functional analysis of the SARS coronavirus nsp14–nsp10 complex. Proc. Natl. Acad. Sci. 2015;112(30):9436. doi: 10.1073/pnas.1508686112. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Masters P.S. The molecular biology of coronaviruses. Adv. Virus Res. 2006;66:193–292. doi: 10.1016/S0065-3527(06)66005-3. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Mateos-Gómez P.A., Zuñiga S., Palacio L., Enjuanes L., Sola I. Gene N proximal and distal RNA motifs regulate coronavirus nucleocapsid mRNA transcription. J. Virol. 2011;85(17):8968–8980. doi: 10.1128/JVI.00869-11. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Mathewson A.C., Bishop A., Yao Y., Kemp F., Ren J., Chen H., Xu X., Berkhout B., van der Hoek L., Jones I.M. Interaction of severe acute respiratory syndrome-coronavirus and NL63 coronavirus spike proteins with angiotensin converting enzyme-2. J. Gen. Virol. 2008;89(11):2741–2745. doi: 10.1099/vir.0.2008/003962-0. Pt. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Matsuyama S., Ujike M., Morikawa S., Tashiro M., Taguchi F. Protease-mediated enhancement of severe acute respiratory syndrome coronavirus infection. Proc. Natl. Acad. Sci. USA. 2005;102(35):12543–12547. doi: 10.1073/pnas.0503203102. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Milewska A., Ciejka J., Kaminski K., Karewicz A., Bielska D., Zeglen S., Karolak W., Nowakowska M., Potempa J., Bosch B.J., Pyrc K., Szczubialka K. Novel polymeric inhibitors of HCoV-NL63. Antivir. Res. 2013;97(2):112–121. doi: 10.1016/j.antiviral.2012.11.006. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Milewska A., Kaminski K., Ciejka J., Kosowicz K., Zeglen S., Wojarski J., Nowakowska M., Szczubiałka K., Pyrc K. HTCC: broad range inhibitor of coronavirus entry. PLoS One. 2016;11(6) doi: 10.1371/journal.pone.0156552. -e0156552. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Milewska A., Kindler E., Vkovski P., Zeglen S., Ochman M., Thiel V., Rajfur Z., Pyrc K. APOBEC3-mediated restriction of RNA virus replication. Sci. Rep. 2018;8(1):5960. doi: 10.1038/s41598-018-24448-2. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Milewska A., Nowak P., Owczarek K., Szczepanski A., Zarebski M., Hoang A., Berniak K., Wojarski J., Zeglen S., Baster Z., Rajfur Z., Pyrc K. Entry of human coronavirus NL63 into the Cell. J. Virol. 2018;92(3) doi: 10.1128/JVI.01933-17. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Milewska A., Zarebski M., Nowak P., Stozek K., Potempa J., Pyrc K. Human coronavirus NL63 utilizes heparan sulfate proteoglycans for attachment to target cells. J. Virol. 2014;88(22):13221–13230. doi: 10.1128/JVI.02078-14. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Millet J.K., Whittaker G.R. Host cell entry of Middle East respiratory syndrome coronavirus after two-step, furin-mediated activation of the spike protein. Proc. Natl. Acad. Sci. 2014;111(42):15214–15219. doi: 10.1073/pnas.1407087111. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Minosse C., Selleri M., Zaniratti M.S., Cappiello G., Spanò A., Schifano E., Lauria F.N., Gualano G., Puro V., Campanini G., Gerna G., Capobianchi M.R. Phylogenetic analysis of human coronavirus NL63 circulating in Italy. J. Clin. Virol. 2008;43(1):114–119. doi: 10.1016/j.jcv.2008.04.015. the official publication of the Pan American Society for Clinical Virology. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Minskaia E., Hertzig T., Gorbalenya A.E., Campanacci V., Cambillau C., Canard B., Ziebuhr J. Discovery of an RNA virus 3′→ 5′ exoribonuclease that is critically involved in coronavirus RNA synthesis. Proc. Natl. Acad. Sci. 2006;103(13):5108–5113. doi: 10.1073/pnas.0508200103. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Mizutani T., Fukushi S., Saijo M., Kurane I., Morikawa S. JNK and PI3k/Akt signaling pathways are required for establishing persistent SARS-CoV infection in Vero E6 cells. Biochim. Biophys. Acta (BBA) Mol. Basis Dis. 2005;1741(1–2):4–10. doi: 10.1016/j.bbadis.2005.04.004. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Moës E., Vijgen L., Keyaerts E., Zlateva K., Li S., Maes P., Pyrc K., Berkhout B., van der Hoek L., Van Ranst M. A novel pancoronavirus RT-PCR assay: frequent detection of human coronavirus NL63 in children hospitalized with respiratory tract infections in Belgium. BMC Infect. Dis. 2005;5(1):6. doi: 10.1186/1471-2334-5-6. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Mounir S., Talbot P.J. Sequence analysis of the membrane protein gene of human coronavirus OC43 and evidence for O-glycosylation. J. Gen. Virol. 1992;73(10):2731–2736. doi: 10.1099/0022-1317-73-10-2731. [DOI] [PubMed] [Google Scholar]
- Müller M.A., van der Hoek L., Voss D., Bader O., Lehmann D., Schulz A.R., Kallies S., Suliman T., Fielding B.C., Drosten C., Niedrig M. Human coronavirus NL63 open reading frame 3 encodes a virion-incorporated N-glycosylated membrane protein. Virol. J. 2010;7:6. doi: 10.1186/1743-422X-7-6. -6. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Namy O., Moran S.J., Stuart D.I., Gilbert R.J., Brierley I. A mechanical explanation of RNA pseudoknot function in programmed ribosomal frameshifting. Nature. 2006;441(7090):244–247. doi: 10.1038/nature04735. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Narayanan K., Huang C., Lokugamage K., Kamitani W., Ikegami T., Tseng C.T., Makino S. Severe acute respiratory syndrome coronavirus nsp1 suppresses host gene expression, including that of type I interferon, in infected cells. J. Virol. 2008;82(9):4471–4479. doi: 10.1128/JVI.02472-07. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Naskalska A., Dabrowska A., Nowak P., Szczepanski A., Jasik K., Milewska A., Ochman M., Zeglen S., Rajfur Z., Pyrc K. Novel coronavirus-like particles targeting cells lining the respiratory tract. PLoS One. 2018;13(9) doi: 10.1371/journal.pone.0203489. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Naskalska A., Dabrowska A., Szczepanski A., Milewska A., Jasik K.P., Pyrc K. Membrane protein of human coronavirus NL63 is responsible for interaction with the adhesion receptor. J. Virol. 2019;93(19):e00355–19. doi: 10.1128/JVI.00355-19. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Neuman B.W., Joseph J.S., Saikatendu K.S., Serrano P., Chatterjee A., Johnson M.A., Liao L., Klaus J.P., Yates J.R., Wüthrich K., Stevens R.C., Buchmeier M.J., Kuhn P. Proteomics analysis unravels the functional repertoire of coronavirus nonstructural protein 3. J. Virol. 2008;82(11):5279. doi: 10.1128/JVI.02631-07. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Nicholson B., Leach C.A., Goldenberg S.J., Francis D.M., Kodrasov M.P., Tian X., Shanks J., Sterner D.E., Bernal A., Mattern M.R., Wilkinson K.D., Butt T.R. Characterization of ubiquitin and ubiquitin-like-protein isopeptidase activities. Protein Sci. 2008;17(6):1035–1043. doi: 10.1110/ps.083450408. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Nieto-Torres J.L., DeDiego M.L., Verdiá-Báguena C., Jimenez-Guardeño J.M., Regla-Nava J.A., Fernandez-Delgado R., Castaño-Rodriguez C., Alcaraz A., Torres J., Aguilella V.M., Enjuanes L. Severe acute respiratory syndrome coronavirus envelope protein ion channel activity promotes virus fitness and pathogenesis. PLoS Pathog. 2014;10(5) doi: 10.1371/journal.ppat.1004077. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Onabajo O.O., Banday A.R., Stanifer M.L., Yan W., Obajemu A., Santer D.M., Florez-Vargas O., Piontkivska H., Vargas J.M., Ring T.J., Kee C., Doldan P., Tyrrell D.L., Mendoza J.L., Boulant S., Prokunina-Olsson L. Interferons and viruses induce a novel truncated ACE2 isoform and not the full-length SARS-CoV-2 receptor. Nat. Genet. 2020;52(12):1283–1293. doi: 10.1038/s41588-020-00731-9. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Oostra M., Hagemeijer M.C., van Gent M., Bekker C.P., te Lintelo E.G., Rottier P.J., de Haan C.A. Topology and membrane anchoring of the coronavirus replication complex: not all hydrophobic domains of nsp3 and nsp6 are membrane spanning. J. Virol. 2008;82(24):12392–12405. doi: 10.1128/JVI.01219-08. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Orenstein J.M., Banach B., Baker S.C. Morphogenesis of coronavirus HCoV-NL63 in cell culture: a transmission electron microscopic study. Open Infect. Dis. J. 2008;2:52–58. doi: 10.2174/1874279300802010052. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Oudshoorn D., Rijs K., Limpens R.W.A.L., Groen K., Koster A.J., Snijder E.J., Kikkert M., Bárcena M. Expression and cleavage of middle east respiratory syndrome coronavirus nsp3-4 polyprotein induce the formation of double-membrane vesicles that mimic those associated with coronaviral RNA replication. mBio. 2017;8(6):e01658. doi: 10.1128/mBio.01658-17. -01617. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Peters H.L., Jochmans D., de Wilde A.H., Posthuma C.C., Snijder E.J., Neyts J., Seley-Radtke K.L. Design, synthesis and evaluation of a series of acyclic fleximer nucleoside analogues with anti-coronavirus activity. Bioorg. Med. Chem. Lett. 2015;25(15):2923–2926. doi: 10.1016/j.bmcl.2015.05.039. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Pfefferle S., Schöpf J., Kögl M., Friedel C.C., Müller M.A., Carbajo-Lozoya J., Stellberger T., von Dall'Armi E., Herzog P., Kallies S., Niemeyer D., Ditt V., Kuri T., Züst R., Pumpor K., Hilgenfeld R., Schwarz F., Zimmer R., Steffen I., Weber F., Thiel V., Herrler G., Thiel H.J., Schwegmann-Wessels C., Pöhlmann S., Haas J., Drosten C., von Brunn A. The SARS-coronavirus-host interactome: identification of cyclophilins as target for pan-coronavirus inhibitors. PLoS Pathog. 2011;7(10) doi: 10.1371/journal.ppat.1002331. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Piñón J.D., Teng H., Weiss S.R. Further requirements for cleavage by the murine coronavirus 3C-like proteinase: identification of a cleavage site within ORF1b. Virology. 1999;263(2):471–484. doi: 10.1006/viro.1999.9954. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Pöhlmann S., Gramberg T., Wegele A., Pyrc K., van der Hoek L., Berkhout B., Hofmann H. Interaction between the spike protein of human coronavirus NL63 and its cellular receptor ACE2. Adv. Exp. Med. Biol. 2006;581:281–284. doi: 10.1007/978-0-387-33012-9_47. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Pyrc K., Berkhout B., van der Hoek L. The novel human coronaviruses NL63 and HKU1. J. Virol. 2007;81(7):3051–3057. doi: 10.1128/JVI.01466-06. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Pyrc K., Berkhout B., van der Hoek L., Pandelai S.G. Transworld Research Network; 2005. Recent Research Developments in Infection and Immunity. [Google Scholar]
- Pyrc K., Bosch B.J., Berkhout B., Jebbink M.F., Dijkman R., Rottier P., Van Der Hoek L. Inhibition of human coronavirus NL63 infection at early stages of the replication cycle. Antimicrob. Agents Chemother. 2006;50(6):2000–2008. doi: 10.1128/AAC.01598-05. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Pyrc K., Jebbink M.F., Berkhout B., van der Hoek L. Genome structure and transcriptional regulation of human coronavirus NL63. Virol. J. 2004;1:7. doi: 10.1186/1743-422X-1-7. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Pyrc K.A. University of Amsterdan; 2007. Virus Discovery and Human Coronavirus NL63. [Google Scholar]
- Rebendenne, A., Roy, P., Bonaventure, B., Chaves Valadão, A.L., Desmarets, L., Rouillé, Y., Tauziet, M., Arnaud-Arnould, M., Giovannini, D., Lee, Y., DeWeirdt, P., Hegde, M., Garcia de Gracia, F., McKellar, J., Wencker, M., Dubuisson, J., Belouzard, S., Moncorgé, O., Doench, J.G., Goujon, C., 2021. Bidirectional genome-wide CRISPR screens reveal host factors regulating SARS-CoV-2, MERS-CoV and seasonal coronaviruses. bioRxiv. [DOI] [PMC free article] [PubMed]
- Reggiori F., Monastyrska I., Verheije M.H., Calì T., Ulasli M., Bianchi S., Bernasconi R., de Haan C.A.M., Molinari M. Coronaviruses Hijack the LC3-I-positive EDEMosomes, ER-derived vesicles exporting short-lived ERAD regulators, for replication. Cell Host Microbe. 2010;7(6):500–508. doi: 10.1016/j.chom.2010.05.013. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Rehman S.U., Tabish M. Alternative splicing of ACE2 possibly generates variants that may limit the entry of SARS-CoV-2: a potential therapeutic approach using SSOs. Clin. Sci. 2020;134(10):1143–1150. doi: 10.1042/CS20200419. [DOI] [PubMed] [Google Scholar]
- Ren W., Zhu Y., Lan J., Chen H., Wang Y., Shi H., Feng F., Chen D.Y., Close B., Zhao X., Wu J., Tian B., Yuan Z., Zhou D., Saeed M., Wang X., Zhang R., Ding Q. Susceptibilities of human ACE2 genetic variants in coronavirus infection. J. Virol. 2022;96(1) doi: 10.1128/JVI.01492-21. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Rottier P.J., Horzinek M.C., van der Zeijst B.A. Viral protein synthesis in mouse hepatitis virus strain A59-infected cells: effect of tunicamycin. J. Virol. 1981;40(2):350–357. doi: 10.1128/jvi.40.2.350-357.1981. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Rüdiger A.T., Mayrhofer P., Ma-Lauer Y., Pohlentz G., Müthing J., von Brunn A., Schwegmann-Weßels C. Tubulins interact with porcine and human S proteins of the genus Alphacoronavirus and support successful assembly and release of infectious viral particles. Virology. 2016;497:185–197. doi: 10.1016/j.virol.2016.07.022. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Banach S.B., Orenstein J.M., Fox L.M., Randell S.H., Rowley A.H., Baker S.C. Human airway epithelial cell culture to identify new respiratory viruses: coronavirus NL63 as a model. J. Virol. Methods. 2009;156(1):19–26. doi: 10.1016/j.jviromet.2008.10.022. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Schildgen O., Jebbink M.F., de Vries M., Pyrc K., Dijkman R., Simon A., Muller A., Kupfer B., van der Hoek L. Identification of cell lines permissive for human coronavirus NL63. J. Virol. Methods. 2006;138(1–2):207–210. doi: 10.1016/j.jviromet.2006.07.023. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Schneider W.M., Luna J.M., Hoffmann H.H., Sánchez-Rivera F.J., Leal A.A., Ashbrook A.W., Le Pen J., Ricardo-Lax I., Michailidis E., Peace A., Stenzel A.F., Lowe S.W., MacDonald M.R., Rice C.M., Poirier J.T. Genome-scale identification of SARS-CoV-2 and pan-coronavirus host factor networks. Cell. 2021;184(1):120–132. doi: 10.1016/j.cell.2020.12.006. .e114. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Schoeman D., Fielding B.C. Coronavirus envelope protein: current knowledge. Virol. J. 2019;16(1):69. doi: 10.1186/s12985-019-1182-0. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Serrano P., Johnson M.A., Almeida M.S., Horst R., Herrmann T., Joseph J.S., Neuman B.W., Subramanian V., Saikatendu K.S., Buchmeier M.J., Stevens R.C., Kuhn P., Wüthrich K. Nuclear magnetic resonance structure of the N-terminal domain of nonstructural protein 3 from the severe acute respiratory syndrome coronavirus. J. Virol. 2007;81(21):12049–12060. doi: 10.1128/JVI.00969-07. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Sethna P.B., Hofmann M.A., Brian D.A. Minus-strand copies of replicating coronavirus mRNAs contain antileaders. J. Virol. 1991;65(1):320–325. doi: 10.1128/jvi.65.1.320-325.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Seybert A., Hegyi A., Siddell S.G., Ziebuhr J. The human coronavirus 229E superfamily 1 helicase has RNA and DNA duplex-unwinding activities with 5′-to-3′ polarity. RNA. 2000;6(7):1056–1068. doi: 10.1017/s1355838200000728. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Shahhamzehei N., Abdelfatah S., Efferth T. In silico and in vitro identification of pan-coronaviral main protease inhibitors from a large natural product library. Pharmaceuticals (Basel) 2022;15(3):308. doi: 10.3390/ph15030308. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Shang J., Wan Y., Luo C., Ye G., Geng Q., Auerbach A., Li F. Cell entry mechanisms of SARS-CoV-2. Proc. Natl. Acad. Sci. 2020;117(21):11727–11734. doi: 10.1073/pnas.2003138117. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Shao N., Zhang C., Dong J., Sun L., Chen X., Xie Z., Xu B., An S., Zhang T., Yang F. Molecular evolution of human coronavirus-NL63, -229E, -HKU1 and -OC43 in hospitalized children in China. Front. Microbiol. 2022;13 doi: 10.3389/fmicb.2022.1023847. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Shirato K., Kanou K., Kawase M., Matsuyama S. Clinical isolates of human coronavirus 229E bypass the endosome for cell entry. J. Virol. 2017;91(1):e01387–16. doi: 10.1128/JVI.01387-16. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Shirato K., Kawase M., Matsuyama S. Wild-type human coronaviruses prefer cell-surface TMPRSS2 to endosomal cathepsins for cell entry. Virology. 2018;517:9–15. doi: 10.1016/j.virol.2017.11.012. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Simmons G., Reeves J.D., Rennekamp A.J., Amberg S.M., Piefer A.J., Bates P. Characterization of severe acute respiratory syndrome-associated coronavirus (SARS-CoV) spike glycoprotein-mediated viral entry. Proc. Natl. Acad. Sci. 2004;101(12):4240–4245. doi: 10.1073/pnas.0306446101. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Sims A.C., Baric R.S., Yount B., Burkett S.E., Collins P.L., Pickles R.J. Severe acute respiratory syndrome coronavirus infection of human ciliated airway epithelia: role of ciliated cells in viral spread in the conducting airways of the lungs. J. Virol. 2005;79(24):15511–15524. doi: 10.1128/JVI.79.24.15511-15524.2005. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Sipulwa L.A., Ongus J.R., Coldren R.L., Bulimo W.D. Molecular characterization of human coronaviruses and their circulation dynamics in Kenya, 2009-2012. Virol. J. 2016;13:18. doi: 10.1186/s12985-016-0474-x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Siu K.L., Chan C.P., Kok K.H., C-Y Woo P., Jin D.Y. Comparative analysis of the activation of unfolded protein response by spike proteins of severe acute respiratory syndrome coronavirus and human coronavirus HKU1. Cell Biosci. 2014;4(1):3. doi: 10.1186/2045-3701-4-3. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Siu K.L., Chan C.P., Kok K.H., Chiu-Yat Woo P., Jin D.Y. Suppression of innate antiviral response by severe acute respiratory syndrome coronavirus M protein is mediated through the first transmembrane domain. Cell. Mol. Immunol. 2014;11(2):141–149. doi: 10.1038/cmi.2013.61. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Smith M.K., Tusell S., Travanty E.A., Berkhout B., van der Hoek L., Holmes K.V. Human angiotensin-converting enzyme 2 (ACE2) is a receptor for human respiratory coronavirus NL63. Adv. Exp. Med. Biol. 2006;581:285–288. doi: 10.1007/978-0-387-33012-9_48. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Snijder E.J., Limpens R.W.A.L., De Wilde A.H., De Jong A.W.M., Zevenhoven-Dobbe J.C., Maier H.J., Faas F.F.G.A., Koster A.J., Bárcena M. A unifying structural and functional model of the coronavirus replication organelle: tracking down RNA synthesis. PLoS Biol. 2020;18(6) doi: 10.1371/journal.pbio.3000715. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Song Y., Deng Y., Wang H., Bei Z., Gu H., Zhao H., Wang H., Zhang D., Xu L., Wang B., Li Y., Wang H. Naphthoquine: a potent broad-spectrum anti-coronavirus drug in vitro. Molecules. 2022;27(3):712. doi: 10.3390/molecules27030712. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Stern D.F., Sefton B.M. Coronavirus proteins: structure and function of the oligosaccharides of the avian infectious bronchitis virus glycoproteins. J. Virol. 1982;44(3):804–812. doi: 10.1128/jvi.44.3.804-812.1982. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Stone N.E., Jaramillo S.A., Jones A.N., Vazquez A.J., Martz M., Versluis L.M., Raniere M.O., Nunnally H.E., Zarn K.E., Nottingham R., Ng K.R., Sahl J.W., Wagner D.M., Knudsen S., Settles E.W., Keim P., French C.T. Stenoparib, an inhibitor of cellular poly(ADP-Ribose) polymerase, blocks replication of the SARS-CoV-2 and HCoV-NL63 human coronaviruses in vitro. mBio. 2021;12(1):1–12. doi: 10.1128/mBio.03495-20. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Struck A.W., Axmann M., Pfefferle S., Drosten C., Meyer B. A hexapeptide of the receptor-binding domain of SARS corona virus spike protein blocks viral entry into host cells via the human receptor ACE2. Antivir. Res. 2012;94(3):288–296. doi: 10.1016/j.antiviral.2011.12.012. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Sun L., Xing Y., Chen X., Zheng Y., Yang Y., Nichols D.B., Clementz M.A., Banach B.S., Li K., Baker S.C., Chen Z. Coronavirus papain-like proteases negatively regulate antiviral innate immune response through disruption of STING-mediated signaling. PLoS One. 2012;7(2):e30802. doi: 10.1371/journal.pone.0030802. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Sungnak W., Huang N., Bécavin C., Berg M., Queen R., Litvinukova M., Talavera-López C., Maatz H., Reichart D., Sampaziotis F., Worlock K.B., Yoshida M., Barnes J.L., Banovich N.E., Barbry P., Brazma A., Collin J., Desai T.J., Duong T.E., Eickelberg O., Falk C., Farzan M., Glass I., Gupta R.K., Haniffa M., Horvath P., Hubner N., Hung D., Kaminski N., Krasnow M., Kropski J.A., Kuhnemund M., Lako M., Lee H., Leroy S., Linnarson S., Lundeberg J., Meyer K.B., Miao Z., Misharin A.V., Nawijn M.C., Nikolic M.Z., Noseda M., Ordovas-Montanes J., Oudit G.Y., Pe'er D., Powell J., Quake S., Rajagopal J., Tata P.R., Rawlins E.L., Regev A., Reyfman P.A., Rozenblatt-Rosen O., Saeb-Parsy K., Samakovlis C., Schiller H.B., Schultze J.L., Seibold M.A., Seidman C.E., Seidman J.G., Shalek A.K., Shepherd D., Spence J., Spira A., Sun X., Teichmann S.A., Theis F.J., Tsankov A.M., Vallier L., van den Berge M., Whitsett J., Xavier R., Xu Y., Zaragosi L.E., Zerti D., Zhang H., Zhang K., Rojas M., Figueiredo F., Network H.C.A.L.B. SARS-CoV-2 entry factors are highly expressed in nasal epithelial cells together with innate immune genes. Nat. Med. 2020;26(5):681–687. doi: 10.1038/s41591-020-0868-6. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Surjit M., Liu B., Chow V.T.K., Lal S.K. The nucleocapsid protein of severe acute respiratory syndrome-coronavirus inhibits the activity of cyclin-cyclin-dependent kinase complex and blocks S phase progression in mammalian cells. J. Biol. Chem. 2006;281(16):10669–10681. doi: 10.1074/jbc.M509233200. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Surjit M., Liu B., Jameel S., Chow V.T., Lal S.K. The SARS coronavirus nucleocapsid protein induces actin reorganization and apoptosis in COS-1 cells in the absence of growth factors. Biochem. J. 2004;383(1):13–18. doi: 10.1042/BJ20040984. Pt. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Sutton G., Fry E., Carter L., Sainsbury S., Walter T., Nettleship J., Berrow N., Owens R., Gilbert R., Davidson A., Siddell S., Poon L.L.M., Diprose J., Alderton D., Walsh M., Grimes J.M., Stuart D.I. The nsp9 replicase protein of SARS-coronavirus, structure and functional insights. Structure. 2004;12(2):341–353. doi: 10.1016/j.str.2004.01.016. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Szelazek B., Kabala W., Kus K., Zdzalik M., Twarda-Clapa A., Golik P., Burmistrz M., Florek D., Wladyka B., Pyrc K., Dubin G. Structural characterization of human coronavirus NL63 N protein. J. Virol. 2017;91(11):e02503–e02516. doi: 10.1128/JVI.02503-16. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Tan Y.W., Fang S., Fan H., Lescar J., Liu D.X. Amino acid residues critical for RNA-binding in the N-terminal domain of the nucleocapsid protein are essential determinants for the infectivity of coronavirus in cultured cells. Nucleic Acids Res. 2006;34(17):4816–4825. doi: 10.1093/nar/gkl650. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Tao Y., Shi M., Chommanard C., Queen K., Zhang J., Markotter W., Kuzmin I.V., Holmes E.C., Tong S. Surveillance of bat coronaviruses in Kenya identifies relatives of human coronaviruses NL63 and 229E and their recombination history. J. Virol. 2017;91(5):e01953–16. doi: 10.1128/JVI.01953-16. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Tsai Y.C., Lee C.L., Yen H.R., Chang Y.S., Lin Y.P., Huang S.H., Lin C.W. Antiviral action of tryptanthrin isolated from strobilanthes cusia leaf against human coronavirus NL63. Biomolecules. 2020;10(3):366. doi: 10.3390/biom10030366. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Tvarogová J., Madhugiri R., Bylapudi G., Ferguson L.J., Karl N., Ziebuhr J. Identification and characterization of a human coronavirus 229E nonstructural protein 8-associated RNA 3′-Terminal adenylyltransferase activity. J. Virol. 2019;93(12):e00291. doi: 10.1128/JVI.00291-19. -00219. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Utiger A., Tobler K., Bridgen A., Ackermann M. Identification of the membrane protein of porcine epidemic diarrhea virus. Virus Genes. 1995;10(2):137–148. doi: 10.1007/BF01702594. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Vabret A., Mourez T., Dina J., Van Der Hoek L., Gouarin S., Petitjean J., Brouard J., Freymuth F. Human coronavirus NL63, France. Emerg. Infect. Dis. 2005;11(8):1225. doi: 10.3201/eid1108.050110. [DOI] [PMC free article] [PubMed] [Google Scholar]
- van der Hoek L., Pyrc K., Berkhout B. Human coronavirus NL63, a new respiratory virus. FEMS Microbiol. Rev. 2006;30(5):760–773. doi: 10.1111/j.1574-6976.2006.00032.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- van der Hoek L., Pyrc K., Jebbink M.F., Vermeulen-Oost W., Berkhout R.J., Wolthers K.C., Wertheim-van Dillen P.M., Kaandorp J., Spaargaren J., Berkhout B. Identification of a new human coronavirus. Nat. Med. 2004;10(4):368–373. doi: 10.1038/nm1024. [DOI] [PMC free article] [PubMed] [Google Scholar]
- van der Hoek L., Sure K., Ihorst G., Stang A., Pyrc K., Jebbink M.F., Petersen G., Forster J., Berkhout B., Uberla K. Croup is associated with the novel coronavirus NL63. PLoS Med. 2005;2(8):e240. doi: 10.1371/journal.pmed.0020240. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Verheije M.H., Hagemeijer M.C., Ulasli M., Reggiori F., Rottier P.J., Masters P.S., de Haan C.A. The coronavirus nucleocapsid protein is dynamically associated with the replication-transcription complexes. J. Virol. 2010;84(21):11575–11579. doi: 10.1128/JVI.00569-10. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Verheije M.H., Raaben M., Mari M., Te Lintelo E.G., Reggiori F., Van Kuppeveld F.J.M., Rottier P.J.M., De Haan C.A.M. Mouse hepatitis coronavirus RNA replication depends on GBF1-mediated ARF1 activation. PLoS Pathog. 2008;4(6) doi: 10.1371/journal.ppat.1000088. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Walls A.C., Tortorici M.A., Frenz B., Snijder J., Li W., Rey F.A., DiMaio F., Bosch B.J., Veesler D. Glycan shield and epitope masking of a coronavirus spike protein observed by cryo-electron microscopy. Nat. Struct. Mol. Biol. 2016;23(10):899–905. doi: 10.1038/nsmb.3293. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Wang F., Chen C., Tan W., Yang K., Yang H. Structure of main protease from human coronavirus NL63: insights for wide spectrum anti-coronavirus drug design. Sci. Rep. 2016;6:22677. doi: 10.1038/srep22677. -22677. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Wang Y., Li P., Lavrijsen M., Li Y., Ma Z., Peppelenbosch M.P., Baig M.S., Pan Q. Differing pan-coronavirus antiviral potency of boceprevir and GC376 in vitro despite discordant molecular docking predictions. Arch. Virol. 2022;167(4):1125–1130. doi: 10.1007/s00705-022-05369-y. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Wang Y., Li X., Liu W., Gan M., Zhang L., Wang J., Zhang Z., Zhu A., Li F., Sun J., Zhang G., Zhuang Z., Luo J., Chen D., Qiu S., Zhang L., Xu D., Mok C.K.P., Zhang F., Zhao J., Zhou R., Zhao J. Discovery of a subgenotype of human coronavirus NL63 associated with severe lower respiratory tract infection in China, 2018. Emerg. Microbes Infect. 2020;9(1):246–255. doi: 10.1080/22221751.2020.1717999. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Wang Y., Rajpoot S., Li P., Lavrijsen M., Ma Z., Hirani N., Saqib U., Pan Q., Baig M.S. Repurposing dyphylline as a pan-coronavirus antiviral therapy. Future Med. Chem. 2022;14(10):685–699. doi: 10.4155/fmc-2021-0311. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Wang Y., Shi H., Rigolet P., Wu N., Zhu L., Xi X.G., Vabret A., Wang X., Wang T. Nsp1 proteins of group I and SARS coronaviruses share structural and functional similarities. Infect. Genet. Evol. 2010;10(7):919–924. doi: 10.1016/j.meegid.2010.05.014. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Wei J., Alfajaro M.M., DeWeirdt P.C., Hanna R.E., Lu-Culligan W.J., Cai W.L., Strine M.S., Zhang S.M., Graziano V.R., Schmitz C.O., Chen J.S., Mankowski M.C., Filler R.B., Ravindra N.G., Gasque V., de Miguel F.J., Patil A., Chen H., Oguntuyo K.Y., Abriola L., Surovtseva Y.V., Orchard R.C., Lee B., Lindenbach B.D., Politi K., van Dijk D., Kadoch C., Simon M.D., Yan Q., Doench J.G., Wilen C.B. Genome-wide CRISPR screens reveal host factors critical for SARS-CoV-2 infection. Cell. 2021;184(1):76–91.e13. doi: 10.1016/j.cell.2020.10.028. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Weil T., Lawrenz J., Seidel A., Münch J., Müller J.A. Immunodetection assays for the quantification of seasonal common cold coronaviruses OC43, NL63, or 229E infection confirm nirmatrelvir as broad coronavirus inhibitor. Antivir. Res. 2022;203 doi: 10.1016/j.antiviral.2022.105343. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Weis W., Brown J.H., Cusack S., Paulson J.C., Skehel J.J., Wiley D.C. Structure of the influenza virus haemagglutinin complexed with its receptor, sialic acid. Nature. 1988;333(6172):426–431. doi: 10.1038/333426a0. [DOI] [PubMed] [Google Scholar]
- Weissenhorn W., Dessen A., Harrison S.C., Skehel J.J., Wiley D.C. Atomic structure of the ectodomain from HIV-1 gp41. Nature. 1997;387(6631):426–430. doi: 10.1038/387426a0. [DOI] [PubMed] [Google Scholar]
- Wells D.A., Cantoni D., Mayora-Neto M., Genova C.D., Sampson A., Ferrari M., Carnell G., Nadesalingam A., Smith P., Chan A., Raddi G., Castillo-Olivares J., Baxendale H., Temperton N., Heeney J.L. Human seasonal coronavirus neutralization and COVID-19 severity. J. Med. Virol. 2022;94(10):4820–4829. doi: 10.1002/jmv.27937. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Weng J.R., Lin C.S., Lai H.C., Lin Y.P., Wang C.Y., Tsai Y.C., Wu K.C., Huang S.H., Lin C.W. Antiviral activity of Sambucus FormosanaNakai ethanol extract and related phenolic acid constituents against human coronavirus NL63. Virus Res. 2019;273 doi: 10.1016/j.virusres.2019.197767. [DOI] [PMC free article] [PubMed] [Google Scholar]
- WHO . WHO; 2020. Coronavirus Disease (COVID-19) Outbreak. Situation reports. [Google Scholar]
- WHO . Vol. 2021. WHO; 2021. (WHO Coronavirus (COVID-19)). Vol. [Google Scholar]
- Wilson L., McKinlay C., Gage P., Ewart G. SARS coronavirus E protein forms cation-selective ion channels. Virology. 2004;330(1):322–331. doi: 10.1016/j.virol.2004.09.033. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Wirsching S., Harder L., Heymanns M., Gröndahl B., Hilbert K., Kowalzik F., Meyer C., Gehring S. Long-term, CD4(+) memory T cell response to SARS-CoV-2. Front. Immunol. 2022;13 doi: 10.3389/fimmu.2022.800070. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Wolff G., Limpens R.W.A.L., Zevenhoven-Dobbe J.C., Laugks U., Zheng S., de Jong A.W.M., Koning R.I., Agard D.A., Grünewald K., Koster A.J., Snijder E.J., Bárcena M. A molecular pore spans the double membrane of the coronavirus replication organelle. Science. 2020;369(6509):1395. doi: 10.1126/science.abd3629. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Wong H.H., Kumar P., Tay F.P.L., Moreau D., Liu D.X., Bard F. Genome-wide screen reveals valosin-containing protein requirement for coronavirus exit from endosomes. J. Virol. 2015;89(21):11116–11128. doi: 10.1128/JVI.01360-15. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Wong S.K., Li W., Moore M.J., Choe H., Farzan M. A 193-amino acid fragment of the SARS coronavirus S protein efficiently binds angiotensin-converting enzyme 2. J. Biol. Chem. 2004;279(5):3197–3201. doi: 10.1074/jbc.C300520200. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Woo P.C., Lau S.K., Chu C.M., Chan K.H., Tsoi H.W., Huang Y., Wong B.H., Poon R.W., Cai J.J., Luk W.K., Poon L.L., Wong S.S., Guan Y., Peiris J.S., Yuen K.Y. Characterization and complete genome sequence of a novel coronavirus, coronavirus HKU1, from patients with pneumonia. J. Virol. 2005;79(2):884–895. doi: 10.1128/JVI.79.2.884-895.2005. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Wrensch F., Winkler M., Pöhlmann S. IFITM proteins inhibit entry driven by the MERS-coronavirus spike protein: evidence for cholesterol-independent mechanisms. Viruses. 2014;6(9):3683–3698. doi: 10.3390/v6093683. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Wu C.H., Yeh S.H., Tsay Y.G., Shieh Y.H., Kao C.L., Chen Y.S., Wang S.H., Kuo T.J., Chen D.S., Chen P.J. Glycogen synthase kinase-3 regulates the phosphorylation of severe acute respiratory syndrome coronavirus nucleocapsid protein and viral replication. J. Biol. Chem. 2009;284(8):5229–5239. doi: 10.1074/jbc.M805747200. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Wu C.H., Chen P.J., Yeh S.H. Nucleocapsid phosphorylation and RNA helicase DDX1 recruitment enables coronavirus transition from discontinuous to continuous transcription. Cell Host Microbe. 2014;16(4):462–472. doi: 10.1016/j.chom.2014.09.009. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Wu K., Chen L., Peng G., Zhou W., Pennell C.A., Mansky L.M., Geraghty R.J., Li F. A virus-binding hot spot on human angiotensin-converting enzyme 2 is critical for binding of two different coronaviruses. J. Virol. 2011;85(11):5331–5337. doi: 10.1128/JVI.02274-10. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Wu K., Li W., Peng G., Li F. Crystal structure of NL63 respiratory coronavirus receptor-binding domain complexed with its human receptor. Proc. Natl. Acad. Sci. 2009;106(47):19970–19974. doi: 10.1073/pnas.0908837106. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Xiao Y., Ma Q., Restle T., Shang W., Svergun D.I., Ponnusamy R., Sczakiel G., Hilgenfeld R. Nonstructural proteins 7 and 8 of feline coronavirus form a 2:1 heterotrimer that exhibits primer-independent RNA polymerase activity. J. Virol. 2012;86(8):4444–4454. doi: 10.1128/JVI.06635-11. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Xu H., Liu B., Xiao Z., Zhou M., Ge L., Jia F., Liu Y., Jin H., Zhu X., Gao J., Akhtar J., Xiang B., Tan K., Wang G. Computational and experimental studies reveal that thymoquinone blocks the entry of coronaviruses into in vitro cells. Infect. Dis. Ther. 2021;10(1):483–494. doi: 10.1007/s40121-021-00400-2. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Yang H., Xie W., Xue X., Yang K., Ma J., Liang W., Zhao Q., Zhou Z., Pei D., Ziebuhr J. Design of wide-spectrum inhibitors targeting coronavirus main proteases. PLoS Biol. 2005;3(10):e324. doi: 10.1371/journal.pbio.0030324. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Yeung M.L., Yao Y., Jia L., Chan J.F., Chan K.H., Cheung K.F., Chen H., Poon V.K., Tsang A.K., To K.K., Yiu M.K., Teng J.L., Chu H., Zhou J., Zhang Q., Deng W., Lau S.K., Lau J.Y., Woo P.C., Chan T.M., Yung S., Zheng B.J., Jin D.Y., Mathieson P.W., Qin C., Yuen K.Y. MERS coronavirus induces apoptosis in kidney and lung by upregulating Smad7 and FGF2. Nat. Microbiol. 2016;1(3):16004. doi: 10.1038/nmicrobiol.2016.4. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Yu D., Zhu Y., Jiao T., Wu T., Xiao X., Qin B., Chong H., Lei X., Ren L., Cui S., Wang J., He Y. Structure-based design and characterization of novel fusion-inhibitory lipopeptides against SARS-CoV-2 and emerging variants. Emerg. Microbes Infect. 2021;10(1):1227–1240. doi: 10.1080/22221751.2021.1937329. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Yu X., Bi W., Weiss S.R., Leibowitz J.L. Mouse hepatitis virus gene 5b protein is a new virion envelope protein. Virology. 1994;202(2):1018–1023. doi: 10.1006/viro.1994.1430. [DOI] [PubMed] [Google Scholar]
- Yuan L., Chen Z., Song S., Wang S., Tian C., Xing G., Chen X., Xiao Z.X., He F., Zhang L. p53 degradation by a coronavirus papain-like protease suppresses type I interferon signaling. J. Biol. Chem. 2015;290(5):3172–3182. doi: 10.1074/jbc.M114.619890. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Yuan Q., Liao Y., Torres J., Tam J.P., Liu D.X. Biochemical evidence for the presence of mixed membrane topologies of the severe acute respiratory syndrome coronavirus envelope protein expressed in mammalian cells. FEBS Lett. 2006;580(13):3192–3200. doi: 10.1016/j.febslet.2006.04.076. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Zaki A.M., van Boheemen S., Bestebroer T.M., Osterhaus A.D., Fouchier R.A. Isolation of a novel coronavirus from a man with pneumonia in Saudi Arabia. N. Engl. J. Med. 2012;367(19):1814–1820. doi: 10.1056/NEJMoa1211721. [DOI] [PubMed] [Google Scholar]
- Zhang Y., Gao H., Hu X., Wang Q., Zhong F., Zhou X., Lin C., Yang Y., Wei J., Du W., Huang H., Zhou H., He W., Zhang H., Zhang Y., McCormick P.J., Fu J., Wang D., Fu Y., Lu X., Zhang T., Duan J., Qin B., Jiang H., Luo J., Zhang Y., Chen Q., Luo Q., Cheng L., Zhang Z., Zhang J., Li J. Structure-based discovery and structural basis of a novel broad-spectrum natural product against the main protease of coronavirus. J. Virol. 2022;96(1) doi: 10.1128/JVI.01253-21. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Zhao G., Shi S.Q., Yang Y., Peng J.P. M and N proteins of SARS coronavirus induce apoptosis in HPF cells. Cell Biol. Toxicol. 2006;22(5):313–322. doi: 10.1007/s10565-006-0077-1. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Zhao X., Guo F., Comunale M.A., Mehta A., Sehgal M., Jain P., Cuconati A., Lin H., Block T.M., Chang J., Guo J.T. Inhibition of endoplasmic reticulum-resident glucosidases impairs severe acute respiratory syndrome coronavirus and human coronavirus NL63 spike protein-mediated entry by altering the glycan processing of angiotensin I-converting enzyme 2. Antimicrob. Agents Chemother. 2015;59(1):206–216. doi: 10.1128/AAC.03999-14. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Zhao X., Guo F., Liu F., Cuconati A., Chang J., Block T.M., Guo J.T. Interferon induction of IFITM proteins promotes infection by human coronavirus OC43. Proc. Natl. Acad. Sci. 2014;111(18):6756–6761. doi: 10.1073/pnas.1320856111. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Zhao X., Sehgal M., Hou Z., Cheng J., Shu S., Wu S., Guo F., Le Marchand S.J., Lin H., Chang J. Identification of residues controlling restriction versus enhancing activities of IFITM proteins on entry of human coronaviruses. J. Virol. 2018;92(6):e01535–17. doi: 10.1128/JVI.01535-17. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Zheng Q., Deng Y., Liu J., van der Hoek L., Berkhout B., Lu M. Core structure of S2 from the human coronavirus NL63 spike glycoprotein. Biochemistry. 2006;45(51):15205–15215. doi: 10.1021/bi061686w. [DOI] [PubMed] [Google Scholar]
- Zhou B., Liu J., Wang Q., Liu X., Li X., Li P., Ma Q., Cao C. The nucleocapsid protein of severe acute respiratory syndrome coronavirus inhibits cell cytokinesis and proliferation by interacting with translation elongation factor 1α. J. Virol. 2008;82(14):6962–6971. doi: 10.1128/JVI.00133-08. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Zhu L., Mou C., Yang X., Lin J., Yang Q. Mitophagy in TGEV infection counteracts oxidative stress and apoptosis. Oncotarget. 2016;7(19):27122. doi: 10.18632/oncotarget.8345. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Zhu N., Wang W., Liu Z., Liang C., Wang W., Ye F., Huang B., Zhao L., Wang H., Zhou W., Deng Y., Mao L., Su C., Qiang G., Jiang T., Zhao J., Wu G., Song J., Tan W. Morphogenesis and cytopathic effect of SARS-CoV-2 infection in human airway epithelial cells. Nat. Commun. 2020;11(1):3910. doi: 10.1038/s41467-020-17796-z. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Ziebuhr J., Schelle B., Karl N., Minskaia E., Bayer S., Siddell S.G., Gorbalenya A.E., Thiel V. Human Coronavirus 229E papain-like proteases have overlapping specificities but distinct functions in viral replication. J. Virol. 2007;81(8):3922. doi: 10.1128/JVI.02091-06. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Ziebuhr J., Snijder E.J., Gorbalenya A.E. Virus-encoded proteinases and proteolytic processing in the Nidovirales. Microbiology. 2000;81(4):853–879. doi: 10.1099/0022-1317-81-4-853. [DOI] [PubMed] [Google Scholar]
- Ziegler C.G.K., Allon S.J., Nyquist S.K., Mbano I.M., Miao V.N., Tzouanas C.N., Cao Y., Yousif A.S., Bals J., Hauser B.M., Feldman J., Muus C., Wadsworth M.H., 2nd, Kazer S.W., Hughes T.K., Doran B., Gatter G.J., Vukovic M., Taliaferro F., Mead B.E., Guo Z., Wang J.P., Gras D., Plaisant M., Ansari M., Angelidis I., Adler H., Sucre J.M.S., Taylor C.J., Lin B., Waghray A., Mitsialis V., Dwyer D.F., Buchheit K.M., Boyce J.A., Barrett N.A., Laidlaw T.M., Carroll S.L., Colonna L., Tkachev V., Peterson C.W., Yu A., Zheng H.B., Gideon H.P., Winchell C.G., Lin P.L., Bingle C.D., Snapper S.B., Kropski J.A., Theis F.J., Schiller H.B., Zaragosi L.E., Barbry P., Leslie A., Kiem H.P., Flynn J.L., Fortune S.M., Berger B., Finberg R.W., Kean L.S., Garber M., Schmidt A.G., Lingwood D., Shalek A.K., Ordovas-Montanes J. SARS-CoV-2 receptor ACE2 is an interferon-stimulated gene in human airway epithelial cells and is detected in specific cell subsets across tissues. Cell. 2020;181(5):1016–1035.e1019. doi: 10.1016/j.cell.2020.04.035. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Zúñiga S., Cruz J.L., Sola I., Mateos-Gómez P.A., Palacio L., Enjuanes L. Coronavirus nucleocapsid protein facilitates template switching and is required for efficient transcription. J. Virol. 2010;84(4):2169–2175. doi: 10.1128/JVI.02011-09. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Zúñiga S., Sola I., Moreno J.L., Sabella P., Plana-Durán J., Enjuanes L. Coronavirus nucleocapsid protein is an RNA chaperone. Virology. 2007;357(2):215–227. doi: 10.1016/j.virol.2006.07.046. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Züst R., Miller T.B., Goebel S.J., Thiel V., Masters P.S. Genetic interactions between an essential 3′ cis-acting RNA pseudoknot, replicase gene products, and the extreme 3′ end of the mouse coronavirus genome. J. Virol. 2008;82(3):1214–1228. doi: 10.1128/JVI.01690-07. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Zuwala K., Golda A., Kabala W., Burmistrz M., Zdzalik M., Nowak P., Kedracka-Krok S., Zarebski M., Dobrucki J., Florek D., Zeglen S., Wojarski J., Potempa J., Dubin G., Pyrc K. The nucleocapsid protein of human coronavirus NL63. PLoS One. 2015;10(2) doi: 10.1371/journal.pone.0117833. [DOI] [PMC free article] [PubMed] [Google Scholar]
Associated Data
This section collects any data citations, data availability statements, or supplementary materials included in this article.
Data Availability Statement
Data will be made available on request.



