Skip to main content
Journal of Clinical Microbiology logoLink to Journal of Clinical Microbiology
. 2023 Jan 31;61(2):e01426-22. doi: 10.1128/jcm.01426-22

An Update on Novel Taxa and Revised Taxonomic Status of Bacteria (Including Members of the Phylum Planctomycetota) Isolated from Aquatic Host Species Described in 2018 to 2021

Claire R Burbick a, Erik Munson b,, Sara D Lawhon c, Amanda Zapp b, Maia Villaflor b, Elizabeth Thelen b
Editor: Romney M Humphriesd
PMCID: PMC9945501  PMID: 36719221

ABSTRACT

Increased interest in farmed aquatic species, aquatic conservation measures, and microbial metabolic end-product utilization have translated into a need for awareness and recognition of novel microbial species and revisions to bacterial taxonomy. Because this need has largely been unmet, through a 4-year literature review, we present lists of novel and revised bacterial species (including members of the phylum Planctomycetota) derived from aquatic hosts that can serve as a baseline for future biennial summaries of taxonomic revisions in this field. Most new and revised taxa were noted within oxidase-positive and/or nonglucose fermentative Gram-negative bacilli, including members of the Tenacibaculum, Flavobacterium, and Vibrio genera. Valid and effectively published novel members of the Streptococcus, Erysipelothrix, and Photobacterium genera are additionally described from disease pathogenesis perspectives.

KEYWORDS: microbial taxonomy, Planctomycetes, veterinary microbiology

INTRODUCTION

Aquatic microbiology is a rich area of discovery and has become especially important with the increase in farmed aquatic animal systems and in conservation efforts. As we develop methodology to cultivate aquatic bacteria, which grow at various temperatures and salinities, we can describe new species and, importantly, identify pathogens both new and old. As more interest grows in aquatic microbiology we are faced with evolving analysis of current taxa and description of new taxa that can be difficult to keep up with. Therefore, a compendium of additions and changes is critical for those working in aquatic environments and supporting aquatic animal health. Additionally, the metabolic properties of some of the species identified have important uses for denitrification, resistance to heavy metals, or breakdown of other products. Lastly, aquatic microbiology has human clinical relevance, with Vibrio spp. a classic example, and may prove valuable for human medical professionals.

To satisfy an unmet need in clinical veterinary microbiology practice, novel bacterial taxa and nomenclature revisions were searched from 2018 through 2021. Of the greater than 475 cumulative novel taxa/revisions, approximately 30% were related to bacteria (including members of the phylum Planctomycetota) of aquatic host origin. Planctomycetes are distinctive prokaryotic forms with traits that have elicited confusion among scientists for approximately one hundred years. At times, they have been thought to be comprised of a cellular architecture independent of Gram-positive and Gram-negative bacteria, to be classified as a “nucleated” bacterium, and to be devoid of peptidoglycan (1). Truly divergent characteristics of planctomycetes (which also apply to chlamydial bacteria) versus other free-living prokaryotes include asymmetrical cell division and lack of division protein FtsZ (2, 3). Newer taxa within the phylum Planctomycetota have been associated with diverse marine environments such as hydrothermal vent systems, natural or artificial marine surfaces, jellyfishes, biofilms, and kelp forests (1).

Data pertinent to prokaryotes derived from aquatic hosts are presented in the current report. Other taxonomic changes of veterinary importance relative to bacteria derived from domestic animals (4) and nondomestic wildlife animals (5) are presented in other reports in this issue of Journal of Clinical Microbiology.

METHODS

Valid and effectively published novel and revised taxa pertinent to prokaryotic species must satisfy two requirements. First, original investigations are published in the International Journal of Systematic and Evolutionary Microbiology (IJSEM). One example is provided (6). In addition, type strains are to be deposited into recognized culture collections in two separate countries.

As an alternative to primary publication in IJSEM, studies may be published in another journal, with subsequent acceptance by IJSEM. One past example relative to prokaryotes derived from aquatic hosts is the effective description of Photobacterium sanguinicancri (7), with subsequent acceptance on an IJSEM Validation List (8). Six times per year, IJSEM publishes papers that are now entitled “Valid publication of new names and new combinations effectively published outside the IJSEM.” To be considered for inclusion on these validation lists, authors must submit a copy of the previously published manuscript to the editorial office of IJSEM for confirmation that all elements necessary for valid publication (including culture collection deposition) have been met. It must be noted that taxa within primary publication and those on validation lists may be subject to reclassification based on a synonym designation or transfer to another genus. We attempt to capture additional revisions in this report.

In such fashion, journals that have recently published studies providing an effective description of novel taxa from aquatic hosts which may be relevant to the practice of clinical veterinary microbiology include Antonie Van Leeuwenhoek, Archives of Microbiology, Current Microbiology, Diseases of Aquatic Organisms, Frontiers in Microbiology, Journal of Microbiology, Journal of Microbiology and Biotechnology, and Systematic and Applied Microbiology. Journals that have recently published studies reflecting revisions in prokaryotic taxonomy relative to aquatic hosts include Antonie Van Leeuwenhoek and Frontiers in Microbiology.

All issues of IJSEM published from January 2018 through December 2021 (including 24 validation lists) were searched for original articles describing new species taxonomy or accepted changes in taxonomic nomenclature. This audit was further filtered by organisms recovered from aquatic host species. Published or accepted taxa that were isolated directly from seawater or freshwater were excluded from further investigation.

RESULTS AND DISCUSSION

A compilation of novel prokaryotic taxa recovered from aquatic host species stratified by Gram reaction and cellular morphology is presented in Table 1. Correct and updated Enterobacterales family designations (9) for selected taxa are concomitantly provided. It should be noted that within Table 1, a subset of biochemical testing results was derived from methods that are potentially antiquated, time-consuming, and/or not routinely available in veterinary microbiology laboratories; furthermore, definitive identification of other novel taxa may necessitate molecular, MALDI-TOF MS, or sequencing modalities. Table 2 provides taxonomic revisions for organisms originally recovered from aquatic host species. It should be further noted that alternate means of classifying novel and revised species can be based on higher-level phylogenetic-based nomenclature, some of which has recently undergone significant revision at the phylum level (10).

TABLE 1.

Novel bacterial species (including members of the phylum Planctomycetota) recovered from aquatic veterinary material reported from January 2018 through December 2021

Scientific name Family Source Growth characteristics Reference(s)
Gram-positive cocci
 Tessaracoccus aquimaris sp. nov. Propionibacteriaceae Intestine of Korean rockfish (Sebastes schlegelii) Aerobic, nonmotile, catalase-negative, oxidase-negative Gram-positive coccus; 0.5- to 1.0-mm diam circular, slightly convex, pale yellow colonies on Reasoner’s 2A agar; optimal growth at 30°C; α-mannosidase-, α-fucosidase-, d-mannitol-, dulcitol-, d-sorbitol-, methyl α-d-galactoside-positive; C4 esterase-, methyl α-d-glucopyranoside-, inulin-, potassium 5-ketogluconate-, d-fructose-, pyruvate-negative 46
Streptococcus penaeicida sp. nov. Streptococcaceae Diseased farmed Pacific white shrimp (Penaeus vannamei) from Guatemala Facultative, nonmotile, catalase-negative, oxidase-negative Gram-positive coccus; 0.75- to 1.0-mm diam α-hemolytic, circular, nonpigmented colonies on blood agar; growth range at 20–40°C; reacts with Lancefield group B antisera; positive reactions for β-galactosidase, arbutin, cellobiose, melezitose, gentiobiose, glycogen, l-sorbose, mannitol, starch; negative reactions for acetoin, arginine dihydrolase, sucrose, d-tagatose, indole, glycerol, inulin, l-arabinose 14
Salinicoccus cyprini sp. nov. Staphylococcaceae Gastrointestinal tract of mirror carp (Cyprinus carpio var. Specularis) from India Aerobic, nonmotile, catalase-positive, oxidase-positive, non-spore-forming Gram-positive coccus; 0.8- to 1.8-mm diam smooth, circular, orange-to-pink-pigmented colonies on marine agar; optimal growth at 30°C; also cultivated on nutrient agar, Luria Bertani agar, brain heart infusion agar; limited growth on yeast mannitol agar; DNase, arginine dihydrolase-, nitrate reduction-, urease-, d-fructose-, d-glucose-, maltose-, sucrose-positive; esculin-, Voges-Proskauer-, d-galactose-, glycerol-, d-mannitol-negative 47
Pseudokineococcus galaxeicola sp. nov. Kineosporiaceae Mucus of coral (Galaxea spp.) from China Aerobic, motile, catalase-positive, oxidase-positive Gram-positive coccus; opaque, deep orange colonies on tryptic soy agar; optimal growth at 25–35°C; d-mannose-positive; weakly reactive for melibiose, l-fucose, d-sorbitol, malic acid; d-arabinose-, urease-, starch-, gelatin-, nitrate reduction-, turanose-, xylitol-, glycogen-, arbutin-negative 48
Gram-positive bacilli
Paenibacillus crassostreae sp. nov. Paenibacillaceae Pacific oyster (Crassostrea gigas) from Korea Facultative, motile, catalase-positive, oxidase-positive, spore-forming Gram-positive bacillus; 1.0- to 1.5-mm diam cream-colored, circular, slightly convex colonies on tryptic soy agar; optimal growth at 25°C; hydrolyzes starch, but not urea or casein; l-arabinose-, inulin-, melibiose-, α-galactosidase-, β-galactosidase-, β-glucosidase-positive; d-fructose-, d-galactose-, gluconate-, d-mannitol-, trehalose-, d-xylose-, acid phosphatase-, alkaline phosphatase-, leucine arylamidase-, α-glucosidase-negative 49
Rhodococcus electrodiphilus sp. nov. Nocardiaceae Coral reef from India Aerobic, nonmotile, catalase-positive, oxidase-negative, non-spore-forming Gram-positive mycelium-forming filaments (in early stages of development); cells are filamentous in early growth phase, then transition to bacillus- or coccoid-shaped elements; small, smooth, convex, dark red-pigmented colonies on marine agar; optimal growth at 30°C; hydrolyzes casein and Tween 80, fails to hydrolyze urea and Tween 40; m-inositol-, esculin-, phenol-, cellobiose-, cellulose-, rhamnose-positive; uric acid-, sodium gluconate-, maltose-negative 11
Streptomyces reniochalinae sp. nov. Streptomycetaceae Marine sponge from China Aerobic, nonmotile, non-acid-fast, Gram-positive mycelium-forming filaments; hooked and looped aerial hyphae differentiated into chains of smooth-surfaced spores; growth range at 20–40°C; weakly positive reactions for Tween 20 hydrolysis, l-alanine, l-arginine, l-asparagine, glycine, l-histidine, l-hydroxyproline; negative reactions for l-valine, esculin 50
Streptomyces diacarni sp. nov. Streptomycetaceae Marine sponge from China Aerobic, nonmotile, non-acid-fast, Gram-positive mycelium-forming filaments; hooked and looped aerial hyphae differentiated into chains of smooth-surfaced spores; growth range at 20–40°C; positive reactions for Tween 20 hydrolysis, l-alanine, l-arginine, l-asparagine, glycine, l-histidine, l-hydroxyproline; weakly positive reactions for l-valine, esculin 50
Spongiactinospora rosea gen. nov., sp. nov. Streptosporangiaceae Marine sponge (Craniella spp.) from China Aerobic, nonmotile, catalase-positive, Gram-positive mycelium-forming filaments; aerial hyphae differentiated into pseudosporangia and chains of ridge-surfaced spores; light yellowish/brown pigments produced on International Streptomyces Project (ISP) 1–3, modified Bennett, and nutrient agar media; growth range at 20–40°C; positive for gelatin hydrolysis, Tweens 20, 40, and 60 hydrolysis, milk coagulation, peptonization; negative for esculin hydrolysis, starch hydrolysis, carboxymethylcellulose hydrolysis, melanin production, H2S production; major menaquinones MK-10(H4), MK-10(H6) 51
Micromonospora craniellae sp. nov. Micromonosporaceae Marine sponge (Craniella spp.) from China Aerobic, nonmotile, catalase-positive, Gram-positive mycelium-forming filaments; single or clustered smooth-surfaced spores; growth range at 20–34°C; positive for nitrate reduction, gelatin hydrolysis, Tweens 40 and 60 hydrolysis, carboxymethylcellulose hydrolysis; negative for Tweens 20 and 80 hydrolysis, esculin hydrolysis, melanin production, milk coagulation and peptonization, starch hydrolysis, H2S production; major menaquinone MK-9(H4); major fatty acids iso-C16:0, iso-C15:0, C17:1w8c, C18:1 w9c 52
Actinomadura craniellae sp. nov. Thermomonosporaceae Marine sponge (Craniella spp.) from China Aerobic, nonmotile, catalase-positive, Gram-positive mycelium-forming filaments; white aerial mycelia and curved spore-chains form on ISP 3 medium with 5–8 spherical spores; diffusible pigments absent on other media (including modified Bennett, nutrient, and tryptic soy agar); growth range at 20–40°C; positive for nitrate reduction, Tweens 20, 40, 60, and 80 hydrolysis; negative for carboxymethylcellulose hydrolysis, esculin hydrolysis, gelatin liquefaction, melanin production, milk peptonization, starch hydrolysis, H2S production; major menaquinones MK-9(H6), MK-9(H8); major fatty acids iso-C16:0, iso-C18:0, 10-methyl C17:0, C18:1 w9c 53
Geodermatophilus marinus sp. nov. Geodermatophilaceae Marine sponge (Leucetta chagosensis) from China Catalase-positive mycelium-forming filaments; black-pigmented colonies without diffusible pigments on ISP, modified Bennett, nutrient agar, potato dextrose agar, and tryptic soy agar media; growth range at 20–40°C; positive for gelatin hydrolysis; negative for carboxymethylcellulose hydrolysis, Tweens 20, 40, 60, and 80 hydrolysis, esculin hydrolysis, melanin production, milk coagulation and peptonization, nitrate reduction, starch hydrolysis, H2S production; major fatty acids iso-C16:0, iso-C16:1 h; major menaquinone MK-9(H4) 54
Erysipelothrix piscisicarius sp. nov. Erysipelotrichaceae Diseased ornamental fish from United States Aerobic, nonmotile, catalase-negative, oxidase-negative Gram-positive bacillus; small, gray, convex, γ-hemolytic colonies on tryptic soy agar with 5% sheep blood; optimal growth at 37°C after 48 hours; phenotypically like E. rhusiopathiae but lacks ability to metabolize lactose and l-rhamnose; possesses surface protective antigen C (spaC determinant) 16
Arthrobacter ulcerisalmonis sp. nov. Micrococcaceae Ulcer of farmed Atlantic salmon (Salmo salar) from Chile Aerobic, nonmotile, catalase-positive, oxidase-negative, non-spore-forming, irregular Gram-positive bacillus; 0.5-mm diam creamy/whitish to beige, nontranslucent colonies on tryptic soy agar; growth range at 10–35°C; esculin hydrolysis-, d-ribose-positive; d-xylose-, d-sorbitol-, N-acetyl-d-glucosamine-negative; major fatty acids anteiso-C15:0, iso-C16:0, anteiso-C17:0; major menaquinone MK-9(H2) 18
Saccharopolyspora coralli sp. nov. Pseudonocardiaceae Stony coral (Porites spp.) from China; taxon has been subsequently revised to novel genus Allosaccharopolyspora (refer to Table 2) Aerobic, nonmotile, catalase-positive, oxidase-negative, Gram-positive mycelium-forming filaments; no soluble pigments or spores produced; white to pale yellow substrate mycelium on tryptic soy agar; optimal growth at 25–30°C; gelatin hydrolysis-, l-arabinose-, trisodium citrate-, urease-, valine arylamidase-positive; p-nitrophenol-β-d-galactopyranoside-, α-chymotrypsin-, β-glucosidase-negative; major fatty acids iso-C15:0, iso-C16:0, C17:1 w8c 55
Glutamicibacter mishrai sp. nov. Micrococcaceae Coral (Favia veroni) from India Aerobic, nonmotile, catalase-positive, oxidase-positive, non-spore-forming Gram-positive bacillus; 1-mm diam smooth, light yellow-pigmented colonies on marine agar; optimal growth at 28–37°C; citrate-, starch-, DNase, gelatin-, C4 esterase-, C8 esterase lipase-, and leucine arylamindase-positive; indole-, Voges Proskauer-, nitrate reduction-, urease-, esculin-, cellulose-, casein-, C14 lipase-, alkaline phosphatase-, and valine arylamidase-negative; reported susceptibility to vancomycin, ciprofloxacin, erythromycin, ampicillin, tetracycline, polymyxin B, gentamicin 56 a
Aeromicrobium piscarium sp. nov. Nocardioidaceae Intestine of Collichthys lucidus from China Facultative, nonmotile, catalase-positive, oxidase-negative Gram-positive bacillus; <1-mm diam circular, white smoke-pigmented colonies on marine agar; optimal growth at 28°C; positive for starch hydrolysis, gelatinase, Tweens 20 and 40 hydrolysis, α-d-glucose, d-serine, d-gluconic acid; negative for carboxymethylcellulose hydrolysis, nitrate reduction, C4 esterase, indole, urease, H2S, casein hydrolysis, alginate hydrolysis, maltose, Tweens 60 and 80 hydrolysis 57
Streptomyces dysideae sp. nov. Streptomycetaceae Marine sponge (Dysidea tupha) from Croatia Aerobic, Gram-positive mycelium-forming filaments; aerial hyphae differentiate into spiral chains of spores; growth range at 25–30°C on nutrient agar; blue pigment forms on Reasoner’s 2A agar at 25°C; assimilates d-fructose, lactose, raffinose, ribose, sucrose; major menaquinones MK-9(H4) and MK-9(H6); major fatty acids iso-C16:0, C16:0, anteiso-C17:1 w9c, anteiso-C17.0, iso-C16:1 h 58
Nocardiopsis coralli sp. nov. Nocardiopsaceae Coral (Galaxea astreata) from China Nonmotile, catalase-positive, Gram-positive mycelium-forming filaments; aerial hyphae and substrate mycelia differentiated into short chains of smooth-surfaced spores; convex, irregular colonies on all media, except ISP 3 agar; color of substrate mycelium is light-yellow to orange-yellow; optimal growth at 28°C; d-xylose-, d-arabinose-, melibiose-, d-galactose-, d-glucose-positive; raffinose-, l-serine-, l-valine-, l-phenylalanine-, l-asparagine-, l-threonine-, l-glycine, l-proline-negative; major menaquinones MK-10(H8), MK-10(H6), MK-10(H4) 59
 Brachybacterium subflavum sp. nov. Dermabacteraceae Foregut of grass carp (Ctenopharyngodon idella) from China Aerobic, nonmotile, catalase-positive, oxidase-negative, non-spore-forming Gram-positive actinobacterium; circular, smooth, pale-yellow colonies on Luria Bertani agar; growth range at 4–37°C; positive for starch hydrolysis, gelatin hydrolysis, d-maltose, milk coagulation and peptonization, acid phosphatase, C14 lipase, β-galactosidase; negative for nitrate reduction, H2S production, d-fructose, d-arabitol, urease, Tweens 20, 40, 60, and 80 hydrolysis; major menaquinone MK-7(H4); major fatty acids anteiso-C15:0, anteiso-C17:0, iso-C16:0 60
 Rhodococcus spongiicola sp. nov. Nocardiaceae Marine sponge from China Aerobic, nonmotile, catalase-positive, non-spore-forming Gram-positive bacillus; circular, opaque, convex, light yellow colonies; best growth on nutrient agar, with optimal growth temp 28°C; d-fructose-, glycerol-, sodium acetate-, sodium pyruvate-positive; d-ribose-, d-xylose-, Tween 80 hydrolysis-negative; weakly hydrolyzes esculin; major menaquinone MK−8(H4); major fatty acids C16:0, C18:1 w9c 12
Rhodococcus xishaensis sp. nov. Nocardiaceae Marine sponge from China Aerobic, nonmotile, catalase-positive, non-spore-forming Gram-positive bacillus; circular, opaque, convex, light yellow colonies; best growth on nutrient agar, with optimal growth temp 28°C; d-fructose-, glycerol-, sodium acetate-, sodium pyruvate-, d-ribose-, d-xylose-positive; Tween 80 hydrolysis-, esculin hydrolysis-negative; major menaquinone MK-8(H4); major fatty acids C16:0, C18:0 10 methyl, TBSA, C18:1 w9c 12
Streptomyces bathyalis sp. nov. Streptomycetaceae Sponge collected from Atlantic Ocean Aerobic, Gram-positive mycelium-forming filaments; aerial hyphae only observed on ISP 3, 7 agars; spores not detected on any medium; good growth on ISP 2, 3, 4, and 5 agars (sparse growth on agars 6 and 7) without diffusible pigment; optimal growth at 25–30°C; trypsin-, β-galactosidase-positive; C14 lipase-, β-glucosidase-, cellulose-negative; major menaquinone MK-9(H8); major fatty acids iso-C16:0, anteiso-C15:0, iso-C15:0 61 b
Gram-negative cocci
Roseomonas coralli sp. nov. Acetobacteraceae Gorgonian coral sample from China Aerobic, nonmotile, catalase-positive, oxidase-positive, non-spore-forming Gram-negative coccus; pink-pigmented colonies on Reasoner’s 2A agar; optimal growth at 28°C; capable of resisting heavy metal; d-adonitol-, methyl α-d-mannopyranoside-, methyl α-d-glucopyranoside-, lactose-, trehalose-, raffinose-, alkaline phosphatase-, acid phosphatase-positive; d-fructose-, cellobiose-, gentiobiose-, d-tagatose-negative; reported susceptibility to erythromycin, gentamicin, clindamycin, cephazolin, minocycline, levofloxacin 62
Gram-negative bacilli and coccobacilli
Thalassotalea coralli sp. nov. Colwelliaceae Torch coral (Euphyllia glabrescens) from Taiwan Aerobic, motile, oxidase-positive, catalase-positive Gram-negative bacillus; 1.0- to 2.2-mm diam circular, convex, white colonies on marine agar; optimal growth at 25–30°C; hydrolyzes starch, casein, chitin, DNA, and Tweens 20, 40, 60, and 80; fails to hydrolyze urea, alginate; C8 esterase lipase-, C14 lipase-, α-chymotrypsin-, d-fructose-, trehalose-positive; cellobiose-, d-glucose-, d-mannose-, succinate-, N-acetyl-β-glucosaminidase-negative; reported susceptibility to penicillin, chloramphenicol, gentamicin, tetracycline, nalidixic acid 63
Litoribrevibacter euphylliae sp. nov. Oceanospirillaceae Torch coral (Euphyllia glabrescens) from Taiwan Aerobic, motile, oxidase-positive, catalase-positive Gram-negative bacillus; 0.5- to 1.5-mm diam circular, convex, translucent colonies on marine agar; optimal growth at 25°C; urease-, acetoin-, d-arabinose-, l-arabinose-, d-xylose-, galactose-, glucose-, rhamnose-, cellobiose-, mannose-, maltose-, lactose-, melbiose-, sucrose-, trehalose-, d-fucose-, l-fucose-, erythritol-, adonitol-, inositol-, sortibol-positive; β-galactosidase-, arginine dihydrolase-, tryptophan deaminase-, valine arylamidase-, indole-, arabinose-negative 64
Agaribacterium haliotis gen. nov., sp. nov. Cellvibrionaceae Feces from abalone (Haliotis discus hannai) from China Oxidase-positive, catalase-negative Gram-negative bacillus; 0.8-mm diam white, small, circular, crater-like colonies on marine agar; optimal growth at 28–30°C; acid phosphatase-, β-galactosidase-, α-glucosidase-, nitrate reduction-positive; cellulose-, esculin-, indole-, citrate-, C8 esterase lipase-, Voges Proskauer-, H2S-negative 65
Hydrogenophaga crassostreae sp. nov. Comamonadaceae Pacific oyster (Crassostrea gigas) from Republic of Korea Aerobic, motile, oxidase-positive, catalase-positive Gram-negative bacillus; convex, elevated, circular, yellow-pigmented colonies on marine agar; optimal growth at 25°C; nitrate reduction-, hypoxanthine hydrolysis-, Tween 80 hydrolysis-, β-galactosidase-, C8 esterase lipase-, acid phosphatase-positive; denitrification-, DNase, esculin hydrolysis-, Tween 20 hydrolysis-, C4 esterase-, α-galactosidase-, α-glucosidase-, β-glucosidase-negative 66
Colwellia echini sp. nov. Colwelliaceae Sea urchin from Denmark Facultative, motile, oxidase-positive, catalase-positive Gram-negative bacillus; circular, convex, mucoid colonies on marine agar; optimal growth at 20°C; starch hydrolysis-, agar hydrolysis-, K-carrageenan hydrolysis-, d-glucose-, urease-, mannitol-, alginate hydrolysis-, acid phosphatase-, naphthol-AS-BI-phosphohydrolase-positive; gelatin hydrolysis-, valine arylamidase-, trypsin-, α-chymotrypsin-, N-acetyl-β-glucosaminidase-negative 67
Photobacterium toruni sp. nov. Vibrionaceae Diseased farmed fish from Spain Facultative, motile, oxidase-positive, catalase-positive Gram-negative bacillus; 1.5-mm to 2.5-mm diam colonies on tryptic soy agar (supplemented with 1.5% NaCl) without diffusible pigment; growth range at 4–30°C; growth on thiosulfate citrate bile salts sucrose agar; lysine decarboxylase-, acetoin-, nitrate reduction-, amylase-, d-glucose-, d-galactose-positive; indole-, ONPG-, gelatinase-, d-mannitol-, sucrose-, l-arabinose-, cellobiose-, trehalose-negative 33
Acinetobacter piscicola sp. nov. Moraxellaceae Diseased farmed Murray cod (Maccullochella peelii peelii) from China Facultative, nonmotile, oxidase-negative, catalase-positive, non-spore-forming Gram-negative coccobacillus; 1.0-mm to 3.0-mm diam smooth, convex, milky-yellow, circular colonies on Luria Bertani agar; optimal growth at 25–28°C; nonhemolytic on sheep blood agar; β-alanine-, l-arginine-, azelate-, citrate-, DL-lactate-, l-glutamate-, glutarate-, d-malate-positive; gelatin liquefaction-, adipate-, l-arabinose-, l-aspartate-, 2,3-butanediol-, ethanol-, l-histidine-, phenylacetate-, l-phenylalanine-negative 68
Bizionia berychis sp. nov. Flavobacteriaceae Intestinal tract of splendid alfonsino (Beryx splendens) from Pacific Ocean Aerobic, nonmotile, oxidase-positive, catalase-positive, Gram-negative bacillus; 1.0-mm to 2.0-mm diam circular, smooth, glistening, yellow-pigmented colonies on marine agar; optimal growth at 25°C; no growth at 35°C; positive for casein, gelatin, l-tyrosine, Tweens 20, 60, and 80 hydrolysis; nitrate reduction-, C4 esterase-, valine arylamidase-positive; cystine arylamidase-negative; reported susceptibility to chloramphenicol and oleandomycin 69
Vitellibacter todarodis sp. nov. Flavobacteriaceae Intestinal tract of a squid (Todarodes pacificus) from South Korea; taxon has been subject to subsequent revision to novel genus Aequorivita (refer to Table 2) Aerobic, nonmotile, oxidase-positive, catalase-positive, Gram-negative bacillus; 1.0-mm to 1.5-mm diam circular, smooth, glistening, vivid orange/yellow-pigmented colonies on marine agar; optimal growth at 30–35°C; positive for Tween 80 hydrolysis; cystine arylamidase-, trypsin-, N-acetyl-β-glucosaminidase-negative; weakly reactive for α-chymotrypsin; reported susceptibility to carbenicillin, tetracycline; reported resistance to penicillin G, streptomycin 70
Tenacibaculum todarodis sp. nov. Flavobacteriaceae Isolated from squid (Todarodes pacificus) from Korea Aerobic, motile, oxidase-positive, catalase-positive, non-spore-forming Gram-negative bacillus; 0.5-mm to 1.0-mm diam circular, slightly convex, yellow-pigmented colonies on marine agar; optimal growth at 25°C; DNase, Tween 80 hydrolysis-positive; nitrate reduction-, Tweens 20, 40, and 60 hydrolysis-, C4 esterase-, C8 esterase lipase-, α-chymotrypsin-negative; weakly reactive for cystine arylamidase 71
Winogradskyella pocilloporae sp. nov. Flavobacteriaceae Healthy tissue coral (Pocillopora damicornis) Aerobic, nonmotile, oxidase-positive, catalase-positive Gram-negative bacillus; circular, slightly convex, shiny, orange/yellow-pigmented colonies on marine agar; optimal growth at 25°C; growth on Reasoner’s 2A and tryptic soy agars only when supplemented with 3% NaCl; positive for starch hydrolysis, Tweens 40 and 60 hydrolysis; negative for tyrosine hydrolysis, Tweens 20 and 80 hydrolysis, gelatin hydrolase, cystine arylamidase; weakly reactive for leucine arylamidase, valine arylamidase 72
Sansalvadorimonas verongulae gen. nov., sp. nov. Hahellaceae Marine sponge (Verongula gigantea) from San Salvador Aerobic, motile, oxidase-positive, catalase-positive Gram-negative bacillus; initial punctiform, translucent colonies transition to cream/pale yellow colonies on marine agar; optimal growth at 30°C; arginine dihydrolase-, C4 esterase-, C8 esterase lipase-, dextrin-, d-cellobiose-, d-fructose-, d-mannitol-, d-mannose-, sucrose-, trehalose-, acetate-positive; nitrate reduction-, esculin-, gelatin-, β-galactosidase-, cysteine arylamidase-, d-melibiose-, l-rhamnose-negative 13
Zhouia spongiae sp. nov. Flavobacteriaceae Sponge from China Aerobic, nonmotile, oxidase-positive, catalase-positive Gram-negative bacillus; 1-mm to 2-mm diam circular, smooth, opaque, pale yellow-pigmented colonies on marine agar; optimal growth at 28°C; hydrolyze Tweens 20, 40, and 80; β-glucosidase-, acetoin-, nitrate reduction-, denitrification-positive; starch hydrolysis-, α-chymotrypsin-, β-galactosidase-, α-fucosidase-, gelatin hydrolysis-negative 73
Aquimarina spongiicola sp. nov. Flavobacteriaceae Spongin from South Korea Aerobic, motile, oxidase-positive, catalase-positive, non-spore-forming Gram-negative bacillus; 1-mm to 2-mm diam circular, convex, opaque, orange-pigmented colonies on marine agar; optimal growth at 30°C; l-arabinose-, d-glucose-, DL-lactate-, d-mannitol-, d-mannose-, l-serine-, d-sorbitol-, C4 esterase-, C8 esterase lipase-positive; DNase, Tween 80 hydrolysis-, cellulose-, arginine dihydrolase-, inositol-, propionate-, l-rhamnose-, urease, cystine arylamidase-negative 74
Parendozoicomonas haliclonae gen. nov., sp. nov. Endozoicomonadaceae Marine sponge (genus Haliclona) Facultative, motile, oxidase-positive, catalase-positive, Gram-negative bacillus; 1-mm to 2-mm diam circular, convex, shiny, transparent white-, later orange-, pigmented colonies on marine agar; optimal growth at 25–30°C; DNase, esculin-positive; gelatin hydrolysis-negative; major fatty acids summed feature 8 (C18:1 w7c/C18:1 w6c), summed feature 3 (C16:1 w7c/C16:1 w6c), C16:0; major ubiquinone Q-9 75 c
Lelliottia jeotgali sp. nov. Enterobacteriaceae Traditional Korean fermented clam from Republic of Korea Facultative, motile, oxidase-negative, catalase-positive Gram-negative bacillus; 4-mm to 5-mm diam irregularly circular, smooth, translucent, flat or raised, beige-pigmented colonies on nutrient agar; optimal growth at 30°C (growth also at 45°C); growth on MacConkey, tryptic soy, Luria Bertani, M17 agars; potassium gluconate-, potassium 5-ketogluconate-, γ-glutamyltransferase-, α-glucosidase-, l-proline arylamidase-positive; arbutin-, salicin-, d-tagatose-, sucrose-, β-xylosidase-, β-glucosidase-negative 76
Coralloluteibacterium stylophorae gen. nov., sp. nov. Lysobacteraceae Reef-building coral (Stylophora spp.) from Taiwan Aerobic, motile, oxidase-positive, catalase-positive, non-spore-forming Gram-negative bacillus; 0.5-mm to 3-mm diam round, smooth, convex, yellow-pigmented colonies on marine agar; optimal growth at 30–35°C; indole-, C14 lipase-, valine arylamidase-, cystine arylamidase-, esculin hydrolysis-positive; nitrate reductase-, trypsin-, α-chymotrypsin-, starch hydrolysis-, urease-negative 77 d
Motiliproteus coralliicola sp. nov. Oceanospirillaceae Coral from China Aerobic, motile, oxidase-positive, catalase-negative, non-spore-forming Gram-negative bacillus; circular, convex, light brown-pigmented colonies on 2216E agar; optimal growth at 30°C; denitrification-, acid phosphatase-, alkaline phosphatase-positive; starch-, Tween hydrolysis-, H2S-negative 78
Hanstruepera crassostreae sp. nov. Flavobacteriaceae Pacific oyster (Crassostrea spp.) from China; taxon now considered to be synonym (refer to Table 2) Aerobic, nonmotile, oxidase-positive, catalase-positive Gram-negative bacillus; 1-mm to 2-mm diam circular, convex, opaque, orange-pigmented colonies on marine agar; optimal growth at 33°C; α-chymotrypsin-, maltose-, N-acetyl-d-galactosamine-positive; cystine arylamidase-, urease-, ornithine decarboxylase-, gelatin-, l-proline-negative 79
Cohaesibacter celericrescens sp. nov. Cohaesibacteraceae Gut of sea catfish from China Facultative, motile, oxidase-negative, catalase-positive Gram-negative bacillus; 1-mm to 2-mm diam circular, convex, opaque, orange-pigmented colonies on marine agar; optimal growth at 30°C; turanose-, acid phosphatase-, leucine arylamidase-, d-mannose-, cellobiose-positive; raffinose-, alkaline phosphatase-, l-rhamnose-, l-fucose-negative 80
 Photobacterium andalusiense sp. nov. Vibrionaceae Diseased farmed fish from Spain Facultative, motile, oxidase-positive, catalase-positive Gram-negative bacillus; regular colonies without diffusible pigment cultivated on tryptic soy agar supplemented with 1.5% NaCl; growth range at 4–35°C (no growth at 45°C); β-galactosidase-, ONPG-positive 34 e
 Photobacterium malacitanum sp. nov. Vibrionaceae Diseased farmed fish from Spain Facultative, motile, oxidase-positive, catalase-positive Gram-negative bacillus; regular colonies without diffusible pigment cultivated on tryptic soy agar supplemented with 1.5% NaCl; growth range at 4–30°C (weak growth at 35°C); β-galactosidase-negative; weakly reactive for ONPG 34 e
Motilimonas pumila sp. nov. No family assignment Gut of sea cucumber (Apostichopus japonicus) from China Facultative, motile, oxidase-positive, catalase-positive Gram-negative bacillus; 0.5-mm diam circular, beige-pigmented colonies on marine agar; optimal growth at 28–30°C; starch-, arginine dihydrolase-, acid phosphatase-, mannose-, maltose-positive; sodium citrate-, C8 esterase lipase-negative 81
Erythrobacter spongiae sp. nov. Erythrobacteraceae Sponge from China; taxon now considered to be synonym (refer to Table 2) Aerobic, nonmotile, oxidase-positive, catalase-positive Gram-negative bacillus; 0.7-mm to 1.0-mm diam smooth, circular, opaque, orange/yellow-pigmented colonies on marine agar; optimal growth at 28°C; hydrolysis of Tweens 20, 40, and 80; C4 esterase-, C8 esterase lipase-, α-chymotrypsin-, acid phosphatase-, β-glucosidase-, capric acid-, trisodium citrate-positive; nitrate reductase-, Voges-Proskauer-, C14 lipase-, gelatin hydrolysis-, trypsin-, β-galactosidase-negative 82
Lysobacter spongiae sp. nov. Lysobacteraceae Isolated from spongin from Republic of Korea Aerobic, motile, oxidase-positive, catalase-positive Gram-negative bacillus; 0.5-mm to 2-mm diam smooth, convex, circular, yellow/orange-pigmented colonies on marine agar; optimal growth at 30°C; growth on MacConkey, Reasoner’s 2A, nutrient, tryptic soy agars; l-arabinose-, malate-, l-fucose-, l-histidine-, l-proline-, d-ribose-, d-sucrose-, l-alanine-, α-chymotrypsin-, α-glucosidase-, N-acetyl-β-glucosaminidase-positive; valerate-, 3-hydroxy-butyrate-, malonate-, glycogen-, valine arylamidase-negative 83 f
Altererythrobacter spongiae sp. nov. Erythrobacteraceae Sponge from China Aerobic, nonmotile, oxidase-positive, catalase-positive Gram-negative bacillus; 0.8-mm to 1-mm diam circular, smooth, opaque, yellow-pigmented colonies on marine agar; optimal growth at 28°C; trypsin-, valine aminopeptidase-, α-chymotrypsin-, Voges-Proskauer-positive; casein hydrolysis-, β-galactosidase-, β-glucuronidase-negative 84
Pelagibaculum spongiae gen. nov., sp. nov. Alcanivoracaceae Marine sponge from Iceland Aerobic, motile, oxidase-positive, catalase-negative, non-spore-forming Gram-negative bacillus; 1-mm to 2-mm diam circular, raised, tan-pigmented colonies on marine agar; optimal growth at 20–22°C; alkaline phosphatase-, esterase-, leucine arylamidase-positive; valine arylamidase-, trypsin-, urease-, arginine dihydrolase-, d-glucose-negative 85
Corallincola holothuriorum sp. nov. Psychromonadaceae Sea cucumber intestine from China Facultative, motile, oxidase-positive, catalase-negative, Gram-negative bacillus; creamy, white colonies; optimal growth at 28–30°C; starch hydrolysis-, gelatin hydrolysis-, d-fructose-positive; agar hydrolysis-, sucrose-negative 86
Empedobacter tilapiae sp. nov. Weeksellaceae Intestine of Nile tilapia (Oreochromis niloticus) from Republic of Korea Aerobic, nonmotile, oxidase-positive, catalase-positive, non-spore-forming Gram-negative bacillus; 1-mm to 2-mm diam circular, slightly convex, smooth, pale yellow-pigmented colonies on marine agar; optimal growth at 30°C; trypsin-positive; esculin hydrolysis-, d-glucose-, starch-, α-glucosidase-negative; reported susceptibility to oleandomycin; reported resistance to kanamycin, lincomycin, novobiocin, streptomycin 87
Paracoccus tegillarcae sp. nov. Rhodobacteraceae Gastrointestinal tract of blood cockle (Tegillarca granosa) from Republic of Korea Aerobic, nonmotile, oxidase-positive, catalase-positive, Gram-negative bacillus; circular, convex, glossy, pale yellow-pigmented colonies on marine agar; optimal growth at 20°C; valine arylamidase-, d-galactose-, potassium 5-keto-gluconate-positive; cystine arylamidase-, trisodium citrate-, d-adonitol-, d-sorbitol, maltose-, trehalose-negative 88
Oceaniglobus ichthyenteri sp. nov. Rhodobacteraceae Gut microflora of sea bass (Dicentrarchus labrax L.) from China Aerobic, nonmotile, oxidase-positive, catalase-positive, non-spore-forming Gram-negative bacillus; 0.8-mm to 1-mm diam circular, elevated, smooth, whitish/yellow-pigmented colonies on marine agar; optimal growth at 28–30°C; starch hydrolysis-, l-arabinose-, d-mannose, d-sorbitol-positive; nitrate reduction-, acid phosphatase-negative 89
Undibacterium piscinae sp. nov. Oxalobacteraceae Intestinal tract of Korean shiner (Coreoleuciscus splendidus) from Republic of Korea Aerobic, motile, oxidase-positive, catalase-positive, non-spore-forming Gram-negative bacillus; creamy, translucent, colonies with a wavy rim on Reasoner’s 2A agar; optimal growth at 20°C; nitrate reduction-, maltose-positive; C4 esterase-, esculin hydrolysis-, mannose-, cellobiose-negative 90
Cohaesibacter intestini sp. nov. Cohaesibacteraceae Intestine of adult abalone (Haliotis discus hannai) from China Facultative, nonmotile, oxidase-positive, catalase-positive Gram-negative bacillus; 1-mm to 2-mm diam circular, milky white colonies on agar plate; optimal growth at 28–33°C; malic acid-, maltose-, l-arabinose-positive; urease-, lipase-, d-glucose-, d-mannose-negative 91
Parashewanella tropica sp. nov. Shewanellaceae Marine sponge from Federated States of Micronesia Facultative, motile, oxidase-positive, catalase-positive, non-spore-forming Gram-negative bacillus; 1-mm to 1.5-mm diam circular, convex, smooth, pale tan-pigmented colonies on marine agar; optimal growth at 24–32°C; l-glutamic acid-, l-alanine-, l-arginine-, l-aspartic acid-, Tween 40 hydrolysis-positive; gelatin hydrolysis-, esculin hydrolysis-, β-galactosidase-, l-lactic acid-negative 92
Muricauda hymeniacidonis sp. nov. Flavobacteriaceae Sponge sample (Hymeniacidon sinapium) from Republic of Korea Aerobic, motile, oxidase-positive, catalase-positive, non-spore-forming Gram-negative bacillus; circular, orange-pigmented colonies on marine agar; optimal growth at 30°C; malate-, l-fucose-, 2-ketoglutarate-positive; inositol-, α-chymotrypsin-, valine arylamidase-negative 93
Pseudomonas tructae sp. nov. Pseudomonadaceae Kidney of moribund rainbow trout Aerobic, motile, oxidase-positive, catalase-positive, non-spore-forming gram-negative bacillus; can grow on tryptic soy agar, nutrient agar, and cytophaga medium; optimal growth at 25–30°C; gelatinase-, glucose-, arginine dihydrolase-positive; esculin hydrolysis-negative 94
Ottowia flava sp. nov. Comamonadaceae Fish intestine from China Aerobic, nonmotile, oxidase-positive, catalase-positive Gram-negative bacillus; smooth, yellow-pigmented colonies on tryptic soy agar; optimal growth at 28°C; gelatin hydrolysis-, adipic acid-, phenylacetic acid-, alkaline-phosphatase-, C14 lipase-, cystine arylamidase-, acid phosphatase-, trypsin-, valine arylamidase-positive; nitrate reduction-, esculin hydrolysis-, maltose-, malic acid-, urease-negative 95 g
Pedobacter nototheniae sp. nov. Sphingobacteriaceae Black rock cod (Notothenia coriiceps) from Chilean Antarctica Nonmotile, oxidase-positive, catalase-positive, non-spore-forming Gram-negative bacillus; <0.5-mm diam circular, smooth, pink-pigmented colonies on tryptic soy agar; optimal growth at 25°C; no growth on MacConkey and thiosulfate citrate bile salts sucrose agars; starch hydrolysis-, C8 esterase lipase-, leucine arylamidase-, α-galactosidase-, β-galactosidase-, α-glucosidase-, β-glucosidase-, gelatin-positive; casein hydrolysis-, C4 esterase-, α-chymotrypsin-, nitrate reduction-, l-arabinose-, malic acid-negative 96 g
Flammeovirga pectinis sp. nov. Flammeovirgaceae Gut of Korean scallop (Patinopecten yessoensis) from Korea Aerobic, motile, oxidase-positive, catalase-negative, Gram-negative bacillus; reddish orange-pigmented colonies on marine agar; optimal growth at 25°C; l-fucose-positive; trehalose-, α-chymotrypsin-negative 97
Roseovarius spongiae sp. nov. Rhodobacteraceae Marine sponge from China Aerobic, motile, oxidase-positive, catalase-positive, non-spore-forming Gram-negative bacillus; 0.5-mm to 1-mm diam circular, opaque, smooth, pale yellow-pigmented colonies on marine agar; optimal growth at 37°C; urea hydrolysis-, acid phosphatase-, valine aminopeptidase-positive; Voges-Proskauer-, d-glucose, l-arabinose, d-mannose-negative; reported susceptibility to minocycline, furazolidone, ampicillin; reported resistance to erythromycin, kanamycin, tetracycline, vancomycin, polymyxin B 98
Paracoccus luteus sp. nov. Rhodobacteraceae Intestinal tract of grass carp (Ctenopharyngodon idella) from China Aerobic, nonmotile, oxidase-positive, catalase-positive, non-spore-forming Gram-negative bacillus; punctiform, circular, convex, smooth, orange yellow-pigmented colonies on Luria Bertani agar; optimal growth at 25–28°C; nitrate reduction-, trypsin-, valine arylamidase-, rhamnose-positive; acid phosphatase-, cystine arylamidase-, d-mannitol-negative 99
Pseudooceanicola onchidii sp. nov. Rhodobacteraceae Marine invertebrate (Onchidium spp.) from China Aerobic, nonmotile, oxidase-positive, catalase-positive, Gram-negative bacillus; smooth, convex, opaque, cream-pigmented colonies; optimal growth at 35–37°C; d-galactose-, d-mannitol-, d-gluconate-, trisodium citrate-positive; esculin hydrolysis-, phenylacetic acid-, cystine arylamidase-negative 100
Muricauda alvinocaridis sp. nov. Flavobacteriaceae Shrimp gill sample from China Aerobic, motile, oxidase-negative, catalase-negative Gram-negative bacillus; round, regular, smooth, yellow-pigmented colonies on marine agar; optimal growth at 37°C; starch hydrolysis-, C8 esterase lipase-, α-glucosidase-positive; urease-, l-arabinose-, d-xylose-, trypsin-, β-glucosidase-negative 101
Mangrovimonas spongiae sp. nov. Flavobacteriaceae Marine sponge from China Aerobic, motile, oxidase-positive, catalase-positive Gram-negative bacillus; 1-mm to 2-mm diam smooth, circular, opaque, yellow-pigmented colonies on marine agar; optimal growth at 25°C; esterase-, cystine aminopeptidase-, β-galactosidase-, arginine dihydrolase-positive; casein hydrolysis-, α-glucosidase-, d-glucose-, l-arabinose-negative 102
Carideicomes alvinocaridis gen. nov., sp. nov. Rhodobacteraceae Shrimp gill sample from China Aerobic, nonmotile, oxidase-positive, catalase-positive Gram-negative bacillus; round, regular, smooth, white colonies on marine agar; optimal growth at 37°C; starch hydrolysis-, cystine arylamidase-, valine arylamidase-positive; acid phosphatase-, α-galactosidase-, β-glucosidase-negative 103
Endozoicomonas coralli sp. nov. Endozoicomonadaceae Coral (Acropora spp.) from Taiwan Aerobic, nonmotile, oxidase-positive, catalase-positive, non-spore-forming Gram-negative bacillus; 0.5-mm to 2-mm diam circular, convex, creamy white colonies with irregular margins on marine agar; optimal growth at 30°C; starch hydrolysis-, C4 esterase-, p-nitrophenyl-β-galactosidase-, C8 esterase lipase-, trypsin-, l-fucose-, d-mannitol-, glucuronamide-, l-histidine-positive; esculin-, DNase, cystine arylamidase-, α-galactosidase-, N-acetyl-β-glucosaminidase-, l-alanine-, l-serine-, gentibiose-, sucrose-negative 104 h
Fulvivirga aurantia sp. nov. Fulvivirgaceae Marine sponge (Aplysina fistularis) from the Bahamas Aerobic, motile, oxidase-positive, catalase-positive, non-spore-forming Gram-negative bacillus; smooth, glistening, deep orange-pigmented colonies on marine agar; optimal growth at 30–37°C; l-alanine-, d-arabitol-, l-histadine-, citric acid-positive; β-glucosidase-, stachyose-, d-salacin-, glycyl-l-proline-negative 105
Xanthovirga aplysinae gen. nov., sp. nov. Flammeovirgaceae Marine sponge (Aplysina fistularis) from the Bahamas Aerobic, nonmotile, oxidase-positive, catalase-positive, non-spore-forming Gram-negative bacillus; smooth, shiny, slightly raised, translucent to yellow colonies on marine agar; optimal growth at 30–37°C; nitrate reduction-, l-arginine dihydrolase-, d-galactose-positive; d-mannose-, α-hydroxy-butyric acid-negative 105
Tabrizicola piscis sp. nov. Rhodobacteraceae Whole intestinal tract of Korean indigenous freshwater fish (Acheilognathus koreensis) Aerobic, nonmotile, oxidase-positive, catalase-positive, Gram-negative bacillus; creamy-pink colonies on marine agar; optimal growth at 30°C; α-galactosidase-, β-glucuronisase-, acid phosphatase-, gentiobiose-positive; alkaline phosphatase-, d-glucose-, d-galactose-negative 106
Teredinibacter waterburyi sp. nov. Cellvibrionaceae Gills of wood-boring mollusc (Bankia setacea) from United States Aerobic, motile, Gram-negative bacillus; <0.5-mm diam circular, translucent, white to beige colonies; optimal growth at 20°C; cellulose hydrolysis-positive; agar hydrolysis-negative 107
Pseudomonas piscis sp. nov. Pseudomonadaceae Profound head ulcers of farmed Murray cod (Maccullochella peelii peelii) from China Aerobic, motile, oxidase-positive, catalase-positive, non-spore-forming Gram-negative bacillus; 4-mm to 5-mm diam circular, smooth, light yellow-pigmented colonies on tryptic soy agar; optimal growth at 28°C; maltose-, capric acid-, melibiose-, lysine decarboxylase-positive; gelatin hydrolysis-, d-mannitol-, trehalose-negative 108
Pelagivirga dicentrarchi sp. nov. Rhodobacteraceae Gut microflora of sea bass (Dicentrarchus labrax L.) from China Aerobic, nonmotile, oxidase-positive, catalase-positive, non-spore-forming Gram-negative bacillus; 0.3-mm to 1.0-mm diam convex, opaque, circular, pale yellow-pigmented colonies on marine agar; optimal growth at 28–30°C; Tween 20 hydrolysis-, nitrate reduction-, glycerol-, d-tagatose-, l-alanine-, l-glutamic acid-, acetoacetic acid-, propionic acid-, acid phosphatase-, alkaline phosphatase-, decarboxylase/dihydrolase enzymes-positive; Tween 40 hydrolysis-, casein hydrolysis-, d-adonitol-, d-fucose-, l-malic acid-, tryptophan deaminase-negative 109 i
Patiriisocius marinistellae gen. nov., sp. nov. Flavobacteriaceae Surface of starfish (Patiria pectinifera) from Japan Aerobic, nonmotile, oxidase-positive, catalase-positive, non-spore-forming Gram-negative bacillus; circular, slightly convex, yellow-pigmented colonies; optimal growth at 25°C; flexirubin-, gelatin hydrolysis-positive; urease-, acetoin production-negative; reported weak susceptibility to gentamycin, neomycin; reported resistance to kanamycin 110
Pukyongiella litopenaei gen. nov., sp. nov. Rhodobacteraceae Gut content of whiteleg shrimp (Litopenaeus vannamei) from South Korea Aerobic, nonmotile, oxidase-positive, catalase-negative, non-spore-forming Gram-negative bacillus; <2-mm diam circular, flat, bright ivory-pigmented colonies on marine agar; optimal growth at 30°C; alkaline phosphatase-, C4 esterase-, cystine arylamidase-, trypsin-positive; urea hydrolysis-, l-rhamnose-, melibiose-negative 111
Photobacterium lucens sp. nov. Vibrionaceae Cultured shrimp (Penaeus vannamei) from Mexico Facultative, motile, oxidase-positive, catalase-negative Gram-negative bacillus; isolate cultivated on thiosulfate citrate bile salts sucrose agar; lysine decarboxylase-, β-galactosidase-, O/129 (10 μg and 150 μg)-, d-fructose-negative; variable mannitol reactivity; d-ribose-, sucrose-negative 112 a
Yersinia thracica sp. nov. Yersiniaceae Unknown source from fish (also isolated from pig, bird, and wild boar); archival isolate from reference laboratory in France Facultative, oxidase-negative Gram-negative bacillus; 50% of strains nonmotile when tested at 28°C; 2.5-mm diam circular colonies with deep red center surrounded by pale transparent border on cefsulodin-irgasan-novobiocin agar at 28°C; urease-, ornithine decarboxylase (75% of tested strains)-, β-galactosidase (75% of tested strains)-positive; citrate-, arginine dihydrolase-, lysine decarboxylase-, tryptophan deaminase-, indole-, Voges Proskauer-, gelatinase-negative 113
Poritiphilus flavus gen. nov., sp. nov. Flavobacteriaceae Stony coral (Porites lutea) from China Aerobic, nonmotile, oxidase-positive, catalase-positive, non-spore-forming Gram-negative bacillus; circular, smooth, yellow-pigmented colonies on marine agar; growth at 15–33°C; arginine dihydrolase-, urease-, gelatin hydrolysis-, arabinose-positive; maltose-negative 114
Aliikangiella coralliicola sp. nov. Kangiellaceae Stony coral (Porites lutea) from China Aerobic, motile, oxidase-negative, catalase-positive, non-spore-forming Gram-negative bacillus; circular, pale yellow-pigmented colonies on marine agar; optimal growth at 25–30°C; starch hydrolysis-, β-glucosidase-, β-galactosidase-positive; Tween 40 hydrolysis-, Tween 80 hydrolysis-negative 115
Tenacibaculum singaporense sp. nov. Flavobacteriaceae Commercially reared Asian seabass (Lates calcarifer) with symptoms of tenacibaculosis from Singapore Aerobic, motile, oxidase-positive, catalase-positive, Gram-negative bacillus; 10-mm to 15-mm diam circular, iridescent, nonadherent, orange-pigmented colonies on LBM medium; growth range at 20–45°C; growth in 1–7% NaCl; nitrate reductase-, chymotrypsin-positive; trypsin-negative 20 j
Tenacibaculum piscium sp. nov. Flavobacteriaceae Skin ulcer of farmed Atlantic salmon from Norway Aerobic, motile, oxidase-positive, catalase-positive, filamentous Gram-negative bacillus; shiny, circular, iridescent, bright yellow-pigmented colonies with undulating margins on marine agar; optimal growth at 15–22°C; nonhemolytic colonies on blood agar with 2% NaCl; gelatin-, trypsin-positive; H2S-, casein hydrolysis-, l-tyrosine hydrolysis-, C8 esterase lipase-negative; weakly reactive for l-proline, d-(+)-sucrose, d-(–)-ribose 21
Tenacibaculum finnmarkense sp. nov. Flavobacteriaceae Skin ulcer of farmed Atlantic salmon from Norway Aerobic, motile, oxidase-positive, catalase-positive, filamentous Gram-negative bacillus; shiny, circular, pale yellow-pigmented colonies with undulating margins on marine agar; growth range at 4–15°C; no growth on blood agar with 2% NaCl; gelatin-, H2S-, casein hydrolysis-, l-tyrosine hydrolysis-, C8 esterase lipase-positive; d-(+)-sucrose, d-(–)-ribose-, trypsin-negative 21
Flavobacterium salmonis sp. nov. Flavobacteriaceae Atlantic salmon (Salmo salar) fry culture from Chile Aerobic, motile, oxidase-positive, catalase-positive, non-spore-forming Gram-negative bacillus; circular, convex, yellowish colonies on tryptic soy agar; translucent, circular, orange-pigmented colonies on tryptone yeast extract salts agar; nonhemolytic colonies on Columbia agar; optimal growth at 25°C; sucrose-, nitrate reduction-, C14 lipase-positive; trehalose-, cellobiose-, d-mannose-, N-acetyl-d-glucosamine-, N-acetyl-d-galactosamine-, d-fructose-, l-malate-negative 22
Flavobacterium bizetiae sp. nov. Flavobacteriaceae Diseased fish from Canada Aerobic, motile, oxidase-positive, catalase-positive, non-spore-forming Gram-negative bacillus; yellow-pigmented colonies on tryptic soy and Reasoner’s 2A agars; optimal growth at 25°C; N-acetyl-d-galactosamine-, melibiose-, l-rhamnose-, α-glucosidase-, nitrate reductase-positive; variable reactions for l-arabinose, N-acetyl-d-glucosamine, α-galactosidase, β-glucosidase 23
Pseudopuniceibacterium antarcticum sp. nov. Rhodobacteraceae Marine sponge from west Antarctica Aerobic, nonmotile, oxidase-positive, catalase-positive Gram-negative bacillus; 1.0-mm diam smooth, round, pale, opaque colonies on tryptone yeast extract sea salt agar; optimal growth at 25°C; β-galactosidase-, citrate-, β-glucosidase-, d-xylose-, d-glucose-, l-rhamnose-, d-mannitol-, d-arabitol-positive; arabinose-, C4 esterase-, d-fucose-, l-lactic acid-, formic acid-negative 116
Lacinutrix chionocetis sp. nov. Flavobacteriaceae Gut of red snow crab Aerobic, nonmotile, oxidase-positive, catalase-positive gram-negative bacillus; 0.5- to 1.0-mm diam circular, convex, glistening, yellow-pigmented colonies on marine agar; optimal growth at 20°C; hydrolysis of esculin, starch, Tween 40, Tween 60; d-glucose-, d-mannose-, d-maltose-, leucine arylamidase-positive; l-arabinose-, d-mannitol-, trypsin-negative; reported resistance to gentamicin; reported susceptibility to penicillin, vancomycin, nalidixic acid, chloramphenicol, erythromycin, tetracycline 117 k
Pseudomonas ovata sp. nov. Pseudomonadaceae Skin ulcer of farmed Murray cod (Maccullochella peelii peelii) tail from China Aerobic, motile, oxidase-negative, catalase-positive, non-spore-forming Gram-negative bacillus; isolates cultivated between 4–37°C (optimal growth at 28°C); l-arabinose-, phenylacetic acid-, d-fucose-, 5-ketogluconate-positive; gelatinase-, arginine dihydrolase-, nitrate reduction-, d-arabinitol-, d-arabinose-, d-sucrose-, d-mannitol-, d-sorbitol-, β-glucosidase-negative 118 k
Jannaschia marina sp. nov. Rhodobacteraceae Gut of gastropod (Onchidium reevesii) from China Aerobic, nonmotile, oxidase-positive, catalase-negative, Gram-negative bacillus; 1.0- to 1.5-mm diam smooth, regular, pale orange/yellow-pigmented colonies on marine agar; optimal growth at 30°C; urease-, esculin-, β-galactosidase-, C14 lipase-positive; gelatin hydrolysis-, ornithine decarboxylase-, arginine dihydrolase-, citrate-, tryptophan deaminase-, gelatinase-, glucose-, mannitol-, α-chymotrypsin-, α-galactosidase-, α-glucosidase-negative; weakly reactive for cystine aminopeptidase, β-glucosidase 119
Lysobacter penaei sp. nov. Lysobacteraceae Intestinal content of Pacific white shrimp (Penaeus vannamei) from China Aerobic, nonmotile, oxidase-positive, catalase-positive, Gram-negative bacillus; 0.5-mm diam light yellow, circular, convex, smooth colonies on marine agar; optimal growth at 20–30°C; positive for Tween 20 hydrolysis, negative for Tween 80 hydrolysis; nitrate reduction-, d-glucose-, N-acetyl-glucosamine-, maltose-positive; starch hydrolysis-, C14 lipase-, trypsin-, α-galactosidase-, α-glucosidase-, denitrification-, l-arabinose, d-mannose-, d-mannitol-negative 120
Pseudorhodobacter turbinis sp. nov. Rhodobacteraceae Gut of Korean turban shell (Turbo cornutus) from Republic of Korea Aerobic, motile, oxidase-positive, catalase-positive, Gram-negative bacillus; cream-pigmented colonies on marine agar; optimal growth at 30°C; alkaline phosphatase-, d-fructose-, l-fucose-, glycerol-, N-acetyl-β-d-mannosamine-, inosine-, α-keto-butyric acid-, l-alanine-, l-histidine-, d-malic acid-, propionic acid-positive; α-galactosidase-, β-galactosidase-, α-glucosidase-, maltose-, trehalose-, formic acid-, citric acid-, d-galactose-, α-d-glucose-, l-arginine-, N-acetyl-d-glucosamine-negative 121
Pseudomonas mucoides sp. nov. Pseudomonadaceae Rainbow trout (Oncorhynchus mykiss) from Turkey Aerobic, motile, oxidase-positive, catalase-positive Gram-negative bacillus; 4-mm diam round, opaque, γ-hemolytic, very mucoid, beige-pigmented colonies on King B agar; growth range at 4–37°C; fluorescein pigment produced, not pyocyanin; positive for nitrate reduction, gelatin hydrolysis, N-acetyl-d-glucosamine assimilation, d-galacturonic acid, d-galactonic acid lactone, myo-inositol, d-glucuronic acid, d-saccharic acid; negative for indole, phenylacetate, inosine 122
Pseudomonas neuropathica sp. nov. Pseudomonadaceae Rainbow trout (Oncorhynchus mykiss) from Turkey Aerobic, motile, oxidase-positive Gram-negative bacillus; 5-mm diam round, opaque, β-hemolytic, mucoid, beige-pigmented colonies on King B agar; growth range at 4–37°C; fluorescein pigment produced, not pyocyanin; positive for gelatin hydrolysis, Tween 40 hydrolysis, trehalose, d-arabitol, N-acetyl-d-glucosamine, l-histidine, l-malic acid; negative for glycyl-l-proline, myo-inositol, l-pyroglutamic acid, d-serine, formic acid 122
Pseudomonas piscicola sp. nov. Pseudomonadaceae Rainbow trout (Oncorhynchus mykiss) from Turkey Taxon designated Pseudomonas piscium in primary publication; aerobic, motile, oxidase-positive, catalase-positive Gram-negative bacillus; 1- to 2-mm diam round, opaque, α-hemolytic, flat beige-pigmented colonies on King B agar; growth range at 4–37°C; fluorescein pigment produced, not pyocyanin; positive for indole, phenylacetate, Tween 40 hydrolysis, inosine; negative for nitrate reduction, gelatin hydrolysis, N-acetyl-d-glucosamine assimilation, d-galacturonic acid, d-galactonic acid lactone, myo-inositol, d-glucuronic acid, d-saccharic acid 122
Pseudomonas pisciculturae sp. nov. Pseudomonadaceae Rainbow trout (Oncorhynchus mykiss) from Turkey Aerobic, motile, oxidase-positive, catalase-positive Gram-negative bacillus; 2-mm diam round, translucent, γ-hemolytic, flat, beige-pigmented colonies on King B agar; growth range at 4–37°C; fluorescein pigment produced, not pyocyanin; indole-, esculin-, phenylacetate-, p-hydroxy-phenylacetic acid-, d-galactonic acid lactone-, d-malic acid-, l-rhamnose-positive; nitrate reduction-, adipate-, gelatin-, Tween 40 hydrolysis-, sucrose-, d-fructose-6-phosphate-, d-serine-negative 122
Mesobaculum littorinae gen. nov., sp. nov. Rhodobacteraceae Sea snail (Littorina scabra) from China Aerobic, nonmotile, oxidase-positive, catalase-positive, non-spore-forming Gram-negative bacillus; smooth, white colonies on ISP 4 agar; optimal growth at 28°C; positive for Tween 60 hydrolysis, urease, l-arabinose, sorbitol, d-xylose, turanose, d-tagatose, d-arabinitol, potassium gluconate, β-galactosidase, α-glucosidase; negative for trehalose, melezitose, raffinose, xylitol, valine arylamidase; reported resistance to ampicillin, gentamicin, tetracycline, nalidixic acid, vancomycin, erythromycin, chloramphenicol, novobiocin 123
Flavobacterium muglaense sp. nov. Flavobacteriaceae Healthy rainbow trout (Oncorhynchus mykiss) from Turkey Aerobic, nonmotile, oxidase-negative, catalase-positive Gram-negative bacillus; 2.9- to 3.2-mm diam convex, circular, yellow-pigmented colonies on Reasoner’s 2A agar; optimal growth at 25°C; growth also observed on thiosulfate citrate bile salts sucrose, tryptic soy, tryptone yeast extract salts agars; flexirubin pigment present; starch hydrolysis-, sucrose-, α-glucosidase, β-glucosidase-, N-acetyl-β-glucosaminidase-, gelatin-, dextrin-, d-mannose-, maltose-positive; d-mannitol-, trypsin-negative; resistant to nalidixic acid, aztreonam, tetrazolium blue 24
Pseudomonas arcuscaelestis sp. nov. Pseudomonadaceae Healthy rainbow trout (Oncorhynchus mykiss) from Turkey Aerobic, motile, oxidase-positive, catalase-positive Gram-negative bacillus; 3- to 5-mm diam flat, opaque, beige-pigmented colonies with irregular margins on Luria Bertani agar; growth range at 4–37°C; fluorescein pigment produced, not pyocyanin; nitrate reduction-, gluconate-, glycogen-, l-aspartic acid-, l-glutamic acid-, l-histidine-, l-pyroglutamic acid-, formic acid-positive; esculin hydrolysis-, arabinose-, mannitol-, N-acetyl-d-glucosamine-, phenylacetate-, p-hydroxy-phenyl acetic acid-, d-galacturonic acid-, sucrose-, inosine-negative 124
Chitinibacter bivalviorum sp. nov. Chromobacteriaceae Gut of freshwater mussel (Anodonta arcaeformis) from Republic of Korea Aerobic, nonmotile, oxidase-positive, catalase-positive Gram-negative bacillus; raised, circular, milky-white colonies on tryptic soy agar; optimal growth at 30°C; growth observed on Luria Bertani, MacConkey, Reasoner’s 2A agars, but not nutrient agar; d-ribose-, cellobiose-, maltose-, d-mannose-, turanose-, nitrate reduction-, α-glucosidase-, d-fructose-6-phosphate-, glucuronamide-positive; raffinose-, starch-, glycerol-, gelatin hydrolysis-, d-mannose-, l-alanine-, l-aspartic acid-, l-glutamic acid-, l-histidine-, l-serine-negative 125
Cochleicola gelatinilyticus gen. nov., sp. nov. Flavobacteriaceae Marine gastropod (Reichia luteostoma) from Korea Aerobic, nonmotile, oxidase-positive, catalase-positive Gram-negative bacillus; 1.0-mm diam convex, viscous, yellow, circular colonies on marine agar; optimal growth at 25°C; flexirubin-type pigments not observed; casein hydrolysis-, gelatin hydrolysis-, l-tyrosine hydrolysis-, starch hydrolysis-, Tweens 40, 80 hydrolysis, C4 esterase-, C8 esterase lipase-, α-chymotrypsin-positive; nitrate reduction-, DNase, trypsin-, carboxymethylcellulose hydrolysis-negative; isoprenoid quinone is MK-6 126 l
Flavobacterium kayseriense sp. nov. Flavobacteriaceae Diseased rainbow trout (Oncorhynchus mykiss) from Turkey Aerobic, nonmotile, oxidase-positive, catalase-positive Gram-negative bacillus; 1.8 to 2.0-mm diam convex, circular, undulate, yellow-pigmented colonies on Reasoner’s 2A agar; optimal growth at 25°C; no growth on MacConkey, marine, and thiosulfate citrate bile salts sucrose agars; positive for Tween 80 hydrolysis, starch hydrolysis, arginine dihydrolase, d-mannitol, trypsin, d-galacturonic acid, l-galactonic acid lactone, glycerol, d-glucuronic acid, acetate, bromo-succinic acid; negative for d-mannose, β-glucosidase, d-raffinose, α-d-lactose, d-trehalose, quinic acid, d-saccharic acid 25 l
Flavobacterium turcicum sp. nov. Flavobacteriaceae Diseased rainbow trout (Oncorhynchus mykiss) from Turkey Aerobic, nonmotile, oxidase-positive, catalase-positive Gram-negative bacillus; 2.0 to 2.4-mm diam convex, circular, entire, yellow-pigmented colonies on Reasoner’s 2A agar; optimal growth at 25°C; no growth on MacConkey, marine, and thiosulfate citrate bile salts sucrose agars; positive for d-mannose, β-glucosidase, d-raffinose, α-d-lactose, d-trehalose, quinic acid, d-saccharic acid; negative for Tween 80 hydrolysis, starch hydrolysis, arginine dihydrolase, d-mannitol, trypsin, d-galacturonic acid, l-galactonic acid lactone, glycerol, d-glucuronic acid, acetate, bromo-succinic acid 25 l
Pseudidiomarina piscicola sp. nov. Idiomarinaceae Cultured European seabass (Dicenthrarchus labrax) from Spain Aerobic, motile, oxidase-positive, catalase-positive Gram-negative bacillus; opaque and transparent colonies propagated from liver of fish specimen on marine agar; optimal growth at 26–30°C; positive for gelatin hydrolysis; negative results for urea hydrolysis, esculin hydrolysis, C4 esterase, C8 esterase lipase, trypsin, α-chymotrypsin, valine arylamidase, cystine arylamidase, β-glucosidase, α-mannosidase, d-fructose, amygdalin, arbutin, cellobiose, sucrose, trehalose 127 l
Pseudomonas anatoliensis sp. nov. Pseudomonadaceae Abdominal cavity of rainbow trout (Oncorhynchus mykiss) from Turkey Motile, oxidase-positive, catalase-positive, non-spore-forming Gram-negative bacillus; 3- to 6-mm diam round, flat, beige, opaque colonies on Luria Bertani agar; optimal growth at 30°C; Tween 40 hydrolysis-, gelatin hydrolysis-, phenylacetate-, d-galacturonic acid-, d-trehalose-, d-glucuronic acid-, mucic acid-positive; arginine dihydrolase-, d-galactonic acid lactone-negative; unable to grow in lithium chloride 128 l
Pseudomonas iridis sp. nov. Pseudomonadaceae Abdominal cavity of rainbow trout (Oncorhynchus mykiss) from Turkey Motile, oxidase-positive, catalase-positive, non-spore-forming Gram-negative bacillus; 3- to 6-mm diam round, flat, beige, opaque colonies on Luria Bertani agar; optimal growth at 30°C; gelatin hydrolysis-, phenylacetate-, d-galacturonic acid-, d-trehalose-, d-glucuronic acid-, mucic acid-, arginine dihydrolase-, d-galactonic acid lactone-positive; weak hydrolysis of Tween 40; able to grow in lithium chloride 128 l
Marixanthomonas spongiae sp. nov. Flavobacteriaceae Marine sponge from China Aerobic, nonmotile, oxidase-negative, catalase-positive Gram-negative bacillus; 0.8- to 1.0-mm diam circular, smooth, yellow, opaque colonies on marine agar; optimal growth at 28°C; positive for cystine aminopeptidase; negative for casein hydrolysis, Tween 80 hydrolysis; weak reactions for C8 esterase lipase, acid phosphatase; major fatty acids iso-C15:0, anteiso-C15:0, iso-C17:0 3-OH 129
Muricauda onchidii sp. nov. Flavobacteriaceae Mouth of marine invertebrate (Onchidium spp.) from China Aerobic, nonmotile, oxidase-positive, catalase-positive Gram-negative bacillus; 0.45- to 0.55-mm diam circular, moist, convex, cream-pigmented colonies on marine agar; optimal growth at 30°C; α-chymotrypsin-, cystine arylamidase-, C4 esterase-, valine arylamidase-positive; α-galactosidase-, β-galactosidase-, β-glucosidase-, α-mannosidase-negative; weakly reactive for C8 esterase lipase, trypsin, α-glucosidase; respiratory quinone MK-6 130
Ruegeria haliotis sp. nov. Rhodobacteraceae Gut of abalone (Haliotis rubra) from China Aerobic, nonmotile, oxidase-positive, catalase-positive Gram-negative bacillus; 1.5-mm diam smooth, circular white-pigmented colonies on marine agar; optimal growth at 25–28°C; positive for casein hydrolysis, alginate hydrolysis, urease, l-arabinose-, d-glucose, d-fructose, d-cellobiose, d-maltose, d-turanose, d-arabitol, C4 esterase; negative for Tween 80 hydrolysis, d-mannose, d-melibiose, d-melezitose, l-fucose, α-galactosidase, N-acetyl-glucosaminidase 131 b
Tamlana haliotis sp. nov. Flavobacteriaceae Gut of abalone (Haliotis rubra) from China Aerobic, nonmotile, oxidase-positive, catalase-positive Gram-negative bacillus; 1-mm diam smooth, circular, yellow-pigmented colonies on marine agar; optimal growth at 25°C and with 2% NaCl; positive for d-turanose, starch hydrolysis, alginate hydrolysis, N-acetyl-glucosaminidase, α-chymotrypsin; negative for Tween 80 hydrolysis, d-galactose, amygdalin, d-cellobiose, gentiobiose, β-galactosidase, α-glucosidase 132 b
Algibacter onchidii sp. nov. Flavobacteriaceae Marine invertebrate (Onchidium spp.) from China Aerobic, nonmotile, oxidase-positive, catalase-positive Gram-negative bacillus; 1- to 2-mm diam smooth, convex, orange colonies on marine agar; positive for nitrate reduction, denitrification, N-acetyl-β-glucosaminidase; d-glucose-, β-galactosidase-, β-glucosidase-, α-fucosidase-negative; weak hydrolysis of Tweens 20 and 80; weakly reactive for C14 lipase, trypsin, α-chymotrypsin 133
Pseudoalteromonas ostreae sp. nov. Pseudoalteromonadaceae Hemolymph of oyster (Ostrea edulis) from France Aerobic, motile, non-spore-forming Gram-negative bacillus; 2- to 3-mm diam convex, opaque, cream/orange-pigmented colonies on marine agar; growth range at 4–30°C; growth also observed on tryptic soy agar and Mueller-Hinton agar; no growth on MacConkey or cetrimide agars; trypsin-, α-chymotrypsin-, maltose-, trisodium citrate-positive; nitrate reduction-, esculin hydrolysis-, arginine dihydrolase-, C4 esterase-, cystine arylamidase-, α-galactosidase-, β-glucosidase-, l-arabinose-, d-mannose-, d-mannitol-, adipic acid-negative 134
Paenihalocynthiibacter styelae gen. nov., sp. nov. Rhodobacteraceae Intestine of stalked sea squirt (Styela clava) from Republic of Korea Aerobic, nonmotile, catalase-positive, oxidase-positive Gram-negative bacillus; 1- to 2-mm diam circular, grayish yellow, smooth colonies on marine agar; optimal growth at 20–25°C; nitrate reduction-, hypoxanthine hydrolysis-, l-tyrosine hydrolysis-, acetate-, citrate-, succinate-, acid phosphatase-positive; esculin hydrolysis-, d-fructose-, d-glucose-, cellobiose-, pyruvate-, salicin-, α-glucosidase-negative; reported susceptibility to lincomycin, novobiocin, polymyxin B 135
Curved bacteria
Arcobacter haliotis sp. nov. Arcobacteraceae Abalone species (Haliotis gigantea) from Japan; taxon now considered to be a synonym (refer to Table 2) Aerobic/microaerophilic, motile, oxidase-positive, catalase-positive Gram-negative bacillus; 1-mm diam white colonies on marine agar; optimal growth at 25°C, no growth at 37°C or 42°C; no growth on MacConkey agar or Campylobacter blood-free charcoal cefoperazone deoxycholate agar; tolerates 4% NaCl and 0.01% 2,3,5-triphenyl tetrazolium chloride; urease-, nitrate reduction-, indoxyl acetate-positive; γ-glutamyltransferase-, pyrrolidonyl arylamidase-, alkaline phosphatase-, esculin-, hippurate-, starch-, gelatin-, DNase-negative 136
Vibrio echinoideorum sp. nov. Vibrionaceae Epidermal lesions of green sea urchin (Strongylocentrotus droebachiensis) from Norway Facultative, motile, oxidase-positive, catalase-positive Gram-negative bacillus; 1.5- to 2-mm diam circular, smooth, slightly convex, beige-pigmented colonies on marine agar; growth range at 4–28°C; appear as green colonies on thiosulfate citrate bile salts sucrose agar; β-galactosidase-, arginine dihydrolase-, gelatin hydrolysis-, nitrate reduction-, gentibiose-, malate-, d-galactose-, d-mannose-, glycogen-positive; acetoin-, esculin hydrolysis-, C14 lipase-, valine arylamidase-, trypsin-, raffinose-, xylitol-negative; susceptible to O/129 30
Helicobacter delphinicola sp. nov. Helicobacteraceae Gastric fluid of common bottlenose dolphin (Tursiops truncates) with gastric disease from Japan Microaerophilic, motile, oxidase-positive, catalase-positive, non-spore-forming, curved Gram-negative bacillus; 2- to 5-mm diam translucent, α-hemolytic, nonswarming circular colonies on blood agar; growth observed at 37°C (no growth at 42°C); urease-, γ-glutamyl transpeptidase-positive; nitrate reduction-, indoxyl acetate-, alkaline phosphatase-, hippurate-, triphenyl-tetrazolium chloride reduction-negative; susceptible to cephalothin and nalidixic acid 35 m
Poseidonibacter parvus sp. nov. Arcobacteraceae Squid from Republic of Korea; taxon now considered to be a synonym (refer to Table 2) Aerobic (can grow in microaerophilic conditions), motile, oxidase-positive, catalase-positive Gram-negative bacillus; circular, convex, pinkish-brown colonies on marine agar; optimal growth at 25°C; no growth on MacConkey, Reasoner’s 2A, tryptic soy agars or on nutrient agar supplemented with 4% sea salt; indole-, hippurate-, nitrate reduction-, alkaline phosphatase-positive; C4 esterase-, leucine arylamidase-, valine arylamidase-negative; weakly reactive for DNase, C8 esterase lipase 137
Teredinibacter franksiae sp. nov. Cellvibrionaceae Gill and cecum of shipworm (Bankia setacea) from United States Microaerophilic, motile, slightly curved Gram-negative bacillus; small translucent colonies initially observed on Bacto agar shipworm basal medium (supplemented with cellulose), with transition to inverted dome of cells with off-white or beige coloration beneath agar surface; clearing zone due to hydrolysis of cellulose; growth range at 15–20°C; marine salt (magnesium, calcium) requirement; negative for nitrogen fixation, 0.1% starch, 0.1% chitin, 0.1% dextran, 0.1% pyruvate 138
Teredinibacter haidensis sp. nov. Cellvibrionaceae Gill and cecum of shipworm (Bankia setacea) from United States Microaerophilic, motile, slightly curved Gram-negative bacillus; small translucent colonies initially observed on Bacto agar shipworm basal medium (supplemented with cellulose), with transition to inverted dome of cells with off-white or beige coloration beneath agar surface; clearing zone due to hydrolysis of cellulose; growth range at 15–30°C; no marine salt (magnesium, calcium) requirement; positive for nitrogen fixation, 0.1% starch, 0.1% chitin, 0.1% dextran, 0.1% pyruvate 138
Teredinibacter purpureus sp. nov. Cellvibrionaceae Gill and cecum of shipworm (Bankia setacea) from United States Microaerophilic, motile, slightly curved Gram-negative bacillus; small translucent colonies initially observed on Bacto agar shipworm basal medium (supplemented with cellulose), with transition to inverted dome of cells with deep purple coloration beneath agar surface; clearing zone due to hydrolysis of cellulose; growth range at 10–25°C; marine salt (magnesium, calcium) requirement; positive for 0.1% pyruvate; negative for nitrogen fixation, 0.1% starch, 0.1% chitin, 0.1% dextran 138
Curvivirga aplysinae gen. nov., sp. nov. Kiloniellaceae Marine sponge (Aplysina fistularis) from the Bahamas Aerobic, motile, oxidase-positive, catalase-positive, curved-to-spiral Gram-negative bacillus; circular, smooth, shiny, light-yellow to beige colonies on marine agar; optimal growth at 30–37°C; NaCl is required for growth (range 0.5–10%); casein hydrolysis-, starch hydrolysis-, acid phosphatase-positive; nitrate reduction-, glucose fermentation-, urease-, esculin hydrolysis-, gelatin hydrolysis-, C14 lipase-negative 139
Vibrio ulleungensis sp. nov. Vibrionaceae Mussel (Mytilus coruscus) from Republic of Korea Facultative, motile, oxidase-positive, catalase-positive, non-spore-forming, Gram-negative bacillus; 0.8- to 1.4-mm diam smooth, convex, light-yellow-pigmented colonies on marine agar; optimal growth at 25–30°C; gelatin hydrolysis-, β-galactosidase-, β-glucosidase-, salicin-, acetate-, l-proline-, d-ribose-, C8 esterase lipase-, valine arylamidase-positive; indole-, arginine dihydrolase-, d-mannose-, maltose-, gluconate-, citrate-, glycogen-, N-acetyl-β-glucosaminidase-negative 140
Acid-fast bacilli
Mycobacterium syngnathidarum sp. nov. Mycobacteriaceae Clinically ill lined seahorse (Hippocampus erectus) and alligator pipefish (Syngnathoides biaculeatus) from United States Rapid-growing (3–5 days of incubation between 30°C and 37°C) acid-fast bacillus; growth demonstrated on 7H11, Lowenstein Jensen and 5% sheep blood agars; catalase-, arylsulfatase-positive; oxidase-, Tween 80 hydrolysis-negative; no growth observed in mannitol, myoinositol, sorbitol, trehalose, and l-rhamnose; susceptibility to clarithromycin, amikacin; resistance/elevated minimum inhibitory concn values for tobramycin, linezolid, doxycycline, fluoroquinolones, imipenem, cefoxitin, ceftriaxone, trimethoprim-sulfamethoxide 39
Phylum Planctomycetota
Planctopirus ephydatiae sp. nov. Planctomycetaceae Sponge (Ephydatia spp.) from freshwater lake Ovoid-shaped, motile cells forming in aggregates in liquid culture, producing large amounts of fibers; crateriform structures distributed evenly over cell surface; pink-pigmented colonies on MM1 medium supplemented with N-acetyl-d-glucosamine; optimal growth at 30°C; alkaline phosphatase, esterase, esterase lipase, naphthol-AS-BI-phosphohydrolase, and α-galactosidase activities observed 141 j
Aureliella helgolandensis gen. nov., sp. nov. Pirellulaceae Jellyfish (Aurelia aurita) from Helgoland (Germany) Acorn-shaped cells with aggregate formations; crateriform structure at one pole, holdfast structure present at opposite pole; lucid white-pigmented colonies on M1H NAG artificial seawater medium; optimal growth at 27°C; aerobic heterotroph 142 k
Poriferisphaera corsica gen. nov., sp. nov. Phycisphaeraceae Calcareous sponge (Clathrina clathrus) from France Spherical, motile cells forming in aggregates; cell surface covered with outer membrane vesicles; no crateriform, stalk, or holdfast structures observed; white-pigmented colonies on M1H NAG artificial seawater medium solidified with gellan gum; optimal growth at 27°C; aerobic heterotroph 143 m
a

Taxonomic designation subsequently accepted in Validation List no. 195 (144).

b

Taxonomic designation subsequently accepted in Validation List no. 202 (145).

c

Taxonomic designation subsequently accepted in Validation List no. 182 (146).

d

Taxonomic designation subsequently accepted in Validation List no. 183 (147).

e

Taxonomic designation subsequently accepted in Validation List no. 185 (148).

f

Taxonomic designation subsequently accepted in Validation List no. 187 (149).

g

Taxonomic designation subsequently accepted in Validation List no. 191 (150).

h

Taxonomic designation subsequently accepted in Validation List no. 192 (151).

i

Taxonomic designation subsequently accepted in Validation List no. 193 (152).

j

Taxonomic designation subsequently accepted in Validation List no. 196 (153).

k

Taxonomic designation subsequently accepted in Validation List no. 198 (154).

l

Taxonomic designation subsequently accepted in Validation List no. 200 (155).

m

Taxonomic designation subsequently accepted in Validation List no. 199 (156).

TABLE 2.

Revised bacterial taxa (including members of the phylum Planctomycetota) relative to aquatic veterinary material reported from January 2018 through December 2021

Former name Revised name Other information Reference(s)
Gram-positive bacilli
Verrucosispora andamanensis Micromonospora andamanensis comb. nov. Initial description and recovery of the former V. andamanensis from marine sponge found in (157) 158 a
Bacillus crassostreae Metabacillus crassostreae comb. nov. Initial description and recovery of the former B. crassostreae from oyster (Crassostrea hongkongensis) found in (159) 160
Bacillus galliciensis Metabacillus galliciensis comb. nov. Initial description and recovery of the former B. galliciensis from feces of wild seahorses (Hippocampus guttulatus) found in (161) 160
Bacillus hemicentroti Alkalihalobacillus haemicentroti comb. nov. Initial description and recovery of the former B. hemicentroti from sea urchin (Hemicentrotus pulcherrimus) found in (162) 160
Bacillus aquimaris Rossellomorea aquimaris comb. nov. Initial description and recovery of the former B. aquimaris from seawater found in (163); recovery of this organism from shrimp found in (164) 165
Saccharopolyspora coralli Allosaccharopolyspora coralli comb. nov. Initial description and recovery of the former S. coralli from stony coral found in (55) and Table 1 166
Gram-negative bacilli and coccobacilli
Hanstruepera crassostreae Pseudobizionia ponticola Initial description and recovery of the former H. crassostreae from oyster found in (79); H. crassostreae (Table 1) is a later heterotypic synonym of P. ponticola 167
Idiomarina aquimaris Pseudidiomarina aquimaris comb. nov. Initial description and recovery of the former I. aquimaris from reef-building coral (Isopora palifera) found in (168) 169 b
Labilibacter aurantiacus Saccharicrinis aurantiacus comb. nov. Initial description and recovery of the former L. aurantiacus from sea squirt (Styela clava) found in (170) 171 c
Formosa spongicola Xanthomarina spongicola comb. nov. Initial description and recovery of the former F. spongicola from marine sponge (Hymeniacidon flavia) found in (172) 171 c
Labrenzia alba Roseibium album comb. nov. Initial description and recovery of the former Stappia alba from Mediterranean oysters found in (173) and accepted (174); subsequent revision to Labrenzia alba documented in (175) 171 d
Flavobacterium spartansii Flavobacterium tructae Initial description and recovery of the former F. spartansii from kidney of feral adult Chinook salmon (Oncorhynchus tshawytscha) found in (42); F. spartansii is a later heterotypic synonym of F. tructae 22
Altererythrobacter troitsensis Tsuneonella troitsensis comb. nov. Initial description and recovery of the former A. troitsensis from sea urchin Strongylocentrotus intermedius found in (176) 177
Erythrobacter spongiae Aurantiacibacter spongiae comb. nov. Initial description and recovery of the former E. spongiae from marine sponge found in (81) and Table 1 177
Duganella danionis Pseudoduganella danionis Initial description and recovery of the former D. danionis from beaked whales found in (178) and accepted (153); initial description and recovery of P. danionis from zebrafish found in (179); D. danionis is a later homotypic synonym of P. danionis 153, 178
Pseudomonas pachastrellae Halopseudomonas pachastrellae comb. nov. Initial description and recovery of the former P. pachastrellae from sponge (Pachastrella spp.) found in (180) 181
Vitellibacter todarodis Aequorivita todarodis comb. nov. Initial description and recovery of the former V. todarodis from squid found in (70) and Table 1 182
Curved bacteria
Arcobacter haliotis Arcobacter lekithochrous Initial description and recovery of the former A. haliotis from abalone species Haliotis gigantea found in (136); A. haliotis (Table 1) is a later heterotypic synonym of A. lekithrochrous 183
Vibrio aestuarianus Vibrio aestuarianus subsp. aestuarianus subsp. nov. Initial description and recovery of the former Vibrio aestuarianus from Pacific oyster (Crassostrea gigas) found in (184) 44
Vibrio aestuarianus Vibrio aestuarianus subsp. cardii subsp. nov. Initial description and recovery of the former Vibrio aestuarianus from Pacific oyster (Crassostrea gigas) found in (184); Vibrio aestuarianus subsp. Cardii subsp. nov. isolated from edible cockles (Cerastoderma edule) in France 44
Vibrio aestuarianus Vibrio aestuarianus subsp. francensis subsp. nov. Initial description and recovery of the former Vibrio aestuarianus from Pacific oyster (Crassostrea gigas) found in (184); V. aestuarianus subsp. Francensis subsp. nov. isolated from a diseased oyster in France 44
Poseidonibacter parvus Arcobacter parvus comb. nov. Initial description of the former P. parvus from squid found in (137) and Table 1 185
Phylum Planctomycetota
Blastopirellula cremea Bremerella cremea comb. nov. Initial description and recovery of the former B. cremea from dead ark clam (Scapharca broughtonii) found in (186) 187 e
a

Taxonomic designation subsequently accepted in Validation List no. 184 (188).

b

Taxonomic designation subsequently accepted in Validation List no. 185 (148).

c

Taxonomic designation subsequently accepted in Validation List no. 193 (152).

d

Taxonomic designation subsequently accepted in Validation List no. 194 (189).

e

Taxonomic designation subsequently accepted in Validation List no. 198 (154).

Most new descriptions are derived from surveys of normal aquatic animal tissue or intestinal tract, which has resulted in the naming of a multitude of new taxa. Identification of normal or colonizing flora from coral, sponges, and other invertebrates as well as fish aids in understanding the breadth of diversity of bacteria, of which we know little. These include representatives from familiar families like Nocardiaceae which includes Rhodococcus electrodiphilus (11), an electroactive bacterium that can provide electrical power during metabolism and is an important area of investigation for alternative fuels. Also, numerous actinomycotic Gram-positive bacilli, including Rhodococcus xishaensis sp. nov. (12) and multiple Streptomyces spp., have been identified which are remarkably thermotolerant with optimal growth at 20 to 40°C. Other familiar genera such as Pseudomonas are present in this review, as well as more obscure genera that colonize aquatic species like Sansalvadorimonas gen. nov. (13).

Novel taxa.

Of the four Gram-positive cocci described, Streptococcus penaeicida sp. nov. (14) is ascribed clinical significance in Pacific white shrimp. Isolated from the hepatopancreas of diseased shrimp, it adds another pathogen to the small but important group of streptococcal species (Streptococcus iniae, Streptococcus agalactiae, Streptococcus dysgalactiae, Streptococcus parauberis, and Streptococcus phocae) impacting fish and other aquatic animal health (15). This is the first full description of a Streptococcus spp. causing health impacts in shrimp, which is of concern, as most bacterial disease prevention and treatment in the industry has focused on Gram-negative bacilli. S. penaeicida sp. nov. is thermotolerant with growth up to 40°C, relatively salt tolerant, and grows in a highly alkaline pH. In comparison to other aquatic streptococcal species, S. penaeicida sp. nov. utilizes a large variety of sugars as carbon sources.

Two novel Gram-positive bacilli taxa were described as causing disease in ornamental fish and Atlantic salmon. Erysipelothrix piscisicarius sp. nov. (16) was originally isolated from multiple types of ornamental fish with various lesions, including cellulitis, dermatitis, myositis, and more systemic infection (17). The isolates from diseased fish were originally identified as Erysipelothrix rhusiopathiae, an important pathogen of swine and poultry, as well as being a zoonotic agent of infection. Further genetic characterization determined that the isolates were significantly divergent from E. rhusiopathiae due to the presence of a spaC gene and likely represented a new taxon. Interestingly, a closely related spaC-positive Erysipelothrix spp. has been isolated from swine but was not included in this description. E. piscisicarius sp. nov. is slow growing in comparison to E. rhusiopathiae with colonies prominent at 60 h. E. piscisicarius sp. nov. further differs in carbohydrate utilization as it does not metabolize l-rhamnose or lactose.

The second novel taxon, Arthrobacter ulcerisalmonis sp. nov. (18), was isolated from ulcers from Atlantic salmon. This organism adds to the long list of bacilli (majority Gram-negative) associated with cutaneous lesions in salmonids. However, the pathogenicity of this isolate can be debated as it was found accompanying Flavobacterium psychrophilum, a significant and well-known pathogen of salmon. Arthrobacter spp. have been uncommonly associated with human infection and only described in immunocompromised patients (19). Taken together, this genus is considered widespread in the environment but of low pathogenicity.

Most pathogenic taxa described in Table 1 are Gram-negative bacilli or curved bacilli, which is consistent with groups of bacteria affecting aquatic species most. The Flavobacteriaceae family is well represented, with eight novel species divided between the Tenacibaculum (20, 21) and Flavobacterium (2225) genera. Both genera historically contain common pathogens of fish, including Tenacibaculum maritimum, causing significant cutaneous lesions in numerous marine fish species (26), and Flavobacterium pyschrophilum and Flavobacterium columnaris, causing bacterial cold-water disease in freshwater-raised salmonids and columnaris disease in multiple freshwater fish species (27, 28). These bacteria are known for gliding motility and can be difficult to culture. Three new Tenacibaculum spp. include Tenacibaculum singaporense sp. nov. (20) from farmed Asian seabass, and Tenacibaculum piscium sp. nov. and Tenacibaculum finnmarkense sp. nov. (21) from farmed Atlantic salmon. Disease associated with all species was consistent with traditional tenacibaculosis in farmed marine environments. Flavobacterium bizetiae sp. nov. (23) was initially isolated in the late 1970s from diseased freshwater fish for which no description of fish species or details on clinical disease was given. Despite subsequent full characterization and taxon description, pathogenicity of this species remains unclear due to lack of clinical information or in vivo infection studies. Flavobacterium kayseriense sp. nov. and Flavobacterium turcicum sp. nov. were isolated from the kidney and spleen of farmed rainbow trout demonstrating signs of systemic disease, including skin discoloration, exophthalmia, and swimming abnormalities (25). While F. kayseriense sp. nov. and F. turcicum sp. nov. are genetically closely related, they do express phenotypic differences in sugar and carbon utilization. These novel species also possess important differences in antimicrobial susceptibility profiles, with F. kayseriense sp. nov. demonstrating resistance to important classes such as folate pathway inhibitors and quinolones.

Vibrionaceae is an important family of marine pathogenic Gram-negative bacilli and curved bacteria affecting aquatic animals and humans. The most well-known of these organisms is Vibrio cholerae, an important diarrheal disease of humans (29). Other important species, including Vibrio parahaemolyticus and Vibrio vulnificus, affect aquatic animals and can be zoonotic when humans are exposed to seafood and marine environments. Novel Vibrio spp. taxa described in Table 1 include Vibrio echinoideorum sp. nov. (30), which was recently isolated from a lesion on the hard exoskeleton (test) of a sea urchin. The organism was determined to be a member of the Vibrio splendidus clade, with utilization of glycogen and gentiobiose among other biochemical differences aiding in discrimination from other members. Photobacterium is a second important genus within the Vibrionaceae family. Perhaps the most well-known member is Photobacterium damselae (now designated Photobacterium damselae subsp. damselae), first reported in 1982 as a cause of wound infection in six people (31) and later isolated from numerous marine animals with a variety of cutaneous and systemic manifestations (32). Three effectively published Photobacterium spp. were isolated from diseased redbanded seabream in Spain and published within the past 5 years: Photobacterium toruni sp. nov., Photobacterium andalusiense sp. nov., and Photobacterium malacitanum sp. nov. (33, 34). All were obtained from culture of internal organs during outbreaks of an undescribed disease and were determined to be genetically distinct from known Photobacterium spp. The isolates have similar utilization of sugars and amino acids but differ in lipase activity.

An additional Gram-negative bacillus of clinical interest, Helicobacter delphinicola sp. nov. (35), was isolated from gastric fluid of a captive common bottlenose dolphin and is a member of the Helicobacteraceae family. The dolphin was diagnosed with gastric ulcers and a spiral-shaped bacterium was isolated from the affected area. Because helicobacters are commonly implicated in gastric pathology in humans and cetaceans (3638), this report provided additional support for the role of Helicobacter spp. in causing disease across multiple human and animal species. While genetic similarity to Helicobacter cetorum was high utilizing selected housekeeping genes, H. delphinicola sp. nov. was biochemically distinct due to resistance to 2% NaCl, which had not previously been described in the Helicobacter genus. Interestingly, captivity or stranding appears to be associated with the development of gastric ulcers in cetaceans and, similar to human disease, appears multifactorial.

Lastly, one new mycobacterial species associated with clinical disease in multiple marine animals (captive lined seahorse and alligator pipefish) was validly and effectively published as Mycobacterium syngnathidarum sp. nov. (39). Mycobacteria are important, difficult-to-manage aquatic pathogens which frequently impact the health of captive or farmed aquatic animals (40). Additionally, aquatic nontuberculosis mycobacteria (NTM) cause sporadic human infection and are of zoonotic concern, with Mycobacterium marinum a common example (41). M. syngnathidarum sp. nov. is a nonpigmented, rapidly growing Mycobacterium spp., with growth observed in 3 to 5 days. As NTM can be intrinsically resistant to common antimicrobial agents, it is important to note this species has variable susceptibility to commonly used agents, including linezolid, doxycycline, moxifloxacin, and trimethoprim/sulfamethoxide.

Taxonomic revisions.

In addition to reports of novel species within the Flavobacterium genera, several taxonomic designations have been revised. Flavobacterium spartansii, originally isolated from Chinook salmon and described in 2014 (42), has subsequently been determined to be a heterotypic synonym of Flavobacterium tructae (22). F. tructae was originally isolated from diseased rainbow trout (43) and validly published the same year as the valid and effective publication of F. spartansii. Subsequent analysis during the description of a closely related species, Flavobacterium salmonis (22), determined these two species should not be separately named based on an average nucleotide identity of ~98%, in silico DNA-DNA hybridization of ~80%, and 100% similarity between 16S rRNA genes. Interestingly, significant phenotypic differences appear to exist, relative to motility and nitrate reduction.

Vibrio aestuarianus, a significant cause of mortality in oysters, has been assigned three subspecies designations (44). Vibrio aestuarianus subsp. aestuarianus was assigned to the original isolate originating from various American aquatic animals. Vibrio aestuarianus subsp. cardii was assigned to an isolate obtained from diseased edible cockles, and Vibrio aestuarianus subsp. francensis to an isolate from a diseased oyster in France. While phenotypic variation was noted to be significant enough to warrant consideration of subspecies designation in 2008 for the pathogenic oyster strain V. aestuarianus subsp. francensis (45), this was fully realized in the evaluation of the edible cockle strain (44) and thus three subspecies were proposed. Differences between the subspecies were noted through genetic and phenotypic characterizations; however, most important differences relate to virulence. The type subspecies V. aestuarianus subsp. aestuarianus is not pathogenic for oysters and is quite salt tolerant, while V. aestuarianus subsp. francensis and V. aestuarianus subsp. cardii have demonstrated to be pathogenic in oysters and cockles, respectively.

CONCLUSION

An incredible microbial diversity is being uncovered in aquatic environments. Bacteria impacting aquatic animal health have become a more pressing issue with the increased reliance on farmed products to spare wild stocks. We face similar challenges to aquatic animal production as in terrestrial food production where diseases of management have significant impacts. Additionally, population-limiting bacterial infections in threatened or endangered aquatic species are increasingly challenging with stresses to the environment in waterways. Human health is impacted by disease transmission directly from these special environments and/or animals through contaminated food products (food safety), as we rely on aquaculture in place of capture fisheries, for food security. Lastly, bacteria from aquatic and aquatic animal habitats with unique metabolism or by-products can aid in combating some of our most critical challenges in waste mitigation and energy utilization.

ACKNOWLEDGMENT

This report was not subject to influence from any funding agency in the public, commercial, or not-for-profit sectors.

Contributor Information

Erik Munson, Email: erik.munson@marquette.edu.

Romney M. Humphries, Vanderbilt University Medical Center

REFERENCES

  • 1.Devos DP, Lage OM, Sutcliffe IC. 2020. Bringing the diversity of Planctomycetes into the light: introduction to papers from the special issue on novel taxa of Planctomycetes. Antonie Van Leeuwenhoek 113:1715–1726. doi: 10.1007/s10482-020-01499-y. [DOI] [PubMed] [Google Scholar]
  • 2.Rivas-Marín E, Canosa I, Devos DP. 2016. Evolutionary cell biology of division mode in the bacterial Planctomycetes-Verrucomicrobia-Chlamydiae superphylum. Front Microbiol 7:1964. doi: 10.3389/fmicb.2016.01964. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 3.Rivas-Marin E, Peeters SH, Claret Fernández L, Jogler C, van Niftrik L, Wiegand S, Devos DP. 2020. Non-essentiality of canonical cell division genes in the planctomycete Planctopirus limnophila. Sci Rep 10:66. doi: 10.1038/s41598-019-56978-8. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 4.Munson E, Lawhon SD, Burbick CR, Zapp A, Villaflor M, Thelen E. 2023. An update on novel taxa and revised taxonomic status of bacteria isolated from domestic animals described in 2018–2021. J Clin Microbiol. doi: 10.1128/jcm.00281-22. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 5.Lawhon SD, Burbick CR, Munson E, Zapp A, Thelen E, Villaflor M. 2023. Update on novel taxa and revised taxonomic status of bacteria isolated from non-domestic animals described in 2018–2021. J Clin Microbiol doi: 10.1128/jcm.01425-22. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 6.Kämpfer P, Irgang R, Busse HJ, Poblete-Morales M, Kleinhagauer T, Glaeser SP, Avendaño-Herrera R. 2016. Undibacterium danionis sp. nov. isolated from a zebrafish (Danio rerio). Int J Syst Evol Microbiol 66:3625–3631. doi: 10.1099/ijsem.0.001244. [DOI] [PubMed] [Google Scholar]
  • 7.Gomez-Gil B, Roque A, Rotllant G, Romalde JL, Doce A, Eggermont M, Defoirdt T. 2016. Photobacterium sanguinicancri sp. nov. isolated from marine animals. Antonie Van Leeuwenhoek 109:817–825. doi: 10.1007/s10482-016-0681-x. [DOI] [PubMed] [Google Scholar]
  • 8.Oren A, Garrity GM. 2016. List of new names and new combinations previously effectively, but not validly, published. Int J Syst Evol Microbiol 66:3761–3764. doi: 10.1099/ijsem.0.001321. [DOI] [PubMed] [Google Scholar]
  • 9.Adeolu M, Alnajar S, Naushad S, Gupta RS. 2016. Genome-based phylogeny and taxonomy of the ‘Enterobacteriales’: proposal for Enterobacterales ord. nov. divided into the families Enterobacteriaceae, Erwiniaceae fam. nov., Pectobacteriaceae fam. nov., Yersiniaceae fam. nov., Hafniaceae fam. nov., Morganellaceae fam. nov., and Budviciaceae fam. nov. Int J Syst Evol Microbiol 66:5575–5599. doi: 10.1099/ijsem.0.001485. [DOI] [PubMed] [Google Scholar]
  • 10.Oren A, Garrity GM. 2021. Valid publication of the names of forty-two phyla of prokaryotes. Int J Syst Evol Microbiol 71:e005056. doi: 10.1099/ijsem.0.005056. [DOI] [PubMed] [Google Scholar]
  • 11.Ramaprasad EVV, Mahidhara G, Sasikala C, Ramana CV. 2018. Rhodococcus electrodiphilus sp. nov., a marine electro active actinobacterium isolated from coral reef. Int J Syst Evol Microbiol 68:2644–2649. doi: 10.1099/ijsem.0.002895. [DOI] [PubMed] [Google Scholar]
  • 12.Zhang D, Su ZY, Li L, Tang WZ. 2021. Rhodococcus spongiicola sp. nov. and Rhodococcus xishaensis sp. nov., from marine sponges. Int J Syst Evol Microbiol 71:e04863. doi: 10.1099/ijsem.0.004863. [DOI] [PubMed] [Google Scholar]
  • 13.Goldberg SR, Haltli BA, Correa H, Kerr RG. 2018. Description of Sansalvadorimonas verongulae gen. nov., sp. nov., a gammaproteobacterium isolated from the marine sponge Verongula gigantea. Int J Syst Evol Microbiol 68:2006–2014. doi: 10.1099/ijsem.0.002781. [DOI] [PubMed] [Google Scholar]
  • 14.Morales-Covarrubias MS, Del Carmen Bolan-Mejia M, Vela Alonso AI, Fernandez-Garayzabal JF, Gomez-Gil B. 2018. Streptococcus penaeicida sp. nov., isolated from a diseased farmed Pacific white shrimp (Penaeus vannamei). Int J Syst Evol Microbiol 68:1490–1495. doi: 10.1099/ijsem.0.002693. [DOI] [PubMed] [Google Scholar]
  • 15.Mishra A, Nam GH, Gim JA, Lee HE, Jo A, Kim HS. 2018. Current challenges of Streptococcus infection and effective molecular, cellular, and environmental control methods in aquaculture. Mol Cells 41:495–505. doi: 10.14348/molcells.2018.2154. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 16.Pomaranski EK, Griffin MJ, Camus AC, Armwood AR, Shelley J, Waldbieser GC, LaFrentz BR, Garcia JC, Yanong R, Soto E. 2020. Description of Erysipelothrix piscisicarius sp. nov., an emergent fish pathogen, and assessment of virulence using a tiger barb (Puntigrus tetrazona) infection model. Int J Syst Evol Microbiol 70:857–867. doi: 10.1099/ijsem.0.003838. [DOI] [PubMed] [Google Scholar]
  • 17.Pomaranski EK, Reichley SR, Yanong R, Shelley J, Pouder DB, Wolf JC, Kenelty KV, Van Bonn B, Oliaro F, Byrne B, Clothier KA, Griffin MJ, Camus AC, Soto E. 2018. Characterization of spaC-type Erysipelothrix sp. isolates causing systemic disease in ornamental fish. J Fish Dis 41:49–60. doi: 10.1111/jfd.12673. [DOI] [PubMed] [Google Scholar]
  • 18.Kämpfer P, Busse HJ, Schumann P, Criscuolo A, Clermont D, Irgang R, Poblete-Morales M, Glaeser SP, Avendaño-Herrera R. 2020. Arthrobacter ulcerisalmonis sp. nov., isolated from an ulcer of a farmed Atlantic salmon (Salmo salar), and emended description of the genus Arthrobacter sensu lato. Int J Syst Evol Microbiol 70:1963–1968. doi: 10.1099/ijsem.0.004002. [DOI] [PubMed] [Google Scholar]
  • 19.Funke G, Hutson RA, Bernard KA, Pfyffer GE, Wauters G, Collins MD. 1996. Isolation of Arthrobacter spp. from clinical specimens and description of Arthrobacter cumminsii sp. nov. and Arthrobacter woluwensis sp. nov. J Clin Microbiol 34:2356–2363. doi: 10.1128/jcm.34.10.2356-2363.1996. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 20.Miyake S, Soh M, Azman MN, Ngoh SY, Orbán L, Seedorf H. 2020. Insights into the microbiome of farmed Asian sea bass (Lates calcarifer) with symptoms of tenacibaculosis and description of Tenacibaculum singaporense sp. nov. Antonie Van Leeuwenhoek 113:737–752. doi: 10.1007/s10482-020-01391-9. [DOI] [PubMed] [Google Scholar]
  • 21.Olsen AB, Spilsberg B, Nilsen HK, Lagesen K, Gulla S, Avendaño-Herrera R, Irgang R, Duchaud E, Colquhoun DJ. 2020. Tenacibaculum piscium sp. nov., isolated from skin ulcers of sea-farmed fish, and description of Tenacibaculum finnmarkense sp. nov. with subdivision into genomovars finnmarkense and ulcerans. Int J Syst Evol Microbiol 70:6079–6090. doi: 10.1099/ijsem.0.004501. [DOI] [PubMed] [Google Scholar]
  • 22.Kämpfer P, Irgang R, Glaeser SP, Busse HJ, Criscuolo A, Clermont D, Avendaño-Herrera R. 2020. Flavobacterium salmonis sp. nov. isolated from Atlantic salmon (Salmo salar) and formal proposal to reclassify Flavobacterium spartansii as a later heterotypic synonym of Flavobacterium tructae. Int J Syst Evol Microbiol 70:6147–6154. doi: 10.1099/ijsem.0.004510. [DOI] [PubMed] [Google Scholar]
  • 23.Mühle E, Abry C, Leclerc P, Goly GM, Criscuolo A, Busse HJ, Kämpfer P, Bernardet JF, Clermont D, Chesneau O. 2021. Flavobacterium bizetiae sp. nov., isolated from diseased freshwater fish in Canada at the end of the 1970s. Int J Syst Evol Microbiol 71:e004576. doi: 10.1099/ijsem.0.004576. [DOI] [PubMed] [Google Scholar]
  • 24.Duman M, Ay H, Altun S, Sahin N, Saticioglu IB. 2021. Flavobacterium muglaense sp. nov. isolated from internal organs of apparently healthy rainbow trout. Int J Syst Evol Microbiol 71:e004903. doi: 10.1099/ijsem.0.004903. [DOI] [PubMed] [Google Scholar]
  • 25.Saticioglu IB, Ay H, Altun S, Duman M, Sahin N. 2021. Flavobacterium turcicum sp. nov. and Flavobacterium kayseriense sp. nov. isolated from farmed rainbow trout in Turkey. Syst Appl Microbiol 44:126186. doi: 10.1016/j.syapm.2021.126186. [DOI] [PubMed] [Google Scholar]
  • 26.Avendaño-Herrera R, Toranzo AE, Magariños B. 2006. Tenacibaculosis infection in marine fish caused by Tenacibaculum maritimum: a review. Dis Aquat Organ 71:255–266. doi: 10.3354/dao071255. [DOI] [PubMed] [Google Scholar]
  • 27.Declercq AM, Haesebrouck F, Van den Broeck W, Bossier P, Decostere A. 2013. Columnaris disease in fish: a review with emphasis on bacterium-host interactions. Vet Res 44:27. doi: 10.1186/1297-9716-44-27. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 28.Duchaud E, Boussaha M, Loux V, Bernardet JF, Michel C, Kerouault B, Mondot S, Nicolas P, Bossy R, Caron C, Bessières P, Gibrat JF, Claverol S, Dumetz F, Le Hénaff M, Benmansour A. 2007. Complete genome sequence of the fish pathogen Flavobacterium psychrophilum. Nat Biotechnol 25:763–769. doi: 10.1038/nbt1313. [DOI] [PubMed] [Google Scholar]
  • 29.Clemens JD, Nair GB, Ahmed T, Qadri F, Holmgren J. 2017. Cholera. Lancet 390:1539–1549. doi: 10.1016/S0140-6736(17)30559-7. [DOI] [PubMed] [Google Scholar]
  • 30.Hira J, Bentdal S, Devold H, Stensvag K, Landfald B. 2019. Vibrio echinoideorum sp. nov., isolated from an epidermal lesion on the test of a green sea urchin (Strongylocentrotus droebachiensis). Int J Syst Evol Microbiol 69:2277–2282. doi: 10.1099/ijsem.0.003462. [DOI] [PubMed] [Google Scholar]
  • 31.Morris JG, Jr., Miller HG, Wilson R, Tacket CO, Hollis DG, Hickman FW, Weaver RE, Blake PA. 1982. Illness caused by Vibrio damsela and Vibrio hollisae. Lancet 1:1294–1297. doi: 10.1016/s0140-6736(82)92853-7. [DOI] [PubMed] [Google Scholar]
  • 32.Rivas AJ, Lemos ML, Osorio CR. 2013. Photobacterium damselae subsp. damselae, a bacterium pathogenic for marine animals and humans. Front Microbiol 4:283. doi: 10.3389/fmicb.2013.00283. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 33.Labella AM, Arahal DR, Lucena T, Manchado M, Castro D, Borrego JJ. 2017. Photobacterium toruni sp. nov., a bacterium isolated from diseased farmed fish. Int J Syst Evol Microbiol 67:4518–4525. doi: 10.1099/ijsem.0.002325. [DOI] [PubMed] [Google Scholar]
  • 34.Labella AM, Castro MD, Manchado M, Lucena T, Arahal DR, Borrego JJ. 2018. Photobacterium malacitanum sp. nov., and Photobacterium andalusiense sp. nov., two new bacteria isolated from diseased farmed fish in Southern Spain. Syst Appl Microbiol 41:444–451. doi: 10.1016/j.syapm.2018.04.005. [DOI] [PubMed] [Google Scholar]
  • 35.Segawa T, Ohno Y, Tsuchida S, Ushida K, Yoshioka M. 2020. Corrigendum: Helicobacter delphinicola sp. nov., isolated from common bottlenose dolphins Tursiops truncatus with gastric diseases. Dis Aquat Org 142:145–145. doi: 10.3354/dao03511_c. [DOI] [PubMed] [Google Scholar]
  • 36.Kusters JG, van Vliet AH, Kuipers EJ. 2006. Pathogenesis of Helicobacter pylori infection. Clin Microbiol Rev 19:449–490. doi: 10.1128/CMR.00054-05. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 37.Abollo E, López A, Gestal C, Benavente P, Pascual S. 1998. Long-term recording of gastric ulcers in cetaceans stranded on the Galician (NW Spain) coast. Dis Aquat Organ 32:71–73. doi: 10.3354/dao032071. [DOI] [PubMed] [Google Scholar]
  • 38.Harper CG, Feng Y, Xu S, Taylor NS, Kinsel M, Dewhirst FE, Paster BJ, Greenwell M, Levine G, Rogers A, Fox JG. 2002. Helicobacter cetorum sp. nov., a urease-positive Helicobacter species isolated from dolphins and whales. J Clin Microbiol 40:4536–4543. doi: 10.1128/JCM.40.12.4536-4543.2002. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 39.Fogelson SB, Camus AC, Lorenz W, Phillips A, Bartlett P, Sanchez S. 2018. Mycobacterium syngnathidarum sp. nov., a rapidly growing mycobacterium identified in syngnathid fish. Int J Syst Evol Microbiol 68:3696–3700. doi: 10.1099/ijsem.0.002978. [DOI] [PubMed] [Google Scholar]
  • 40.Jacobs JM, Stine CB, Baya AM, Kent ML. 2009. A review of mycobacteriosis in marine fish. J Fish Dis 32:119–130. doi: 10.1111/j.1365-2761.2008.01016.x. [DOI] [PubMed] [Google Scholar]
  • 41.Aubry A, Mougari F, Reibel F, Cambau E. 2017. Mycobacterium marinum. Microbiol Spectr 5. doi: 10.1128/microbiolspec.TNMI7-0038-2016. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 42.Loch TP, Faisal M. 2014. Flavobacterium spartansii sp. nov., a pathogen of fishes, and emended descriptions of Flavobacterium aquidurense and Flavobacterium araucananum. Int J Syst Evol Microbiol 64:406–412. doi: 10.1099/ijs.0.051433-0. [DOI] [PubMed] [Google Scholar]
  • 43.Zamora L, Vela AI, Sánchez-Porro C, Palacios MA, Moore ERB, Domínguez L, Ventosa A, Fernández-Garayzábal JF. 2014. Flavobacterium tructae sp. nov. and Flavobacterium piscis sp. nov., isolated from farmed rainbow trout (Oncorhynchus mykiss). Int J Syst Evol Microbiol 64:392–399. doi: 10.1099/ijs.0.056341-0. [DOI] [PubMed] [Google Scholar]
  • 44.Garcia C, Mesnil A, Tourbiez D, Moussa M, Dubreuil C, G, de Sa A, Chollet B, Godfrin Y, Dégremont L, Serpin D, Travers MA. 2021. Vibrio aestuarianus subsp. cardii subsp. nov., pathogenic to the edible cockles Cerastoderma edule in France, and establishment of Vibrio aestuarianus subsp. aestuarianus subsp. nov. and Vibrio aestuarianus subsp. francensis subsp. nov. Int J Syst Evol Microbiol 71:e004654. doi: 10.1099/ijsem.0.004654. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 45.Garnier M, Labreuche Y, Nicolas JL. 2008. Molecular and phenotypic characterization of Vibrio aestuarianus subsp. francensis subsp. nov., a pathogen of the oyster Crassostrea gigas. Syst Appl Microbiol 31:358–365. doi: 10.1016/j.syapm.2008.06.003. [DOI] [PubMed] [Google Scholar]
  • 46.Tak EJ, Kim HS, Lee JY, Kang W, Hyun DW, Kim PS, Shin NR, Bae JW. 2018. Tessaracoccus aquimaris sp. nov., isolated from the intestine of a Korean rockfish, Sebastes schlegelii, from a marine aquaculture pond. Int J Syst Evol Microbiol 68:1065–1072. doi: 10.1099/ijsem.0.002626. [DOI] [PubMed] [Google Scholar]
  • 47.Talwar C, Singh AK, Choksket S, Korpole S, Lal R, Negi RK. 2020. Salinicoccus cyprini sp. nov., isolated from the gut of mirror carp, Cyprinus carpio var. specularis. Int J Syst Evol Microbiol 70:4111–4118. doi: 10.1099/ijsem.0.004247. [DOI] [PubMed] [Google Scholar]
  • 48.Li Q, Zheng Y, Guo A, Chen Y, Zhang S, Li J. 2020. Pseudokineococcus galaxeicola sp. nov., isolated from mucus of a stony coral. Int J Syst Evol Microbiol 70:5671–5675. doi: 10.1099/ijsem.0.004460. [DOI] [PubMed] [Google Scholar]
  • 49.Shin SK, Kim E, Yi H. 2018. Paenibacillus crassostreae sp. nov., isolated from the Pacific oyster Crassostrea gigas. Int J Syst Evol Microbiol 68:58–63. doi: 10.1099/ijsem.0.002444. [DOI] [PubMed] [Google Scholar]
  • 50.Li L, Wang J, Zhou YJ, Lin HW, Lu YH. 2019. Streptomyces reniochalinae sp. nov. and Streptomyces diacarni sp. nov., from marine sponges. Int J Syst Evol Microbiol 69:99–104. doi: 10.1099/ijsem.0.003109. [DOI] [PubMed] [Google Scholar]
  • 51.Li L, Gui YH, Xu QH, Lin HW, Lu YH. 2019. Spongiactinospora rosea gen. nov., sp. nov., a new member of the family Streptosporangiaceae. Int J Syst Evol Microbiol 69:427–433. doi: 10.1099/ijsem.0.003165. [DOI] [PubMed] [Google Scholar]
  • 52.Li L, Zhu HR, Xu QH, Lin HW, Lu YH. 2019. Micromonospora craniellae sp. nov., isolated from a marine sponge, and reclassification of Jishengella endophytica as Micromonospora endophytica comb. nov. Int J Syst Evol Microbiol 69:715–720. doi: 10.1099/ijsem.0.003209. [DOI] [PubMed] [Google Scholar]
  • 53.Li L, Xu QH, Wang XT, Lin HW, Lu YH. 2019. Actinomadura craniellae sp. nov., isolated from a marine sponge in the South China Sea. Int J Syst Evol Microbiol 69:1207–1212. doi: 10.1099/ijsem.0.003295. [DOI] [PubMed] [Google Scholar]
  • 54.Li L, Zhang D, Tang WZ, Lin HW, Lu YH. 2019. Geodermatophilus marinus sp. nov., isolated from the marine sponge Leucetta chagosensis. Int J Syst Evol Microbiol 69:2973–2978. [DOI] [PubMed] [Google Scholar]
  • 55.Zhou Y, Pei S, Xie F, Gu L, Zhang G. 2020. Saccharopolyspora coralli sp. nov. a novel actinobacterium isolated from the stony coral Porites. Int J Syst Evol Microbiol 70:3241–3246. doi: 10.1099/ijsem.0.004162. [DOI] [PubMed] [Google Scholar]
  • 56.Das L, Deb S, Das SK. 2020. Glutamicibacter mishrai sp. nov., isolated from the coral Favia veroni from Andaman Sea. Arch Microbiol 202:733–745. doi: 10.1007/s00203-019-01783-0. [DOI] [PubMed] [Google Scholar]
  • 57.Zhao LH, Xing X, Liu YY, Sha S, Song C, Sun YH, Xianyu DW, Zhu Q. 2020. Aeromicrobium piscarium sp. nov., isolated from the intestine of Collichthys lucidus. Int J Syst Evol Microbiol 70:5280–5286. doi: 10.1099/ijsem.0.004407. [DOI] [PubMed] [Google Scholar]
  • 58.Glaeser SP, Rückert C, Abdelmohsen UR, Winkler A, Blom J, Goesmann A, Kalinowski J, Hentschel U, Busse HJ, Kämpfer P. 2019. Streptomyces dysideae sp. nov., isolated from a marine Mediterranean sponge Dysidea tupha. Int J Syst Evol Microbiol 71:e004672. doi: 10.1099/ijsem.0.004672. [DOI] [PubMed] [Google Scholar]
  • 59.Li F, Xie Q, Zhou S, Kong F, Xu Y, Ma Q, Wu W, Huang D, Zhao Y, Huang X. 2021. Nocardiopsis coralli sp. nov. a novel actinobacterium isolated from the coral Galaxea astreata. Int J Syst Evol Microbiol 71:e004817. doi: 10.1099/ijsem.0.004817. [DOI] [PubMed] [Google Scholar]
  • 60.Ming H, Cheng LJ, Yi BF, Xia TT, Niu MM, Zhao ZY, Liu BB, Nie GX, Cui CX. 2021. Brachybacterium subflavum sp. nov., a novel actinobacterium isolated from the foregut of grass carp. Int J Syst Evol Microbiol 71:e004839. [DOI] [PubMed] [Google Scholar]
  • 61.Risdian C, Landwehr W, Rohde M, Schumann P, Hahnke RL, Spröer C, Bunk B, Kämpfer P, Schupp PJ, Wink J. 2021. Streptomyces bathyalis sp. nov., an actinobacterium isolated from the sponge in a deep sea. Antonie Van Leeuwenhoek 114:425–435. doi: 10.1007/s10482-021-01528-4. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 62.Li F, Huang Y, Hu W, Li Z, Wang Q, Huang S, Jiang F, Pan X. 2021. Roseomonas coralli sp. nov., a heavy metal resistant bacterium isolated from coral. Int J Syst Evol Microbiol 71:e004624. doi: 10.1099/ijsem.0.004624. [DOI] [PubMed] [Google Scholar]
  • 63.Sheu DS, Sheu SY, Xie PB, Tang SL, Chen WM. 2018. Thalassotalea coralli sp. nov., isolated from the torch coral Euphyllia glabrescens. Int J Syst Evol Microbiol 68:185–191. doi: 10.1099/ijsem.0.002478. [DOI] [PubMed] [Google Scholar]
  • 64.Sheu SY, Xie PB, Sheu DS, Tang SL, Chen WM. 2018. Litoribrevibacter euphylliae sp. nov., isolated from the torch coral Euphyllia glabrescens. Int J Syst Evol Microbiol 68:432–437. doi: 10.1099/ijsem.0.002529. [DOI] [PubMed] [Google Scholar]
  • 65.Huang Z, Lai Q, Zhang D, Shao Z. 2017. Agaribacterium haliotis gen. nov., sp. nov., isolated from abalone faeces. Int J Syst Evol Microbiol 67:3819–3823. doi: 10.1099/ijsem.0.002199. [DOI] [PubMed] [Google Scholar]
  • 66.Baek C, Kim E, Shin SK, Choi S, Yi H. 2017. Hydrogenophaga crassostreae sp. nov., isolated from a Pacific oyster. Int J Syst Evol Microbiol 67:4045–4049. doi: 10.1099/ijsem.0.002244. [DOI] [PubMed] [Google Scholar]
  • 67.Christiansen L, Bech PK, Schultz-Johansen M, Martens HJ, Stougaard P. 2018. Colwellia echini sp. nov., an agar- and carrageenan-solubilizing bacterium isolated from sea urchin. Int J Syst Evol Microbiol 68:687–691. doi: 10.1099/ijsem.0.002568. [DOI] [PubMed] [Google Scholar]
  • 68.Liu Y, Rao Q, Tu J, Zhang J, Huang M, Hu B, Lin Q, Luo T. 2018. Acinetobacter piscicola sp. nov., isolated from diseased farmed Murray cod (Maccullochella peelii peelii). Int J Syst Evol Microbiol 68:905–910. doi: 10.1099/ijsem.0.002608. [DOI] [PubMed] [Google Scholar]
  • 69.Kim YO, Park IS, Park S, Nam BH, Kim DG, Choi SG, Bae JW, Yoon JH. 2018. Bizionia berychis sp. nov., isolated from intestinal tract of a splendid alfonsino (Beryx splendens). Int J Syst Evol Microbiol 68:1227–1232. doi: 10.1099/ijsem.0.002656. [DOI] [PubMed] [Google Scholar]
  • 70.Kim HC, Kim YO, Park S, Nam BH, Kim DG, Park JM, Yoon JH. 2018. Vitellibacter todarodis sp. nov., isolated from intestinal tract of a squid (Todarodes pacificus). Int J Syst Evol Microbiol 68:1233–1237. doi: 10.1099/ijsem.0.002655. [DOI] [PubMed] [Google Scholar]
  • 71.Shin SK, Kim E, Yi H. 2018. Tenacibaculum todarodis sp. nov., isolated from a squid. Int J Syst Evol Microbiol 68:1479–1483. doi: 10.1099/ijsem.0.002692. [DOI] [PubMed] [Google Scholar]
  • 72.Franco A, Busse HJ, Schubert P, Wilke T, Kampfer P, Glaeser SP. 2018. Winogradskyella pocilloporae sp. nov. isolated from healthy tissue of the coral Pocillopora damicornis. Int J Syst Evol Microbiol 68:1689–1696. doi: 10.1099/ijsem.0.002731. [DOI] [PubMed] [Google Scholar]
  • 73.Zhuang L, Lin B, Qin F, Luo L. 2018. Zhouia spongiae sp. nov., isolated from a marine sponge. Int J Syst Evol Microbiol 68:2194–2198. doi: 10.1099/ijsem.0.002808. [DOI] [PubMed] [Google Scholar]
  • 74.Choi KD, Lee GE, Park JS. 2018. Aquimarina spongiicola sp. nov., isolated from spongin. Int J Syst Evol Microbiol 68:990–994. doi: 10.1099/ijsem.0.002575. [DOI] [PubMed] [Google Scholar]
  • 75.Bartz JO, Blom J, Busse HJ, Mvie JB, Hardt M, Schubert P, Wilke T, Goessmann A, Wilharm G, Bender J, Kämpfer P, Glaeser SP. 2018. Parendozoicomonas haliclonae gen. nov. sp. nov. isolated from a marine sponge of the genus Haliclona and description of the family Endozoicomonadaceae fam. nov. comprising the genera Endozoicomonas, Parendozoicomonas, and Kistimonas. Syst Appl Microbiol 41:73–84. doi: 10.1016/j.syapm.2017.11.004. [DOI] [PubMed] [Google Scholar]
  • 76.Yuk KJ, Kim YT, Huh CS, Lee JH. 2018. Lelliottia jeotgali sp. nov., isolated from a traditional Korean fermented clam. Int J Syst Evol Microbiol 68:1725–1731. doi: 10.1099/ijsem.0.002737. [DOI] [PubMed] [Google Scholar]
  • 77.Chen WM, Xie PB, Tang SL, Sheu SY. 2018. Coralloluteibacterium stylophorae gen. nov., sp. nov., a new member of the family Lysobacteraceae isolated from the reef-building coral Stylophora sp. Arch Microbiol 200:473–481. doi: 10.1007/s00203-017-1458-y. [DOI] [PubMed] [Google Scholar]
  • 78.Wang G, Xu S, Su H, Chen B, Huang W, Liang J, Wang Y, Yu K. 2018. Motiliproteus coralliicola sp. nov., a bacterium isolated from coral. Int J Syst Evol Microbiol 68:3292–3295. doi: 10.1099/ijsem.0.002984. [DOI] [PubMed] [Google Scholar]
  • 79.He RH, Liang QY, Zhao JX, Du ZJ. 2018. Hanstruepera crassostreae sp. nov., a novel marine bacterium of the family Flavobacteriaceae isolated from an oyster. Int J Syst Evol Microbiol 68:3647–3651. doi: 10.1099/ijsem.0.003053. [DOI] [PubMed] [Google Scholar]
  • 80.Li YX, Wang NN, Chen GJ, Du ZJ. 2019. Cohaesibacter celericrescens sp. nov., isolated from sea catfish. Int J Syst Evol Microbiol 69:255–260. doi: 10.1099/ijsem.0.003146. [DOI] [PubMed] [Google Scholar]
  • 81.Wang FQ, Ren LH, Lin YW, Sun GH, Du ZJ, Zhao JX, Liu XJ, Liu LJ. 2019. Motilimonas pumila sp. nov., isolated from the gut of sea cucumber Apostichopus japonicus. Int J Syst Evol Microbiol 69:811–815. doi: 10.1099/ijsem.0.003242. [DOI] [PubMed] [Google Scholar]
  • 82.Zhuang L, Lin B, Xu L, Li G, Wu CJ, Luo L. 2019. Erythrobacter spongiae sp. nov., isolated from marine sponge. Int J Syst Evol Microbiol 69:1111–1116. doi: 10.1099/ijsem.0.003278. [DOI] [PubMed] [Google Scholar]
  • 83.Choi H, Im WT, Park JS. 2018. Lysobacter spongiae sp. nov., isolated from spongin. J Microbiol 56:97–103. doi: 10.1007/s12275-018-7462-3. [DOI] [PubMed] [Google Scholar]
  • 84.Zhuang L, Lin B, Chen D, Li G, Zhang B, Luo L. 2019. Altererythrobacter spongiae sp. nov., a novel member of the genus Altererythrobacter isolated from marine sponge. Int J Syst Evol Microbiol 69:2043–2048. doi: 10.1099/ijsem.0.003423. [DOI] [PubMed] [Google Scholar]
  • 85.Knobloch S, Daussin A, Johannsson R, Marteinsson V. 2019. Pelagibaculum spongiae gen. nov., sp. nov., isolated from a marine sponge in South-West Iceland. Int J Syst Evol Microbiol 69:2129–2134. doi: 10.1099/ijsem.0.003448. [DOI] [PubMed] [Google Scholar]
  • 86.Xia HF, Chen GJ, Du ZJ. 2019. Corallincola holothuriorum sp. nov., a facultative anaerobe isolated from sea cucumber intestine. Int J Syst Evol Microbiol 69:2258–2262. doi: 10.1099/ijsem.0.003456. [DOI] [PubMed] [Google Scholar]
  • 87.Kim YO, Park S, Park IS, Nam BH, Kim DG, Yoon JH. 2019. Empedobacter tilapiae sp. nov., isolated from an intestine of Nile tilapia (Oreochromis niloticus). Int J Syst Evol Microbiol 69:2781–2786. doi: 10.1099/ijsem.0.003558. [DOI] [PubMed] [Google Scholar]
  • 88.Lee JY, Hyun DW, Yun JH, Jung MJ, Shin NR, Bae JW. 2019. Paracoccus tegillarcae sp. nov., isolated from the gastrointestinal tract of a blood cockle (Tegillarca granosa). Int J Syst Evol Microbiol 69:2815–2822. doi: 10.1099/ijsem.0.003561. [DOI] [PubMed] [Google Scholar]
  • 89.Wang NN, Zhou LY, Wang XP, Li YX, Du ZJ. 2019. Oceaniglobus ichthyenteri sp. nov., isolated from the gut microflora of sea bass (Dicentrarchus labrax L.) and emended description of the genus Oceaniglobus. Int J Syst Evol Microbiol 69:2892–2898. doi: 10.1099/ijsem.0.003573. [DOI] [PubMed] [Google Scholar]
  • 90.Lee SY, Kang W, Kim PS, Kim HS, Sung H, Shin NR, Whon TW, Yun JH, Lee JY, Lee JY, Jung MJ, Jeong YS, Tak EJ, Han JE, Hyun DW, Kang MS, Lee KE, Lee BH, Bae JW. 2019. Undibacterium piscinae sp. nov., isolated from Korean shiner intestine. Int J Syst Evol Microbiol 69:3148–3154. doi: 10.1099/ijsem.0.003604. [DOI] [PubMed] [Google Scholar]
  • 91.Liu M, Huang Z, Zhao Q, Shao Z. 2019. Cohaesibacter intestini sp. nov., isolated from the intestine of abalone, Haliotis discus hannai. Int J Syst Evol Microbiol 69:3202–3206. doi: 10.1099/ijsem.0.003610. [DOI] [PubMed] [Google Scholar]
  • 92.Namirimu T, Park MJ, Yang SH, Zo YG, Kwon KK. 2019. Parashewanella tropica sp. nov., a mesophilic bacterium isolated from a marine sponge from Chuuk lagoon, Federated States of Micronesia, and emended description of the genus Parashewanella. Int J Syst Evol Microbiol 69:3262–3267. [DOI] [PubMed] [Google Scholar]
  • 93.Park JS. 2019. Muricauda hymeniacidonis sp. nov., isolated from sponge of Hymeniacidon sinapium. Int J Syst Evol Microbiol 69:3800–3805. doi: 10.1099/ijsem.0.003683. [DOI] [PubMed] [Google Scholar]
  • 94.Oh WT, Jun JW, Giri SS, Yun S, Kim HJ, Kim SG, Kim SW, Kang JW, Han SJ, Kwon J, Kim JH, Smits THM, Park SC. 2019. Pseudomonas tructae sp. nov., novel species isolated from rainbow trout kidney. Int J Syst Evol Microbiol 69:3851–3856. doi: 10.1099/ijsem.0.003696. [DOI] [PubMed] [Google Scholar]
  • 95.Shi SB, Li GD, Yang LF, Liu C, Jiang MG, Li QY, Wu JF, Zhang K, Jiang LQ, Shen NK, Jiang CL, Jiang Y. 2019. Ottowia flava sp. nov., isolated from fish intestines. Antonie Van Leeuwenhoek 112:1567–1575. doi: 10.1007/s10482-019-01284-6. [DOI] [PubMed] [Google Scholar]
  • 96.Kämpfer P, Irgang R, Fernández-Negrete G, Busse HJ, Poblete-Morales M, Fuentes-Messina D, Glaeser SP, Avendaño-Herrera R. 2019. Proposal of Pedobacter nototheniae sp. nov., isolated from the spleen of a black rock cod (Notothenia coriiceps, Richardson 1844) from the Chilean Antarctica. Antonie Van Leeuwenhoek 112:1465–1475. doi: 10.1007/s10482-019-01275-7. [DOI] [PubMed] [Google Scholar]
  • 97.Jeong YS, Kang W, Sung H, Lee JY, Yun JH, Shin NR, Kim HS, Lee SY, Han JE, Lee JY, Tak EJ, Kim PS, Hyun DW, Jung MJ, Whon TW, Kang MS, Lee KE, Lee BH, Bae JW. 2020. Flammeovirga pectinis sp. nov., isolated from the gut of the Korean scallop, Patinopecten yessoensis. Int J Syst Evol Microbiol 70:499–504. doi: 10.1099/ijsem.0.003783. [DOI] [PubMed] [Google Scholar]
  • 98.Zhuang L, Luo L. 2020. Roseovarius spongiae sp. nov., a bacterium isolated from marine sponge. Int J Syst Evol Microbiol 70:274–281. doi: 10.1099/ijsem.0.003750. [DOI] [PubMed] [Google Scholar]
  • 99.Ming H, Cheng LJ, Ding CL, Niu MM, Zhao ZL, Ji WL, Zhang LY, Zhang YM, Meng XL, Nie GX. 2020. Paracoccus luteus sp. nov., isolated from the intestine of grass carp. Int J Syst Evol Microbiol 70:543–549. doi: 10.1099/ijsem.0.003790. [DOI] [PubMed] [Google Scholar]
  • 100.Yin Q, Song ZM, Liang J, Wang Y, Zheng X, Li S, Xu Y. 2020. Pseudooceanicola onchidii sp. nov., isolated from a marine invertebrate from the South China Sea. Int J Syst Evol Microbiol 70:1224–1230. doi: 10.1099/ijsem.0.003905. [DOI] [PubMed] [Google Scholar]
  • 101.Liu L, Yu M, Zhou S, Fu T, Sun W, Wang L, Zhang XH. 2020. Muricauda alvinocaridis sp. nov., isolated from shrimp gill from the Okinawa Trough. Int J Syst Evol Microbiol 70:1666–1671. doi: 10.1099/ijsem.0.003953. [DOI] [PubMed] [Google Scholar]
  • 102.Zhuang L, Lin B, Luo L. 2020. Mangrovimonas spongiae sp. nov., a novel member of the genus Mangrovimonas isolated from marine sponge. Int J Syst Evol Microbiol 70:1982–1986. doi: 10.1099/ijsem.0.004006. [DOI] [PubMed] [Google Scholar]
  • 103.Wang Y, Liu L, Yu M, Zhou S, Fu T, Sun W, Du R, Zhang XH. 2020. Carideicomes alvinocaridis gen. nov., sp. nov., a marine bacterium isolated from shrimp gill in a hydrothermal field of Okinawa Trough. Int J Syst Evol Microbiol 70:1777–1784. doi: 10.1099/ijsem.0.003971. [DOI] [PubMed] [Google Scholar]
  • 104.Chen WM, Lin KR, Sheu SY. 2019. Endozoicomonas coralli sp. nov., isolated from the coral Acropora sp. Arch Microbiol 201:531–538. doi: 10.1007/s00203-018-1591-2. [DOI] [PubMed] [Google Scholar]
  • 105.Goldberg SR, Correa H, Haltli BA, Kerr RG. 2020. Fulvivirga aurantia sp. nov. and Xanthovirga aplysinae gen. nov., sp. nov., marine bacteria isolated from the sponge Aplysina fistularis, and emended description of the genus Fulvivirga. Int J Syst Evol Microbiol 70:2766–2781. doi: 10.1099/ijsem.0.004108. [DOI] [PubMed] [Google Scholar]
  • 106.Han JE, Kang W, Lee JY, Sung H, Hyun DW, Kim HS, Kim PS, Tak EJ, Jeong YS, Lee JY, Lee SY, Yun JH, Jung MJ, Shin NR, Whon TW, Kang MS, Lee KE, Lee BH, Bae JW. 2020. Tabrizicola piscis sp. nov., isolated from the intestinal tract of a Korean indigenous freshwater fish, Acheilognathus koreensis. Int J Syst Evol Microbiol 70:2305–2311. doi: 10.1099/ijsem.0.004034. [DOI] [PubMed] [Google Scholar]
  • 107.Altamia MA, Shipway JR, Stein D, Betcher MA, Fung JM, Jospin G, Eisen J, Haygood MG, Distel DL. 2020. Teredinibacter waterburyi sp. nov., a marine, cellulolytic endosymbiotic bacterium isolated from the gills of the wood-boring mollusc Bankia setacea (Bivalvia: Teredinidae) and emended description of the genus Teredinibacter. Int J Syst Evol Microbiol 70:2388–2394. doi: 10.1099/ijsem.0.004049. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 108.Liu Y, Rao Q, Blom J, Lin Q, Luo T. 2020. Pseudomonas piscis sp. nov., isolated from the profound head ulcers of farmed Murray cod (Maccullochella peelii peelii). Int J Syst Evol Microbiol 70:2732–2739. doi: 10.1099/ijsem.0.004101. [DOI] [PubMed] [Google Scholar]
  • 109.Li CM, Wang XP, Zhou LY, Chen GJ, Du ZJ. 2020. Pelagivirga dicentrarchi sp. nov., a member of the family Rhodobacteraceae isolated from the gut microflora of sea bass (Dicentrarchus labrax L.). Antonie Van Leeuwenhoek 113:293–301. doi: 10.1007/s10482-019-01337-w. [DOI] [PubMed] [Google Scholar]
  • 110.Kawano K, Ushijima N, Kihara M, Itoh H. 2020. Patiriisocius marinistellae gen. nov., sp. nov., isolated from the starfish Patiria pectinifera, and reclassification of Ulvibacter marinus as a member of the genus Patiriisocius comb. nov. Int J Syst Evol Microbiol 70:4119–4129. doi: 10.1099/ijsem.0.004254. [DOI] [PubMed] [Google Scholar]
  • 111.Kim YS, Kim SE, Kim SJ, Jung HK, Kim KH. 2020. Pukyongiella litopenaei gen. nov., sp. nov., a novel bacterium isolated from the gut content of a whiteleg shrimp Litopenaeus vannamei. Int J Syst Evol Microbiol 70:4193–4198. doi: 10.1099/ijsem.0.004269. [DOI] [PubMed] [Google Scholar]
  • 112.Enciso-Ibarra J, González-Castillo A, Soto-Rodriguez SA, Enciso-Ibarra K, Bolán-Mejia C, Gomez-Gil B. 2020. Photobacterium lucens sp. nov., isolated from a cultured shrimp Penaeus vannamei. Curr Microbiol 77:1111–1116. doi: 10.1007/s00284-020-01893-9. [DOI] [PubMed] [Google Scholar]
  • 113.Le Guern AS, Savin C, Angermeier H, Brémont S, Clermont D, Mühle E, Orozova P, Najdenski H, Pizarro-Cerdá J. 2020. Yersinia artesiana sp. nov., Yersinia proxima sp. nov., Yersinia alsatica sp. nov., Yersina vastinensis sp. nov., Yersinia thracica sp. nov. and Yersinia occitanica sp. nov., isolated from humans and animals. Int J Syst Evol Microbiol 70:5363–5372. doi: 10.1099/ijsem.0.004417. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 114.Wang G, Xu S, Dang G, Liu J, Su H, Chen B, Liao Z, Huang W, Liang J, Wang Y, Yu K. 2020. Poritiphilus flavus gen. nov., sp. nov., a member of the family Flavobacteriaceae isolated from coral Porites lutea. Int J Syst Evol Microbiol 70:5620–5626. doi: 10.1099/ijsem.0.004452. [DOI] [PubMed] [Google Scholar]
  • 115.Wang G, Dang G, Xu S, Liu J, Su H, Liang J, Huang W, Wang Y, Yu K. 2020. Aliikangiella coralliicola sp. nov., a bacterium isolated from coral Porites lutea, and proposal of Pleioneaceae fam. nov. to accommodate Pleionea and Aliikangiella. Int J Syst Evol Microbiol 70:5880–5887. doi: 10.1099/ijsem.0.004489. [DOI] [PubMed] [Google Scholar]
  • 116.Liao L, Su SY, Zhang YJ, Liu H, Zhang XY, Zhang J, Wen J, Chen B, Yu Y. 2021. Pseudopuniceibacterium antarcticum sp. nov., isolated from an Antarctic marine sponge. Int J Syst Evol Microbiol 71:e004605. doi: 10.1099/ijsem.0.004605. [DOI] [PubMed] [Google Scholar]
  • 117.Kim H, Yoon SC, Choi KH, Kim ST, Lee JB, Kim DS, Le Han H, Bae KS, Park DS. 2017. Lacinutrix chionocetis sp. nov., isolated from gut of a red snow crab. Arch Microbiol 199:597–603. doi: 10.1007/s00203-016-1330-5. [DOI] [PubMed] [Google Scholar]
  • 118.Rao Q, Liu Y, Chen C, Lin Q, Ren L, Huang M, Tu J, Luo T. 2019. Pseudomonas ovata sp. nov., isolated from the skin of the tail of farmed Murray cod (Maccullochella peelii peelii) with a profound ulceration. Curr Microbiol 76:1168–1174. doi: 10.1007/s00284-019-01729-1. [DOI] [PubMed] [Google Scholar]
  • 119.Chen S, He M, Lai Q, Xu Y, Shang C. 2019. Jannaschia marina sp. nov., isolated from the gut of a gastropod, Onchidium reevesii. Int J Syst Evol Microbiol 71:e004756. doi: 10.1099/ijsem.0.004756. [DOI] [PubMed] [Google Scholar]
  • 120.Xu S, Li A, Zhang MX, Yao Q, Zhu H. 2019. Lysobacter penaei sp. nov., isolated from intestinal content of a Pacific white shrimp (Penaeus vannamei). Int J Syst Evol Microbiol 71:e004593. doi: 10.1099/ijsem.0.004593. [DOI] [PubMed] [Google Scholar]
  • 121.Jeong YS, Kang W, Lee JY, Sung H, Kim HS, Han JE, Tak EJ, Lee SY, Lee JY, Kim PS, Hyun DW, Jung MJ, Bae JW. 2019. Pseudorhodobacter turbinis sp. nov., isolated from the gut of the Korean turban shell, Turbo cornutus. Int J Syst Evol Microbiol 71:e004711. [DOI] [PubMed] [Google Scholar]
  • 122.Duman M, Mulet M, Altun S, Saticioglu IB, Gomila M, Lalucat J, Garcia-Valdes E. 2019. Pseudomonas piscium sp. nov., Pseudomonas pisciculturae sp. nov., Pseudomonas mucoides sp. nov. and Pseudomonas neuropathica sp. nov. isolated from rainbow trout. Int J Syst Evol Microbiol 71:e004714. doi: 10.1099/ijsem.0.004714. [DOI] [PubMed] [Google Scholar]
  • 123.Li F, Huang Y, Hu W, Li Z, Wang Q, Huang S, Yu L, Liu S, Sun C, Pan X. 2021. Mesobaculum littorinae gen. nov., sp. nov., a novel bacterium isolated from a sea snail Littorina scabra. Int J Syst Evol Microbiol 71:e004821. [DOI] [PubMed] [Google Scholar]
  • 124.Mulet M, Duman M, Altun S, Saticioglu IB, Gomila M, Matthijs S, Lalucat J, García-Valdés E. 2021. Pseudomonas arcuscaelestis sp. nov., isolated from rainbow trout and water. Int J Syst Evol Microbiol 71:e004860. doi: 10.1099/ijsem.0.004860. [DOI] [PubMed] [Google Scholar]
  • 125.Choi JW, Lee JY, Hyun DW, Lee JY, Kim PS, Han JE, Jeong YS, Lee SY, Sung H, Tak EJ, Kim HS, Bae JW. 2021. Chitinibacter bivalviorum sp. nov., isolated from the gut of the freshwater mussel Anodonta arcaeformis. Int J Syst Evol Microbiol 71:e004909. [DOI] [PubMed] [Google Scholar]
  • 126.Shin SK, Kim E, Choi S, Yi H. 2016. Cochleicola gelatinilyticus gen. nov., sp. nov., isolated from a marine gastropod, Reichia luteostoma. J Microbiol Biotechnol 26:1439–1445. doi: 10.4014/jmb.1604.04083. [DOI] [PubMed] [Google Scholar]
  • 127.Macián MC, Lucena T, Arahal DR, Ruvira MA, Aznar R, Pujalte MJ. 2021. Pseudidiomarina piscicola sp. nov., isolated from cultured European seabass, Dicenthrarchus labrax. Arch Microbiol 203:1293–1298. doi: 10.1007/s00203-020-02131-3. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 128.Duman M, Mulet M, Altun S, Burcin Saticioglu I, Gomila M, Lalucat J, García-Valdés E. 2021. Pseudomonas anatoliensis sp. nov and Pseudomonas iridis sp. nov. isolated from fish. Syst Appl Microbiol 44:126198. doi: 10.1016/j.syapm.2021.126198. [DOI] [PubMed] [Google Scholar]
  • 129.Zhuang L, Pang H, Xu L, Chen D. 2021. Marixanthomonas spongiae sp. nov., isolated from marine sponge. Int J Syst Evol Microbiol 71:e004968. [DOI] [PubMed] [Google Scholar]
  • 130.Liang J, Yin Q, Zheng X, Wang Y, Song ZM, Zhang Y, Hao L, Xu Y. 2021. Muricauda onchidii sp. nov., isolated from a marine invertebrate from South China Sea, and transfers of Flagellimonas algicola, Flagellimonas pacifica and Flagellimonas maritima to Muricauda algicola comb. nov., Muricauda parva nom. nov. and Muricauda aurantiaca nom. nov., respectively, and emended description of the genus Muricauda. Int J Syst Evol Microbiol 71:e004982. [DOI] [PubMed] [Google Scholar]
  • 131.Cao WR, Shang DD, Liu BT, Hu YH, Sun XK, Sun YY, Jiang MY, Du ZJ. 2021. Ruegeria haliotis sp. nov., isolated from the gut of the abalone Haliotis rubra. Curr Microbiol 78:2151–2159. doi: 10.1007/s00284-021-02450-8. [DOI] [PubMed] [Google Scholar]
  • 132.Cao WR, Liu BT, Sun XK, Sun YY, Jiang MY, Du ZJ. 2021. Tamlana haliotis sp. nov., isolated from the gut of the abalone Haliotis rubra. Arch Microbiol 203:2357–2364. doi: 10.1007/s00203-021-02216-7. [DOI] [PubMed] [Google Scholar]
  • 133.Yin Q, Liang J, Zheng X, Wang Y, Song ZM, Zhang Y, Xu Y. 2021. Algibacter onchidii sp. nov., a symbiotic bacterium isolated from a marine invertebrate. Int J Syst Evol Microbiol 71:e005102. doi: 10.1099/ijsem.0.005102. [DOI] [PubMed] [Google Scholar]
  • 134.Cuny H, Offret C, Boukerb AM, Parizadeh L, Lesouhaitier O, L, Chevalier P, Jégou C, Bazire A, Brillet B, Fleury Y. 2021. Pseudoalteromonas ostreae sp. nov., a new bacterial species harboured by the flat oyster Ostrea edulis. Int J Syst Evol Microbiol 71:e005070. doi: 10.1099/ijsem.0.005070. [DOI] [PubMed] [Google Scholar]
  • 135.Kim YO, Noh JK, Kim DG, Park IS, Park S, Yoon JH. 2021. Paenihalocynthiibacter styelae gen. nov., sp. nov., isolated from stalked sea squirt Styela clava. Int J Syst Evol Microbiol 71:e005085. [DOI] [PubMed] [Google Scholar]
  • 136.Tanaka R, Cleenwerck I, Mizutani Y, Iehata S, Bossier P, Vandamme P. 2017. Arcobacter haliotis sp. nov., isolated from abalone species Haliotis gigantea. Int J Syst Evol Microbiol 67:3050–3056. doi: 10.1099/ijsem.0.002080. [DOI] [PubMed] [Google Scholar]
  • 137.Kim MJ, Baek MG, Shin SK, Yi H. 2021. Poseidonibacter parvus sp. nov., isolated from a squid. Int J Syst Evol Microbiol 71:e004590. doi: 10.1099/ijsem.0.004590. [DOI] [PubMed] [Google Scholar]
  • 138.Altamia MA, Shipway JR, Stein D, Betcher MA, Fung JM, Jospin G, Eisen J, Haygood MG, Distel DL. 2021. Teredinibacter haidensis sp. nov., Teredinibacter purpureus sp. nov. and Teredinibacter franksiae sp. nov., marine, cellulolytic endosymbiotic bacteria isolated from the gills of the wood-boring mollusc Bankia setacea (Bivalvia: Teredinidae) and emended description of the genus Teredinibacter. Int J Syst Evol Microbiol 71:e004627. doi: 10.1099/ijsem.0.004627. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 139.Goldberg SR, Haltli BA, Correa H, Kerr RG. 2021. Curvivirga aplysinae gen. nov., sp. nov., a marine bacterium isolated from the sea sponge Aplysina fistularis. Int J Syst Evol Microbiol 71:e004873. doi: 10.1099/ijsem.0.004873. [DOI] [PubMed] [Google Scholar]
  • 140.Moon YL, Park JS. 2021. Vibrio ulleungensis sp. nov., isolated from Mytilus coruscus. Int J Syst Evol Microbiol 71:e005136. doi: 10.1099/ijsem.0.005136. [DOI] [PubMed] [Google Scholar]
  • 141.Kohn T, Wiegand S, Boedeker C, Rast P, Heuer A, Jetten MSM, Schüler M, Becker S, Rohde C, Müller RW, Brümmer F, Rohde M, Engelhardt H, Jogler M, Jogler C. 2020. Planctopirus ephydatiae, a novel Planctomycete isolated from a freshwater sponge. Syst Appl Microbiol 43:126022. doi: 10.1016/j.syapm.2019.126022. [DOI] [PubMed] [Google Scholar]
  • 142.Kallscheuer N, Wiegand S, Boedeker C, Peeters SH, Jogler M, Rast P, Heuer A, Jetten MSM, Rohde M, Jogler C. 2020. Aureliella helgolandensis gen. nov., sp. nov., a novel Planctomycete isolated from a jellyfish at the shore of the island Helgoland. Antonie Van Leeuwenhoek 113:1839–1849. doi: 10.1007/s10482-020-01403-8. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 143.Kallscheuer N, Wiegand S, Kohn T, Boedeker C, Jeske O, Rast P, Müller RW, Brümmer F, Heuer A, Jetten MSM, Rohde M, Jogler M, Jogler C. 2020. Cultivation-independent analysis of the bacterial community associated with the calcareous sponge Clathrina clathrus and isolation of Poriferisphaera corsica gen. nov., sp. nov., belonging to the barely studied class Phycisphaerae in the phylum Planctomycetes. Front Microbiol 11:602250. doi: 10.3389/fmicb.2020.602250. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 144.Oren A, Garrity GM. 2020. List of new names and new combinations that have appeared in effective publications outside of the IJSEM and are submitted for valid publication. Int J Syst Evol Microbiol 70:4844–4847. doi: 10.1099/ijsem.0.004366. [DOI] [PubMed] [Google Scholar]
  • 145.Oren A, Garrity GM. 2021. List of new names and new combinations previously effectively, but not validly, published. Int J Syst Evol Microbiol 71:e005096. [DOI] [PubMed] [Google Scholar]
  • 146.Oren A, Garrity GM. 2018. List of new names and new combinations previously effectively, but not validly, published. Int J Syst Evol Microbiol 68:2130–2133. doi: 10.1099/ijsem.0.002831. [DOI] [PubMed] [Google Scholar]
  • 147.Oren A, Garrity GM. 2018. List of new names and new combinations previously effectively, but not validly, published. Int J Syst Evol Microbiol 68:2707–2709. doi: 10.1099/ijsem.0.002945. [DOI] [PubMed] [Google Scholar]
  • 148.Oren A, Garrity GM. 2019. List of new names and new combinations previously effectively, but not validly, published. Int J Syst Evol Microbiol 69:5–9. doi: 10.1099/ijsem.0.003174. [DOI] [PubMed] [Google Scholar]
  • 149.Oren A, Garrity GM. 2019. List of new names and new combinations previously effectively, but not validly, published. Int J Syst Evol Microbiol 69:1247–1250. doi: 10.1099/ijsem.0.003357. [DOI] [PubMed] [Google Scholar]
  • 150.Oren A, Garrity GM. 2020. List of new names and new combinations previously effectively, but not validly, published. Int J Syst Evol Microbiol 70:1–5. doi: 10.1099/ijsem.0.003881. [DOI] [PubMed] [Google Scholar]
  • 151.Oren A, Garrity GM. 2020. List of new names and new combinations previously effectively, but not validly, published. Int J Syst Evol Microbiol 70:1443–1446. doi: 10.1099/ijsem.0.003991. [DOI] [PubMed] [Google Scholar]
  • 152.Oren A, Garrity GM. 2020. List of new names and new combinations previously effectively, but not validly, published. Int J Syst Evol Microbiol 70:2960–2966. doi: 10.1099/ijsem.0.004156. [DOI] [PubMed] [Google Scholar]
  • 153.Oren A, Garrity GM. 2020. List of new names and new combinations that have appeared in effective publications outside of the IJSEM and are submitted for valid publication. Int J Syst Evol Microbiol 70:5596–5600. doi: 10.1099/ijsem.0.004484. [DOI] [PubMed] [Google Scholar]
  • 154.Oren A, Garrity GM. 2021. List of new names and new combinations that have appeared in effective publications outside of the IJSEM and are submitted for valid publication. Int J Syst Evol Microbiol 71:e004688. [DOI] [PubMed] [Google Scholar]
  • 155.Oren A, Garrity GM. 2021. Valid publication of new names and new combinations effectively published outside the IJSEM. Int J Syst Evol Microbiol 71:e004846. [DOI] [PubMed] [Google Scholar]
  • 156.Oren A, Garrity GM. 2021. Valid publication of new names and new combinations effectively published outside the IJSEM. Int J Syst Evol Microbiol 71:e004773. [DOI] [PubMed] [Google Scholar]
  • 157.Supong K, Suriyachadkun C, Suwanborirux K, Pittayakhajonwut P, Thawai C. 2013. Verrucosispora andamanensis sp. nov., isolated from a marine sponge. Int J Syst Evol Microbiol 63:3970–3974. doi: 10.1099/ijs.0.050906-0. [DOI] [PubMed] [Google Scholar]
  • 158.Nouioui I, Carro L, Garcia-Lopez M, Meier-Kolthoff JP, Woyke T, Kyrpides NC, Pukall R, Klenk HP, Goodfellow M, Goker M. 2018. Genome-based taxonomic classification of the phylum Actinobacteria. Front Microbiol 9:2007. doi: 10.3389/fmicb.2018.02007. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 159.Chen JH, Tian XR, Ruan Y, Yang LL, He ZQ, Tang SK, Li WJ, Shi H, Chen YG. 2015. Bacillus crassostreae sp. nov., isolated from an oyster (Crassostrea hongkongensis). Int J Syst Evol Microbiol 65:1561–1566. doi: 10.1099/ijs.0.000139. [DOI] [PubMed] [Google Scholar]
  • 160.Patel S, Gupta RS. 2020. A phylogenomic and comparative genomic framework for resolving the polyphyly of the genus Bacillus: proposal for six new genera of Bacillus species, Peribacillus gen. nov., Cytobacillus gen. nov., Mesobacillus gen. nov., Neobacillus gen. nov., Metabacillus gen. nov. and Alkalihalobacillus gen. nov. Int J Syst Evol Microbiol 70:406–438. doi: 10.1099/ijsem.0.003775. [DOI] [PubMed] [Google Scholar]
  • 161.Balcázar JL, Pintado J, Planas M. 2010. Bacillus galliciensis sp. nov., isolated from faeces of wild seahorses (Hippocampus guttulatus). Int J Syst Evol Microbiol 60:892–895. doi: 10.1099/ijs.0.011817-0. [DOI] [PubMed] [Google Scholar]
  • 162.Chen YG, Zhang YQ, He JW, Klenk HP, Xiao JQ, Zhu HY, Tang SK, Li WJ. 2011. Bacillus hemicentroti sp. nov., a moderate halophile isolated from a sea urchin. Int J Syst Evol Microbiol 61:2950–2955. doi: 10.1099/ijs.0.026732-0. [DOI] [PubMed] [Google Scholar]
  • 163.Yoon JH, Kim IG, Kang KH, Oh TK, Park YH. 2003. Bacillus marisflavi sp. nov. and Bacillus aquimaris sp. nov., isolated from sea water of a tidal flat of the Yellow Sea in Korea. Int J Syst Evol Microbiol 53:1297–1303. doi: 10.1099/ijs.0.02365-0. [DOI] [PubMed] [Google Scholar]
  • 164.Ngo HT, Nguyen TT, Nguyen QM, Tran AV, Do HT, Nguyen AH, Phan TN, Nguyen AT. 2016. Screening of pigmented Bacillus aquimaris SH6 from the intestinal tracts of shrimp to develop a novel feed supplement for shrimp. J Appl Microbiol 121:1357–1372. doi: 10.1111/jam.13274. [DOI] [PubMed] [Google Scholar]
  • 165.Gupta RS, Patel S, Saini N, Chen S. 2020. Robust demarcation of 17 distinct Bacillus species clades, proposed as novel Bacillaceae genera, by phylogenomics and comparative genomic analyses: description of Robertmurraya kyonggiensis sp. nov. and proposal for an emended genus Bacillus limiting it only to the members of the Subtilis and Cereus clades of species. Int J Syst Evol Microbiol 70:5753–5798. doi: 10.1099/ijsem.0.004475. [DOI] [PubMed] [Google Scholar]
  • 166.Teo WFA, Tan GYA, Li WJ. 2021. Taxonomic note on the family Pseudonocardiaceae based on phylogenomic analysis and descriptions of Allosaccharopolyspora gen. nov. and Halosaccharopolyspora gen. nov. Int J Syst Evol Microbiol 71:e005075. [DOI] [PubMed] [Google Scholar]
  • 167.Pei J, Wu Y, Gao Y, Li S, Fang J, Wei Y. 2021. Hanstruepera crassostreae He et al. 2018 is a later heterotypic synonym of Pseudobizionia ponticola Park et al. 2018. Int J Syst Evol Microbiol 71:5074. [DOI] [PubMed] [Google Scholar]
  • 168.Chen MH, Sheu SY, Chen CA, Wang JT, Chen WM. 2012. Idiomarina aquimaris sp. nov., isolated from the reef-building coral Isopora palifera. Int J Syst Evol Microbiol 62:1536–1542. doi: 10.1099/ijs.0.035592-0. [DOI] [PubMed] [Google Scholar]
  • 169.Liu Y, Lai Q, Shao Z. 2018. Genome-based analysis reveals the taxonomy and diversity of the family Idiomarinaceae. Front Microbiol 9:2453. doi: 10.3389/fmicb.2018.02453. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 170.Lu DC, Zhao JX, Wang FQ, Xie ZH, Du ZJ. 2017. Labilibacter aurantiacus gen. nov., sp. nov., isolated from sea squirt (Styela clava) and reclassification of Saccharicrinis marinus as Labilibacter marinus comb. nov. Int J Syst Evol Microbiol 67:441–446. doi: 10.1099/ijsem.0.001649. [DOI] [PubMed] [Google Scholar]
  • 171.García-López M, Meier-Kolthoff JP, Tindall BJ, Gronow S, Woyke T, Kyrpides NC, Hahnke RL, Göker M. 2019. Analysis of 1,000 type-strain genomes improves taxonomic classification of Bacteroidetes. Front Microbiol 10:2083. doi: 10.3389/fmicb.2019.02083. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 172.Yoon BJ, Oh DC. 2011. Formosa spongicola sp. nov., isolated from the marine sponge Hymeniacidon flavia. Int J Syst Evol Microbiol 61:330–333. doi: 10.1099/ijs.0.023499-0. [DOI] [PubMed] [Google Scholar]
  • 173.Pujalte MJ, Macián MC, Arahal DR, Garay E. 2005. Stappia alba sp. nov., isolated from Mediterranean oysters. Syst Appl Microbiol 28:672–678. doi: 10.1016/j.syapm.2005.05.010. [DOI] [PubMed] [Google Scholar]
  • 174.Euzeby JP. 2006. List of new names and new combinations previously effectively, but not validly, published. Int J Syst Evol Microbiol 56:1–6. [DOI] [PubMed] [Google Scholar]
  • 175.Biebl H, Pukall R, Lünsdorf H, Schulz S, Allgaier M, Tindall BJ, Wagner-Döbler I. 2007. Description of Labrenzia alexandrii gen. nov., sp. nov., a novel alphaproteobacterium containing bacteriochlorophyll a, and a proposal for reclassification of Stappia aggregata as Labrenzia aggregata comb. nov., of Stappia marina as Labrenzia marina comb. nov. and of Stappia alba as Labrenzia alba comb. nov., and emended descriptions of the genera Pannonibacter, Stappia and Roseibium, and of the species Roseibium denhamense and Roseibium hamelinense. Int J Syst Evol Microbiol 57:1095–1107. doi: 10.1099/ijs.0.64821-0. [DOI] [PubMed] [Google Scholar]
  • 176.Nedashkovskaya OI, Cho SH, Joung Y, Joh K, Kim MN, Shin KS, Oh HW, Bae KS, Mikhailov VV, Kim SB. 2013. Altererythrobacter troitsensis sp. nov., isolated from the sea urchin Strongylocentrotus intermedius. Int J Syst Evol Microbiol 63:93–97. doi: 10.1099/ijs.0.038836-0. [DOI] [PubMed] [Google Scholar]
  • 177.Xu L, Sun C, Fang C, Oren A, Xu XW. 2020. Genomic-based taxonomic classification of the family Erythrobacteraceae. Int J Syst Evol Microbiol 70:4470–4495. doi: 10.1099/ijsem.0.004293. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 178.Lu HB, Cai ZP, Yang YG, Xu MY. 2020. Duganella rivus sp. nov., Duganella fentianensis sp. nov., Duganella qianjiadongensis sp. nov. and Massilia guangdongensis sp. nov., isolated from subtropical streams in China and reclassification of all species within genus Pseudoduganella. Antonie Van Leeuwenhoek 113:1155–1165. doi: 10.1007/s10482-020-01422-5. [DOI] [PubMed] [Google Scholar]
  • 179.Kämpfer P, Irgang R, Busse HJ, Poblete-Morales M, Kleinhagauer T, Glaeser SP, Avendaño-Herrera R. 2016. Pseudoduganella danionis sp. nov., isolated from zebrafish (Danio rerio). Int J Syst Evol Microbiol 66:4671–4675. doi: 10.1099/ijsem.0.001408. [DOI] [PubMed] [Google Scholar]
  • 180.Romanenko LA, Uchino M, Falsen E, Frolova GM, Zhukova NV, Mikhailov VV. 2005. Pseudomonas pachastrellae sp. nov., isolated from a marine sponge. Int J Syst Evol Microbiol 55:919–924. doi: 10.1099/ijs.0.63176-0. [DOI] [PubMed] [Google Scholar]
  • 181.Rudra B, Gupta RS. 2021. Phylogenomic and comparative genomic analyses of species of the family Pseudomonadaceae: proposals for the genera Halopseudomonas gen. nov. and Atopomonas gen. nov., merger of the genus Oblitimonas with the genus Thiopseudomonas, and transfer of some misclassified species of the genus Pseudomonas into other genera. Int J Syst Evol Microbiol 71:e005011. doi: 10.1099/ijsem.0.005011. [DOI] [PubMed] [Google Scholar]
  • 182.Zhang S, Zhou H, Sun C, Hu Z, Wang H. 2020. Aequorivita lutea sp. nov., a novel bacterium isolated from the estuarine sediment of the Pearl River in China, and transfer of Vitellibacter todarodis and Vitellibacter aquimaris to the genus Aequorivita as Aequorivita todarodis comb. nov. and Aequorivita aquimaris comb. nov. Int J Syst Evol Microbiol 70:3117–3122. doi: 10.1099/ijsem.0.004139. [DOI] [PubMed] [Google Scholar]
  • 183.Dieguez AL, Perez-Cataluna A, Figueras MJ, Romalde JL. 2018. Arcobacter haliotis Tanaka et al. 2017 is a later heterotypic synonym of Arcobacter lekithochrous Dieguez et al. 2017. Int J Syst Evol Microbiol 68:2851–2854. doi: 10.1099/ijsem.0.002909. [DOI] [PubMed] [Google Scholar]
  • 184.Tison DL, Seidler RJ. 1983. Vibrio aestuarianus: a new species from estuarine waters and shellfish. Int J Syst Bacteriol 33:699–702. doi: 10.1099/00207713-33-4-699. [DOI] [Google Scholar]
  • 185.On SLW, Miller WG, Biggs PJ, Cornelius AJ, Vandamme P. 2021. Aliarcobacter, Halarcobacter, Malaciobacter, Pseudarcobacter and Poseidonibacter are later synonyms of Arcobacter: transfer of Poseidonibacter parvus, Poseidonibacter antarcticus, 'Halarcobacter arenosus', and 'Aliarcobacter vitoriensis' to Arcobacter as Arcobacter parvus comb. nov., Arcobacter antarcticus comb. nov., Arcobacter arenosus comb. nov. and Arcobacter vitoriensis comb. nov. Int J Syst Evol Microbiol 71:e005133. doi: 10.1099/ijsem.0.005133. [DOI] [PubMed] [Google Scholar]
  • 186.Lee HW, Roh SW, Shin NR, Lee J, Whon TW, Jung MJ, Yun JH, Kim MS, Hyun DW, Kim D, Bae JW. 2013. Blastopirellula cremea sp. nov., isolated from a dead ark clam. Int J Syst Evol Microbiol 63:2314–2319. doi: 10.1099/ijs.0.044099-0. [DOI] [PubMed] [Google Scholar]
  • 187.Rensink S, Wiegand S, Kallscheuer N, Rast P, Peeters SH, Heuer A, Boedeker C, Jetten MSM, Rohde M, Jogler M, Jogler C. 2020. Description of the novel planctomycetal genus Bremerella, containing Bremerella volcania sp. nov., isolated from an active volcanic site, and reclassification of Blastopirellula cremea as Bremerella cremea comb. nov. Antonie Van Leeuwenhoek 113:1823–1837. doi: 10.1007/s10482-019-01378-1. [DOI] [PubMed] [Google Scholar]
  • 188.Oren A, Garrity GM. 2018. List of new names and new combinations previously effectively, but not validly, published. Int J Syst Evol Microbiol 68:3379–3393. doi: 10.1099/ijsem.0.003071. [DOI] [PubMed] [Google Scholar]
  • 189.Oren A, Garrity GM. 2020. List of new names and new combinations previously effectively, but not validly, published. Int J Syst Evol Microbiol 70:4043–4049. doi: 10.1099/ijsem.0.004244. [DOI] [PubMed] [Google Scholar]

Articles from Journal of Clinical Microbiology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES