ABSTRACT
Mutations affecting enhancer chromatin regulators CREBBP and KMT2D are highly co-occurrent in germinal center (GC)-derived lymphomas and other tumors, even though regulating similar pathways. Herein, we report that combined haploinsufficiency of Crebbp and Kmt2d (C+K) indeed accelerated lymphomagenesis. C+K haploinsufficiency induced GC hyperplasia by altering cell fate decisions, skewing B cells away from memory and plasma cell differentiation. C+K deficiency particularly impaired enhancer activation for immune synapse genes involved in exiting the GC reaction. This effect was especially severe at super-enhancers for immunoregulatory and differentiation genes. Mechanistically, CREBBP and KMT2D formed a complex, were highly co-localized on chromatin, and were required for each-other’s stable recruitment to enhancers. Notably, C+K lymphomas in mice and humans manifested significantly reduced CD8 + T-cell abundance. Hence, deficiency of C+K cooperatively induced an immune evasive phenotype due at least in part to failure to activate key immune synapse super-enhancers, associated with altered immune cell fate decisions.
SIGNIFICANCE
Although CREBBP and KMT2D have similar enhancer regulatory functions, they are paradoxically co-mutated in lymphomas. We show that their combined loss causes specific disruption of super-enhancers driving immune synapse genes. Importantly, this leads to reduction of CD8 cells in lymphomas, linking super-enhancer function to immune surveillance, with implications for immunotherapy resistance.
Full Text Availability
The license terms selected by the author(s) for this preprint version do not permit archiving in PMC. The full text is available from the preprint server.
