Skip to main content
Springer Nature - PMC COVID-19 Collection logoLink to Springer Nature - PMC COVID-19 Collection
. 2023 Feb 24:1–19. Online ahead of print. doi: 10.1007/s40747-023-00976-x

Multi-objective two-stage emergent blood transshipment-allocation in COVID-19 epidemic

Yufeng Zhou 1, Jiahao Cheng 2,, Changzhi Wu 3, Kok Lay Teo 4
PMCID: PMC9950024  PMID: 36855682

Abstract

The problem of blood transshipment and allocation in the context of the COVID-19 epidemic has many new characteristics, such as two-stage, trans-regional, and multi-modal transportation. Considering these new characteristics, we propose a novel multi-objective optimization model for the two-stage emergent blood transshipment-allocation. The objectives considered are to optimize the quality of transshipped blood, the satisfaction of blood demand, and the overall cost including shortage penalty. An improved integer encoded hybrid multi-objective whale optimization algorithm (MOWOA) with greedy rules is then designed to solve the model. Numerical experiments demonstrate that our two-stage model is superior to one-stage optimization methods on all objectives. The degree of improvement ranges from 0.69 to 66.26%.

Keywords: Blood transshipment, COVID-19, Blood shortage, Blood supply chain, MOWOA

Introduction

The outbreak of COVID-19 poses a serious threat to the safety of global blood supply chain [1]. Blood donations were canceled and the supply of blood was reduced suddenly in the United States in March 2020 [2]. Many countries are living with a 1- to 2-day stockpile inventory under the epidemics, whereas they used to be accustomed to a blood inventory of 1–2 weeks [3]. Blood registries in post-lockdown phase decreased by 35.13% compared to non-epidemic years in India [4]. In the first half of 2020, more than 30 large and medium-sized cities in Mainland China experienced a certain degree of blood stock shortage. The amount of whole blood collected in Beijing was less than 13 of the average level in the same period of previous years. In Wuhan, the amount of whole blood collected was only about 10% in the same period in 2019. For this scenario, it is of great significance to integrate trans-regional blood transshipment, blood stocks replenishment in affected areas, and distribution of blood products to optimize the blood supply chain in affected areas.

Extensive research has been carried out on blood transshipment [57] and blood allocation [8, 9] under normal environment. Some researchers have also studied blood transshipment and allocation in natural disaster emergencies [1013]. Different from previous studies, blood transshipment and allocation during COVID-19 are much more complicated. First, there are two distinct phases of blood transshipment and allocation during COVID-19. In the first stage of epidemic, the movement of people in the affected areas was strictly controlled. This has led to a sharp drop of blood donors in the local area, and as a result, the blood collection channels in the affected areas have been largely interrupted. In addition to the initial stockpile, replenishment of blood stocks can only be done through trans-regional transshipment. During the mitigation stage, the flow of people will partially recover. Then, blood banks in some low-risk areas can collect blood. In addition to replenishing through trans-regional transshipment, the blood inventory can also be replenished partially through local collection. The transshipment from other affected blood banks with low risk is also allowed. Second, the transshipment problem and the allocation problem under the epidemic affect each other. Obviously, integrating the two issues of trans-regional transshipment and optimal allocation is more conducive to the improvement of blood supply chain performance. Furthermore, the large-scale trans-regional transshipment of blood products involves the choice of multiple modes of transportation. The choice of different transportation modes will affect the quality of blood products received. Therefore, the problem should be defined as a two-stage trans-regional transshipment-allocation integrated decision-making problem with transportation mode selection.

Previous studies on expanding blood supply chain have usually pursued adequate supply and less obsolescence of blood products [1416]. According to the characteristics of the epidemic blood supply chain, this paper expands the optimization objectives of the problem. First, this paper considers the effects of different transportation modes and initial freshness on the quality of blood products, and establishes an optimization objective for the best received blood product quality. Second, this paper establishes an optimal objective function for the satisfaction of blood products being allocated in affected areas, where the urgency of demand is taken into consideration. Third, the cost objective function established in this paper includes also the penalty cost of blood shortage. Furthermore, the scheduling process for blood products is a cold chain. In this paper, the cold chain cost of blood products is considered, which is rarely considered in the previous literature.

To sum up, this paper will consider the impact of different modes of transportation using two-stage multi-modal transport on blood product quality, full-process cold chain, and blood product distribution satisfaction during COVID-19. This problem is formulated as a multi-objective optimization problem to optimize the blood transshipment-allocation. The main differences between this paper and previous studies are summarized in Table 1.

Table 1.

Features of relevant research

References Multi-objective Economic cost Cold chain Shortage Multi stage Blood quality Satisfaction Epidemic risk
[17]
[18]
[19]
[20]
[21]
[22]
[6]
[7]
[23]
[24]
[25]
[26]
Our study

The contributions of this paper are as follows. (1) A new two-stage emergence blood transshipment-allocation during the COVID-19 epidemic is formulated as a multi-objective optimization problem. This problem stems from, but is not limited to, the blood supply chain industry. As mentioned in the previous subsection, the questions raised take into account many new characteristics of the epidemic, such as two-stage, trans-regional, and multi-modal transportation, the impact of different modes of transportation on the quality of blood products, the entire cold chain, and allocation satisfaction. (2) According to the characteristics of the model, a customized multi-objective whale optimization algorithm (MOWOA) with integer encoding and greedy rules is designed.

The rest of this paper is organized as follows. The relevant literature is reviewed in the section “Literature review”. The problem description and mathematical model are presented in the section “A two-stage transshipment-allocation model for emergency blood products”. The proposed hybrid MOWOA is discussed in the section “An improved hybrid MOWOA”. Computational experiments and a case study are conducted in the section “Case study and numerical analysis”. Conclusions and future work are presented in the section “Conclusions”.

Literature review

This section will review relevant literature in the following three categories. Blood transshipment and allocation issues in normal environment, blood transshipment and allocation issues in emergencies, and blood supply chain management in COVID-19 epidemic.

Blood transshipment and allocation problem in conventional environment

Due to the physiological characteristics of blood products, such as perishability, the transportation and allocation decision-making for blood products differ from general materials. In addition to economic cost, such studies often consider characteristics such as perishability and utilization. Reference [8] studies the Long Island blood distribution system. The system maximizes blood availability and utilization according to a programmed blood distribution system model and strategy. Reference [5] finds that the blood transfer between blood banks can effectively reduce the system cost. Reference [27] develops an integer programming model to solve the problem of blood distribution from a central blood bank to local hospitals. The model considers the different life cycles of blood distribution to reduce expiration. Reference [28] addresses a multiple-vehicle, multi-depot, multi-criteria allocation-routing problem for public and private health care systems. Reference [29] studies how to cost-effectively organize the delivery of blood products for Austrian hospitals. The approach being developed is based on integer programming and variable neighborhood search. Reference [30] studies the blood inventory control problem, taking into account blood group substitution and transshipment strategies. Reference [31] proposes the design and optimization of a blood distribution routes, and investigates the impact of inter-hospital compatible products’ substitution and transshipment on blood demand satisfaction. Reference [7] formulates a two-stage stochastic programming model for the proactive transshipment problem in the blood supply chain. The main objective is to establish an effective balance between the wastage and shortage. Reference [6] studies the dynamic decision-making of blood supply chain, and a bi-objective blood transshipment optimization model with the shortest transport time and the greatest freshness is established. According to the characteristics of the epidemic situation, this paper considers the blood transshipment, where the freshness of the transshipped blood products is taken into account. Furthermore, the paper also considers the influence of different modes of transportation on the quality of blood products.

Blood transshipment and allocation problem in emergencies

Previous studies on emergency transshipment and allocation problem have mainly focused on earthquake [12]. Due to the unique physiological characteristics and safeguarding properties, emergency transshipment strategies for blood products are significantly different from other emergency supplies [18]. In [18], an age-based transshipment model for blood shortage is constructed, and two preferred selection methods for transshipping blood units are proposed. Reference [21] describes the uncertainty of post-disaster blood demand based on moment-based ambiguous set, and proposes a two-stage distributional robust optimization model to design the blood supply chain network. Reference [32] investigates the blood supply chain network design problem in emergency situations using a six-objective optimization framework. The problem is formulated as a mixed-integer linear programming model. Reference [33] studies robust location-allocation for emergency temporary blood supply after disasters. The focus of most blood allocation studies is on blood supply chain optimization, especially the problem of location-allocation or location-routing problem [34, 35].

In this paper, a multi-objective optimization model for integrated decision-making of blood transshipment and allocation is constructed based on the characteristics of epidemic.

Blood supply chain management in the COVID-19 epidemic

The COVID-19 epidemic had led to global blood stock shortage [36]. Currently, there are little literatures on blood supply chain management in the COVID-19 epidemic. Blood supply chain management for the COVID-19 epidemic involves some new factors, such as virus variation, area risk, and the impact of human behavior on the transmission of the virus. Reference [37] introduces a plasma supply prediction model during the recovery phase of COVID-19 to help design a more efficient blood supply chain mechanism. Reference [38] proposes a robust multi-phase optimization method to model the blood supply network to ensure efficient blood collection. Reference [39] proposes a mechanism to coordinate activities to alleviate shortages during COVID-19 by providing a two-stage optimization tool. Reference [17] formulates the blood supply chain problem using a two-stage stochastic programming after the COVID-19 epidemic. Different from the literature mentioned above, this paper comprehensively considers some new characteristics of blood product scheduling in the context of COVID-19, such as the risk of affected areas, the impact of different modes of transportation on the quality of blood products, the whole cold chain, and allocation satisfaction. On this basis, a novel multi-objective optimization model for blood transshipment-allocation decision-making is proposed.

A two-stage transshipment-allocation model for emergency blood products

Problem description

We suppose that the logistics network contains rescue blood banks, as shown in Fig. 1. There are multiple rescue blood banks and multiple affected blood banks. Each rescue blood bank serves multiple hospitals. Blood products are transshipped from the rescue banks to the affected banks, and each affected bank then allocates the blood products to its regional hospitals. During the first stage, blood collection from the affected areas is interrupted due to high risk. Blood bank replenishment can only be transshipped across regions. In the second stage, some blood banks in low-risk areas resume blood collection, and low-risk areas also allow the transshipment between affected blood banks.

Fig. 1.

Fig. 1

Two-stage transshipment-allocation diagram for emergency blood products

There are multiple modes for blood transshipment, such as road transportation and air transportation. Different modes of transportation affect the quality of blood products. Therefore, in addition to the freshness of the transshipped blood, the quality of the received blood products will also depend on the choice of transportation modes. Furthermore, shortage penalty is included in the objectives to reduce shortage. In reality, blood shortage can have serious consequences, manifested in penalties such as delay in surgical procedure or additional costs for emergency blood collection. This setting has been widely adopted in blood supply chain management. Satisfactory distribution of blood products in affected areas during epidemic is also included as an optimization objective to ensure that urgent demands for blood products are met. Consequently, there are three objectives to be optimized in our model: (i) The quality of blood products being transshipped; (ii) the degree to which blood demands are met; and (iii) the total cost with out-of-stock penalties.

Notations

(1) Sets

  • S: Set of decision-making stages, S=s|s=1,2.

  • T: Set of periods for each stage, T=t|t=1,2,...,tend.

  • I: Set of rescue blood banks, iI.

  • J: Set of affected blood banks, j,nJ.

  • JH: Set of hospitals served by blood bank j,jhJH. Here, the subscript jh represents hospital h in the area covered by blood bank j.

  • M: Set of transportation modes,m=m|m=1,2, where m=1 denotes the road transportation, and m=2 denotes the air transportation.

  • P: Set of blood products,P=p|p=wb,bp,rc, where wb, bp, and rc represent whole blood, plasma, and red blood cell suspension, respectively

  • (2) Parameters

  • dijm: Distance between location i and location j by using transportation mode.

  • vm: Velocity of transportation mode m.

  • τijm: Transportation time from i to j from using transportation mode m.

  • τm: The remaining time spent going from i to j from using transportation mode m. It includes the time spent from by loading and unloading goods and getting them to the airport.

  • Capm: The capacity limit for the transportation mode m.

  • TUs: Transport time limit at stage s.

  • ΔTp: Refrigeration temperature coefficient for blood product p.

  • cs: Unit penalty cost for shortage

  • cm: Unit transportation cost per unit of blood product from using transportation mode m.

  • ce: Unit blood refrigeration cost.

  • fm: The fixed cost of transportation per time from using transportation mode m.

  • λp: Output coefficient for blood product p.

  • N(μjhp,σjhp2): Normal distribution of daily predicted demand with mean μjhp and variance σjhp2 for blood product p in hospital h covered by blood bank j.

  • dejh,sp(t): Actual demand for blood product p in hospital h during period t at stage s.

  • B¯i,sp: Upper limit for the transshipment amount of blood product p from rescue blood bank i at stage s.

  • Ij,0p: Initial inventory level of blood product p in blood bank j.

  • Ijh,0p: Initial inventory level of blood product p in hospital h covered by blood bank j

  • Qj,s(t): The amount of blood collected in blood bank j at stage s.

  • qj,sp(t): The amount of blood product p being prepared in blood bank j at stage s during period t.

  • rj,s: If blood bank j is located in low-risk areas at stage s, it is 1; otherwise, it is 0.

  • (3) Intermediate variables

  • Ij,sp: Inventory level of blood product p in blood bank j at the end of stage s.

  • Ijh,sp: The amount of inventory of blood product p that hospital h is being allocated by blood bank j at the end of stage s.

  • xj,sp: The available amount of blood product p to be allocated in blood bank j at stage s.

  • Rjh,sp: The amount of shortage for blood product p in hospital h at stage s.

  • (4) Decision variables

  • xij,sp: The amount of blood product p being transshipped from rescue bank i to affected bank j at stage s.

  • Xjn,sp: The amount blood product p being transshipped from affected bank j to affected bank n at stage s.

  • yij,sm: The used number of vehicles or airplanes from using transportation mode m to move from rescue bank i to affected bank j at stage s.

  • zjh,sp: The allocated amount for blood product p from affected bank j to hospital h at stage s

Objective functions

Based on the problem description mentioned above, the following three objective functions for the model are derived.

(1) The quality objective of the transshipped blood products.

Let θm be the deteriorating rate parameter for the transportation mode m. Expression (1) aims to maximizing the quality of blood products. Relevant research shows that the mode of transportation affects blood quality [40, 41]. Since air transportation has a greater impact on blood quality than road transportation over the same period, θ2>θ1. fri,s is the blood quality at stage s from rescue bank i. fri,s denotes the average ratio between the remaining shelf life to the total shelf life of the blood products transshipped from rescue bank i. The deterioration in the quality of blood products during short-term transportation can be measured as exp-θm(τijm+τm) [42, 43]. For the affected bank j at stage s, let fij,s be the ratio of the received amount from the rescue bank i to the total received amount from all the rescue banks. Then, we have

fij,s=pPxij,sp/iIpPxij,sp,i,j,s. 1

Now, the objective function of the quality of the transshipped blood products can be expressed as

maxZ1s=iIjJmMexp-θm(τijm+τm)·fij,s·fri,s. 2

(2) Objective function for the satisfaction of emergency blood allocation

The normalization of the time available for the inventory level of blood products at each stage can be calculated as

αjh,sp=minIjh,s-1pμjh,sp·tend,1jh,s,p. 3

Since blood demand varies from hospital to hospital, the predicted demand for each hospital is expressed dimensionless as

βjh,sp=μjh,spmaxμjh,sp,jh,p,s. 4

Because the shorter the time available for blood products in each hospital, the higher the urgency of the demand is. Thus, the demand urgency level ηjh,sp can be measured as expressed by

ηjh,sp=1-αjh,spβjh,sp,jh,s,p. 5

If the stock of a hospital inventory is sufficient for current stage, i.e., Ijh,s-1pμjh,sp·tend, then the urgency level for the blood products is ηjh,sp=0.

The actual demand satisfaction rate of the hospital can be calculated by the following formula:

wjh,sp=minIjh,s-1p+zjh,spt=1Tdejh,spt,1,jh,s,p. 6

The satisfaction degree can be weighted by the urgency level ηjh,sp, the actual demand satisfaction rate wjh,sp, and the demand proportion of each blood product μjh,sppPμjh,sp. S0, at each stage, the satisfaction maximization objective in the context of demand urgency can be computed as follows:

maxZ2s=jJhHpPηjh,sp·wjh,sp·μjh,sppPμjh,sp. 7

(3) Total cost objective including shortage penalty

The transportation cost between rescue banks and affected banks at each stage can be expressed as

c1s=iIjJpPmMxij,sp·dijm·cm·yij,sm+iIjJmMfm·yij,sm, 8

where the first item is the variable transportation cost, and the second item is the fixed transportation cost.

The transportation cost between affected banks at each stage can be expressed as

c2s=jJnJpPXjn,sp·djn·cm·yjn,s1+jJnJf1·yjn,s1. 9

The blood refrigeration cost at each stage can be expressed as

c3s=ceiIjJmMpPxij,sp·(τijm+τm)·ΔTp. 10

The penalty cost for shortage at each stage is given by

c4s=csjJhHpPRjh,sp. 11

To sum up, the total cost objective function at each stage can be expressed as given below

minZ3s=c1s+c2s+c3s+c4s. 12

Mathematical formulation

A multi-objective optimization model for the two-stage transshipment-allocation decision-making of blood products in public health emergencies can now be formally stated as

maxZ1=sSZ1s=sSiIjJmMexp-θm(τijm+τm)·fij,s·fri,s, 13
maxZ2=sSZ2s=sSjJhHpPηjh,sp·wjh,sp·μjh,sppPμjh,sp, 14
minZ3=sSZ3s=sSc1s+c2s+c3s+c4s, 15
s.t.qj,sp(t)λp·Qj,s(t)·rj,s,j,s,t,p, 16
τijm=diijmvmi,j,m, 17
τijm+τimTUsi,j,m,s, 18
xj,sp=iIxij,sp+Ij,0p,s=1iIxij,sp+Ij,s-1p+t=1Tqj,sp(t),s=2j,p, 19
njXjn,sp·njXnj,sp=0 20
Ij,sp=Ij,s-1p+xj,sp-jhJHzjh,sp,s=1Ij,s-1p+xj,sp+t=1Tqj,sp(t)-jhJHzjh,sp,s=2j,p, 21
Ijh,sp=Ijh,s-1p+zjh,sp-t=1Tdejh,sp(t)+jh,s,p, 22
jhJHzjh,spxj,spj,p,s 23
njXjn,sp0,s=1(xj,sp-hHzjh,sp)rj,s,s=2j,p 24
Rjh,sp=t=1Tdejh,sp(t)-Ijh,s-1p-zjh,sp+jh,s,p, 25
jJxij,spB¯i,spi,s,p, 26
pPxij,spCapmyij,smi,j,s, 27
rj,s01j,s, 28
xij,spXnj,spzjh,sp0i,j,s,p,jh,m, 29
yij,smN*i,j,s,m. 30

The objective (13) is to maximize the quality of the transshipped blood. Equation (14) is the objective function to maximizing the satisfaction of blood demand. Equation (15) is the objective function to minimizing the total cost. Equation (16) is the restriction on the amounts of blood product collection, denoting that blood banks can only collect in low-risk areas. Equation (17) is the expression of the transportation time for different transportation modes. Equation (18) gives the limitations on the transport times. Equation (19) denotes the constraint on the allocation amounts available for blood products. Equation (20) is the equilibrium constraint for transshipped blood. Equation (21) is the expression of the inventory level of each blood bank at the end of each stage. Equation (22) denotes the expression of the inventory in each hospital at the end of each stage. Equation (23) is the constraint on the allocation amounts available for rescue blood banks. Equation (24) is the constraint on the transshipment amounts for affected blood banks. Equation (25) is the expression for the shortage in various hospitals. Equation (26) is the constraint on the transshipment amounts for rescue blood banks. Equation (27) is the constraint on the capacities for different transportation modes. Equations (2830) are the constraints on the values of the variables.

Estimation of the collected amount of blood products

In daily life, the number of donors visiting blood collection points n during each period t can be described as a Poisson distribution with the following distribution function [44]:

Pr(n|λt)=λne-λtn!,n=0,1,2,...,. 31

After the outbreak of the epidemic, the arrival rate of donors has a large fluctuation. To simulate this, the average frequency of random events per unit time λ is modeled as a Gamma distribution with the parameter (α,β) given as follows:

g(λ)=1Γ(α)βαλα-1e-λ/β,0λ<. 32

Different values of (α,β) are being used to reflect the variation of donors visiting blood collection locations during epidemic. Suppose that the probability of each visitor meeting the conditions for blood collection is p. Then, the probability distribution of the number n¯ of eligible donors among the number n of people who visit blood collection locations in each cycle after the outbreak of epidemic can be expressed as

Pr(n¯|n)=Cnn¯(1-p)(n-n¯)pn¯,n¯=0,1,2,...,n. 33

Therefore, the probability distribution of eligible donors within a period is given by

Pr(n¯)=λ=0n=0Pr(n¯|n)Pr(n|λ)g(λ)dλ=Cn¯n¯+α-1βtp1+βtpn¯11+βtpα,n=0,1,2,...,;n¯=0,1,2,...,n. 34

Thus, the expected value of n¯ is

E(n¯)=αβtp. 35

Supposing that the average blood donation volume of each donor is q, then the upper limit of blood collection in each region during a period is

Qj,st=αj,sβj,stpq. 36

An improved hybrid MOWOA

The model proposed in this paper is a multi-objective mixed-integer nonlinear programming model. This problem is an NP-hard problem, which is difficult to solve accurately with branch-and-bound algorithm, or operational research software such as CPLEX and GUROBI. Meta-heuristic algorithms are found to have better applicability to solve such problems.

Methods for solving multi-objective problems can be roughly divided into two categories. For the first category, the multi-objective problem is transformed into a single objective problem using linear weighting or the TOPSIS method. For the second category, the task is to obtain the Pareto frontier solution set. Decision-makers can select a satisfactory solution from the Pareto solution set according to the actual situation.

Whale Optimization Algorithm (WOA) was proposed in 2016 and has received widespread attention due to its fast convergence speed and few parameters [45]. The MOWOA was introduced in [46] based on the traditional WOA. It has been widely used to solve various multi-objective combinatorial optimization problems. Based on the characteristics of the proposed model, an improved hybrid MOWOA with greedy rules is designed in this paper. The performance of our proposed hybrid MOWOA is compared with that of NSGA-II, MODE, and MOGWO.

The reason why MODE and NSGA-II are chosen for comparison is that these two algorithms are the most classic multi-objective evolutionary algorithms and are widely used. MOGWO was chosen, because it is a relatively new optimization algorithm that performs well in some cases [47].

Whale position encoding

The encoding of a whale position is designed as a matrix. Each row of the matrix represents a blood product. The row is used to encoding the transportation mode and transshipment amount of a blood product. Each row has four substrings. The first two substrings are used to encode variables of stage 1, and the last two substrings are used to encode variables of stage 2. Each of the four substrings contains I position segments. Each position segment represents a rescue blood bank. Each position segment has J bits. Therefore, each substring has I×J positions. A complete whale position is a matrix with size P×2×S×I×J, as shown in Fig. 2.

Fig. 2.

Fig. 2

Encoding schematic for a chromosome

In substring 1, each bit is randomly generated between {0,1,2}. Different values of bits indicate different transportation modes. 0 means no transshipment between the two banks. 1 and 2 indicate, respectively, the road and air transportation modes, that is, m=1 or m=2. Suppose there are six rescue blood banks and three affected blood banks. As shown in Fig. 3, the number of bits in substring 1 is 18. The first bit means that affected bank 1 is transferred from rescue bank 1, and the selected mode is air transportation, i.e., m=2. The sixth bit means that affected bank 3 is transferred from rescue bank 2, and the selected mode is road transportation, i.e., m=1, and so on.

Fig. 3.

Fig. 3

Encoding schematic for substring 1

Substring 2 is used to encode transshipment amount xij,sp. Each bit of the initial population is a positive integer randomly generated among 0,B¯i,sp. Assuming that substring 2 shown in Fig. 4 is at row p and stage s of the chromosomal encoding matrix. The first bit means that transshipment amount for blood product p from rescue bank 1 to affected bank 1 at stage s is 51U, and so on for other bits.

Fig. 4.

Fig. 4

Encoding schematic for substring 2

Substring 3 and substring 4 are the encoding for stage 2. Substring 3 is encoded in the same way as substring 1, and the encoding of substring 4 is the same as substring 2.

The encoding of other blood products, that is the other rows of the matrix, can also be encoded similarly as substring 1 to substring 4 depicted above.

After the initial encoding is generated, the encoding needs to be moderately improved, and the improvement rules are as follows.

  1. In the same row of a whale position, if the bit of substring 1 is 0 and substring 2 is >0 for the corresponding bit position of substring 1 and substring 2, the bit of substring 2 should be modified to 0. This means that there is no transshipment between the two blood banks, and the transshipment amount should be modified to 0. Encoding of substring 3 and substring 4 in the same row should be improved in the same way.

  2. If the bits with the same serial number of substring 1 in different rows of whale positions are different, change the value of bits in all rows to the maximum value of these bits. This operation can unify the transportation mode between the blood banks into one mode, and can also make different blood products to transship together. The encoding of substring 2 in different rows should also be modified in the same way.

xj,sp can be calculated based on xij,sp. zjh,sp can be obtained using greedy heuristic rule as detailed in Step 3.3 to be given below.

Algorithm procedure

Step 1 Algorithm initialization. Set the number of whale population as L and the maximum iterations as Tmax.

Step 2 Initialization of whale positions. Generate N whales randomly according to the encoding rules in “Whale position encoding”, the position Xi(i=1,2,3,l) of each whale is an initial solution. Parameters a,A,C,p should be initialized, too, where A,C are coefficient vectors, which are used to control the whale’s swimming mode. The calculation method is shown in Eqs. (37)–(39)

A=2a·r-a 37
C=2r 38
a=2-2t/Tmax. 39

Here, a is the control parameter, r is a random vector between [0,1], and t is the current iterations.

Step 3 Fitness value calculation. The steps are as follows.

Step 3.1 For individual l and stage 1, transport mode m and transshipment amount xij,sp can be obtained according to the decoding method in “Whale position encoding” .

Step 3.2 Calculate pPxij,sp,i,j,s=1. Then, the variables yij,sm,i,j,m,s=1 can be obtained from constraint (27).

Step 3.3 Calculate the allocated amounts zjh,sp,jh,p,s=1 based on the greedy rule. First, calculate the level of urgency of demands ηjh,sp,jh,p,s=1 according to Eqs. (3)–(5). Then, select the maximal ηjh,sp,jh,p,s=1 and hospital jh. The allocated amount for this hospital can be calculated by zjh,sp=t=1Tdejh,spt-Ijh,s-1p,jh,p,s=1. Update xj,sp=xj,sp-zjh,sp,j,p,s=1. Then, allocate the demand of the hospital with the second largest ηjh,sp,jh,p,s=1. The same process is carried out for the other hospitals until all blood banks have allocated all blood products to hospitals.

Step 3.4 Update Ij,sp,j,p,s=1; Ijh,sp,jh,p,s=1,Rjh,sp,jh,p,s=1 according to the actual demands dejh,sp(t),jh,p,s=1.

Step 3.5 For stage 2, if rj,s=1,j,s=2, update qj,sp(t) according to constraint (13). The calculations of xj,sp,j,p,s=2, and then, pPxij,sp,i,j,s=2 are carried out similar to Steps 3.2 and 3.3.

Step 3.6 For the two affected banks j1 and j2, if rj1,2=1,rj2,2=1, and Ij1,2p>0,p, jhJHRjh,2p>0,p, then the blood products are transshipped from j1 to j2, and Xj1j2,2p=min{I1,2p,jhJHRjh,2p},p.

Step 3.7 Calculate the fitness value of individual l. Let Fit(l)={f1,f2,f3}, where f1,f2,f3 are, respectively, the values of the 3 objective functions.

Step 3.8 Calculate the fitness values of all individuals as in Steps 3.1 to 3.7.

Step 4 Non-dominant sorting. For convenience of non-dominant sorting, let f1=-f1,f2=-f2. Then, it performs a non-dominant sorting for all individuals as done using the traditional methods.

Step 5 Crowding calculation. The crowding distance of individuals of the same non-dominant rank F{i} can be calculated according to the fitness value as given below

di(l1,l2)=i=13fi(l1)-fi(l2)fimax-fimin2. 40

Step 6 Leading population selection. Whales in the first non-dominant tier should be selected as leaders to form the leading population.

Step 7 Whale position updating. Update the position of all whales as follows.

  1. If p<0.5 and |A|<1, the whale makes a movement to surround the prey, and the position of the whale can be updated according to the following formula:
    X(t+1)=X(t)-A·D1. 41
    Here, X is the position vector of the randomly selected whale in the leading population, which is set as position of the target prey. D1 is the distance between the individual whale and the prey, and the calculation method is as follows:
    D1=C·X(t)-X(t). 42
  2. If p<0.5 and |A|>1, when the whale searches for prey, it no longer updates its position according to the leading whale, but randomly selects a whale position in the current population to update its position. The diversity of the population is maintained while seeking the optimal solution. The position of the whale is updated according to the following formula:
    X(t+1)=Xrand-A·Drand. 43
    Here, Xrand represents the randomly selected whale position vector, and Drand can be calculated in the same way as Eq. (42).
  3. If p0.5, the whale makes a spiral position updating action. The spiral equation is used to simulate this process. The whale position is updated according to the following formula:
    X(t+1)=X(t)-X(t)·ebv·cos(2πv)+X(t). 44
    Here, b is a constant used to define the logarithmic spiral shape, and v is a random number between [– 1,1].

Step 8 Whale position adjustment and search space check. Round down the whale position and check if it is outside the search space. Here, the transport modes of substring 1 and substring 3 are directly rounded down. The transshipment amount of substring 2 and substring 4 are updated and rounded down as follows:

  1. If jJxij,spB¯i,sp,i,s,p, xij,sp are rounded down directly.

  2. If jJxij,sp>B¯i,sp,i,s,p, xij,sp, are updated according to (45) and then rounded down
    xij,sp=xij,spjJxij,sp·B¯i,sp,i,s,p. 45

Step 9 Fitness value calculation. Calculate the fitness value of the new whale population as in Step 3.

Step 10 Population merging. The new population is merged with the original population, and the Pareto level and crowding degree distance of the population are calculated according to Step 4 and Step 5.

Step 11 Tournament selection.The non-dominant rank of the initial population is compared, and then, the crowding distance is compared. The individuals with larger non-dominant rank and smaller crowding distance are selected to enter the next step.

Step 12 Individual elimination and selection. Select the former L individuals to enter the next generation according to the method of Step 11 and eliminate the other individuals to maintain the same population size.

Step 13 Algorithm termination. If t=Tmax, then the algorithm terminates. Otherwise, return to Step 4.

The algorithm flowchart is given in Fig. 5.

Fig. 5.

Fig. 5

Algorithm flowchart

Case study and numerical analysis

Case description and data

In this section, we construct a numerical example based on the epidemic in Hubei Province, China to evaluate our proposed model. On August 5th 2021, Wuhan and some cities in Hubei province experienced second wave of outbreaks since January 2020. 63 residential areas in Wuhan were under lockdown for quarantine management. The Government conducted a nationwide blood transshipment to Hubei province. The rescue blood banks are blood centers in Chongqing, Chengdu and other 9 cities, labeled as i=1,2,...,9. Wuhan, Yichang, Xiangyang, Huanggang, and Jinzhou are the five major cities that received transshipped blood. Blood banks in these cities are affected banks. The air and land transportation distances between different blood banks are measured by actual routes and highway kilometers, as shown in Table 2.

Table 2.

Transportation distance between rescue banks and affected banks (km)

Distance (air/road) Rescue banks
CQ CD CS GY NJ NC HF ZZ XA
Affected banks WH 754/944 979/1156 297/329 865/1044 457/536 262/341 310/378 467/510 653/739
YC 471/581 694/834 319/401 636/859 728/842 495/636 575/688 503/625 453/683
XY –/802 –/976 –/524 –/1029 –/768 –/647 –/613 –/392 –/510
HG –/946 –/1236 –/386 –/1100 –/512 –/290 –/357 –/576 –/849
JZ –/667 –/933 –/330 –/825 –/749 –/537 –/594 –/586 –/704

CQ Chongqing, CD Chengdu, CS Changsha, NJ Nanjing, NC Nanchang, HF Hefei, ZZ Zhengzhou, XA Xian, WH Wuhan, YC Yichang, XY Xiangyang, HG Huanggang, JZ Jinzhou

The upper limits of the transshipment volumes of blood products from rescue blood banks are shown in Table 3. The daily blood demands in hospitals are given based on historical data. Table 4 shows the average daily demand data of 20 hospitals in Wuhan. The initial inventory levels of blood products in affected banks are shown in Table 5. The amount of blood collected is calculated according to Equations (31)–(36), and the relevant parameters are set as α=20,β=20,q=1.5,p=2/3. The preparation volume of blood products is calculated based on the collected volume, as shown in Table 5.

Table 3.

Upper limits of the transshipment amounts for blood products from rescue blood banks

Stage1/ Stage 2 CQ CD CS GY NJ NC HF ZZ XA
wb(U) 809/443 839/460 639/359 822/450 791/434 648/364 769/423 730/406 799/401
bp(U) 3236/1770 3357/1839 2557/1432 3287/1804 3165/1743 2582/1451 3076/1698 2900/1610 3160/1732
rc(U) 4046/2213 4197/2299 3197/1799 4109/2255 3957/2179 3228/1814 3846/2123 3625/2013 3950/2075
Quality 0.95/0.98 0.96/0.97 0.93/0.96 0.90/0.95 0.91/0.92 0.92/0.97 0.95/0.92 0.97/0.94 0.91/0.93

Table 4.

Average daily blood consumption in Wuhan hospitals

Product/ Hospital 1 2 3 4 5 6 7 8 9 10
wb(U) 14 12 13 12 12 14 14 12 14 12
bp(U) 56 48 54 53 50 55 55 50 55 53
rc(U) 70 60 67 66 63 69 69 63 69 67
Product/ Hospital 11 12 13 14 15 16 17 18 19 20
wb(U) 15 15 14 15 13 14 14 12 14 13
bp(U) 59 60 56 59 52 56 55 49 55 53
rc(U) 73 73 71 73 66 70 69 62 68 67

Table 5.

Initial inventory levels and reserve amounts for different affected banks

Product/bank WH YC XY HG JZ
Ij,0p qj,sp(t) Ij,0p qj,sp(t) Ij,0p qj,sp(t) Ij,0p qj,sp(t) Ij,0p qj,sp(t)
wb(U) 776 664 40 579 40 463 558 40
bp(U) 3103 2656 160 2313 160 1852 2232 160
rc(U) 3879 3320 200 2891 200 2315 2789 200
rj,s 0 1 1 0 1

In the first week after the outbreak of epidemic, the five cities were in high-risk state. The epidemic prevention and control were strict, the movement of people was restricted, and the amount of blood collected dropped rapidly. At this stage, blood consumption mainly depends on the stocks of affected blood banks and the transshipment from rescue banks. Here, all affected banks are located in high-risk areas, and rj,s=0,j,s=1. After a week of control, the epidemic in some cities has not spread, and blood collection and transfer between affected areas have begun. Therefore, stage 1 is set as from the 1st to the 7th day after the outbreak, and stage 2 is set as from the 8th to the 14th day after the outbreak.

The other parameters of the model are set as follows. v1=100 km/h, v2=800 km/h, τ1=1 h, τ2=2 h, Cap1=2000U, Cap2=10,000U, TU1=12 h, TU2=24 h, θ1=0.01, θ2=0.1, cs=100CNY, c1=0.01CNY, c2=0.02CNY, ce=0.1CNY, f1=500CNY, f2=2000CNY. The parameters of MOWOA are set as follows. The whale population L=100, and the maximum iterations Tmax=400.

Results

MatlabR2019a is used as programming environment. The running platform is a personal computer with AMD Ryzen 7 5800 H, Radeon Graphics CPU@3.2GHz, 16GB ram, 64-bit Windows 11 system. The running time is 131 s. When the algorithm terminates, all the solutions converge to the Pareto front surface, and there are 100 distinct Pareto solutions. The distribution of solutions is shown in Fig. 6a. Figure 6b is the surface fitted by Pareto solutions. Figure 6c and d shows distribution diagrams of solutions between different objectives. Some typical Pareto solutions are shown in Table 6.

Fig. 6.

Fig. 6

Solution results

Table 6.

Some typical Pareto solutions

No. Objective value Stage xij,s(U) Shortage (U)
1 z1=9.348 z2=183.229 z3=706799 1 1821 4318 330 4538 3320 772 241 636 1492 0
3871 1168 329 1955 1900 314 674 80 1199
0 0 0 0 0 0 217 5534 4781
0 0 0 551 0 4947 6137 0 0
749 0 5729 1162 0 378 419 865 0
2 3604 1892 511 1262 1950 268 668 541 2430
0 2440 554 3014 1326 194 361 571 1398
328 0 0 182 0 241 496 2655 70
0 0 132 0 60 2561 501 0 111
0 174 1992 0 25 340 2200 0 317
2 z1=9.631 z2=161.560 z3=2259484 1 2723 2854 169 3003 5537 712 670 521 6675 11,590
5351 5505 216 5177 2372 518 741 176 1223
0 0 0 0 0 0 0 6550 0
0 0 0 36 0 5186 0 0 0
0 0 6006 0 0 37 0 0 0
2 1781 1217 49 2038 2819 417 2766 191 1420
2615 3359 104 2450 1517 278 1455 168 2908
0 0 0 0 0 0 0 3644 0
0 0 0 0 0 2910 0 0 0
27 0 3417 0 0 0 0 0 0
3 z1=9.619 z2=176.849 z3=1454537 1 2664 2695 117 2832 5577 259 522 396 1034 3728
5397 5695 144 5376 2334 183 314 154 640
0 0 0 0 0 0 0 6689 6215
11 0 0 0 0 5086 6852 0 0
17 0 6128 0 0 926 0 0 0
2 1740 1461 85 2046 2768 122 2677 132 1436
2684 3111 68 2442 1562 97 1547 89 2872
0 0 0 0 0 0 0 3777 19
0 0 0 0 0 3387 0 0 0
0 0 3418 0 0 0 0 0 0

For xij,s, columns represent affected blood banks and rows represent rescue blood banks

From Fig. 6 and Table 6, it can be concluded that the total cost objective is opposite of the freshness objective. There is no conflict between satisfaction and cost, because the shortage penalty is considered. As shown in the right end of Fig. 6c, when satisfaction levels rise to a high level, optimizing the transshipment scheme can significantly reduce the total cost. Excessive pursuit of the quality of transshipment blood will concentrate the selection of rescue blood banks in cities close to the affected areas, resulting in a large shortage cost.

Algorithm comparison

To test the performance of the proposed improved MOWOA in this paper, it is compared with NSGA-II [48], MODE [49], and MOGWO [47]. Nine numerical examples are designed for comparison. Numerical Example 1 is the case constructed above. The other eight examples are randomly generated based on Example 1 with different sizes. The maximum iterations of the three algorithms are all 400. The population size (individual number/gray wolf population) is 100. The three comparison algorithms all use their original approaches, but to solve our proposed model, they all use the same encoding and decoding rules proposed in this paper.

We use four indicators to evaluate the performance of these algorithms. Tiers represent the final number of Pareto levels. If it is not 1, there is no convergence. CPU time is used to measure the computational efficiency of these algorithms. Different Pareto solutions represent the diversity of solutions. HV is used to evaluate the convergence and distribution of solutions simultaneously [50]. HV is defined as follows:

HVS,zref=volumei=1|S|ci. 46

Here, zref is a pre-set reference point, and |S| is the number of non-dominant solution sets. The volume volumeci of the hypercube formed by a non-dominated solution xi and a reference point as diagonal lines is calculated as follows:

volumeci=k=1mzref-fkxi,kzref-fkxi>00,kzref-fkxi0. 47

Here, m is the number of objectives. The higher the HV, the better the convergence and distribution of the solutions.

Performance comparison of the four algorithms is shown in Table 7. The bold values indicate that the performance of this indicator is optimal among all the algorithms. The Pareto frontier comparison of the four algorithms is depicted in Fig. 7. The number of non-dominated tiers of NSGA-II, MODE, and MOWOA can all converge to 1 in 400 iterations. MOGWO is not convergent in all cases. From the perspective of solution diversity, MOWOA and MODE are better than NSGA-II and MOGWO. MOWOA can yield 100 different pareto solutions in all cases. There is only one case where different pareto solutions are less than 100 for MODE. From the perspective of computational efficiency, MOWOA is faster than the other three algorithms. From the perspective of HV, both the convergence and distribution of solutions of MOWOA are the best in all cases. Therefore, the improved MOWOA has the best performance among the four algorithms.

Table 7.

Performance comparison between the four algorithms

Numerical example Algorithm Model size Convergence iterations Tiers CPU time(s) Different pareto solutions HV(107)
1 NSGA-II 9×5 222 1 150.188 97 0.661
MODE 213 1 214.648 96 0.865
MOGWO 2 162.960 23
MOWOA 368 1 131.198 100 3.910
2 NSGA-II 10×5 378 1 153.519 85 0.762
MODE 298 1 220.621 100 0.620
MOGWO 2 168.951 27
MOWOA 369 1 128.905 100 4.225
3 NSGA-II 13×6 355 1 205.447 88 10.361
MODE 180 1 270.526 100 2.446
MOGWO 2 231.141 20
MOWOA 373 1 139.534 100 16.880
4 NSGA-II 16×7 275 1 184.021 92 30.168
MODE 386 1 336.022 100 47.305
MOGWO 2 246.011 22
MOWOA 317 1 153.395 100 49.080
5 NSGA-II 19×8 289 1 238.611 84 17.583
MODE 366 1 417.341 100 18.310
MOGWO 2 298.865 23
MOWOA 360 1 188.120 100 47.695
6 NSGA-II 22×9 350 1 221.194 83 5.638
MODE 396 1 463.810 100 47.008
MOGWO 2 234.780 18
MOWOA 340 1 200.830 100 50.397
7 NSGA-II 30×10 377 1 279.631 90 8.737
MODE 379 1 706.985 100 2.948
MOGWO 2 312.982 15
MOWOA 316 1 214.351 100 26.727
8 NSGA-II 40×10 374 1 300.880 81 12.670
MODE 389 1 724.026 100 76.330
MOGWO 2 293.951 11
MOWOA 373 1 256.655 100 213.220
9 NSGA-II 50×10 385 1 336.682 86 3.691
MODE 397 1 988.276 100 3.441
MOGWO 2 288.461 15
MOWOA 308 1 239.865 100 35.668

Model size- I×J

Fig. 7.

Fig. 7

Comparison of Pareto frontiers between algorithms

Sensitivity analysis

To analyze the impact of blood shortage on the objectives of total cost, quality of transshipped blood, and satisfaction, sensitivity analysis is conducted with respect to the penalty cost cs. Set cs as 20, 50, 100, 150, and 200 (CNY), respectively. Figure 8a shows the Pareto frontiers under different shortage penalty costs for Numerical Example 1. Figure 8b shows the sensitivity analysis for Numerical Example 3. The curves of the two figures have similar characteristics. With the increase of cs, the total cost and satisfaction will also increase. cs has little influence on the quality of transshipped blood products.

Fig. 8.

Fig. 8

Pareto frontiers under different shortage penalty costs

Two-stage decision-making versus one-stage decision-making

Figure 9 shows the comparison of the Pareto frontiers between two-stage decision-making and one-stage decision-making methods. From Fig. 9, it is seen that the two-stage decision-making is superior to one-stage decision-making on all objectives. To further compare the performance of the two decision-making methods, the solutions obtained by the two methods having a gap±0.1% between different Pareto solutions for an objective are selected, and their optimization degrees are compared; see Table 8. For any one of the three objectives obtained by the one-stage and the two-stage decision-making methods, if the difference is within 0.1% of this objective, the two-stage decision-making is better than the one-stage decision-making with reference to the other two objectives and the shortage indicator. For example, in Solution No.1, the value of the quality objective is almost the same for the two methods, but the value of the quality objective increases by 27.02%, the total cost decreases by 66.26%, and the shortage cost decreases by 100%.

Fig. 9.

Fig. 9

Schematic diagram of the comparison of the two decision-making methods

Table 8.

Comparison of the two decision-making methods

Solution no. Method Obj.1 Obj.2 Obj.3 Shortage
1 One-stage 9.601 144.247 3,124,246 24,923
Two-stage 9.602 183.229 1,054,183 0
Gap <0.1% 27.02% 66.26% 100%
2 One-stage 9.545 170.367 1,591,669 7913
Two-stage 9.626 170.433 1,859,612 7435
Gap 0.85% <0.1% 16.83% 6.04%
3 One-stage 9.562 164.150 1,925,736 11,491
Two-stage 9.628 169.189 1,928,258 8131
Gap 0.69% 3.07% <-0.1% 29.24%

Conclusions

This paper proposed a two-stage transshipment-allocation of blood products in the context of the COVID-19 epidemic. In the first stage, the inventory of affected banks can only be replenished from external blood banks. In the second stage, considering the reduced risk level of epidemic, the inventory of affected banks in low-risk areas can be replenished not only from external blood banks, but also partially from local blood collection. In view of this scenario, a multiple-objective optimization model was constructed to reflect the reasonable arrangement of transshipment blood from external blood banks by maximizing the quality of transshipment blood, and the satisfaction level of blood allocation to reflect the effectiveness of emergency blood allocation from blood banks to hospitals, and minimizing the system cost which contains the penalty cost for blood shortage to reduce the shortage.

Through the analysis of the proposed model, an improved integer-coded hybrid MOWOA with greedy search rules was proposed to solve the proposed multi-objective optimization problem. Numerical simulation shows that the performance of our proposed hybrid MOWOA is better than NSGA-II, MODE, and MOGWO. The numerical results also show that the two-stage decision-making is superior to one-stage decision-making on all objectives.

Future research can consider the compatibility of blood groups in the model and study the two-stage blood transshipment-allocation problem of blood group substitution.

Acknowledgements

This research is supported by Chongqing Social Science Planning project(No. 2021NDYB070 ), National Natural Science Foundation of China (No. 71702015), The Ministry of Education of Humanities and Social Science Project of China (No. 21YJCZH249), Natural Science Foundation of Chongqing Municipality (No. cstc2021jcyj-msxmX0527 &cstc2021ycjh-bgzxm0136), The Research Platform Open Project in CTBU (KFJJ2017057), Science and Technology Research Projects of Chongqing Education Commission (No. KJQN201900812), and Humanities and Social Sciences Research Program of Chongqing Education Commission (No. 22SKGH186).

Footnotes

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Contributor Information

Yufeng Zhou, xtuzyf@email.ctbu.edu.cn.

Jiahao Cheng, 2021336025@email.ctbu.edu.cn.

Changzhi Wu, Email: changzhiwu@gzhu.edu.cn.

Kok Lay Teo, Email: k.l.teo@curtin.edu.au.

References

  • 1.Ghasemi P, Goodarzian F, Abraham A, Khanchehzarrin S. A possibilistic-robust-fuzzy programming model for designing a game theory based blood supply chain network. Appl Math Model. 2022;112:282–303. doi: 10.1016/j.apm.2022.08.003. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 2.Gniadek TJ, Mallek J, Wright G, Saporito C, AbiMansour N, Tangazi W, Rogers G, Zahara Z, Cummings G, Kaul K. Expansion of hospital-based blood collections in the face of COVID-19 associated national blood shortage. Transfusion (Paris) 2020;60:1470–1475. doi: 10.1111/trf.15869. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 3.Stiepan D (2020) Critical blood shortages because of COVID-19. https://newsnetwork.mayoclinic.org/discussion/critical-blood-shortages-because-of-covid-19
  • 4.Kandasamy D, Shastry S, Chenna D, Mohan G. COVID-19 pandemic and blood transfusion services: the impact, response and preparedness experience of a tertiary care blood center in southern Karnataka, India. Hematol Transfus Cell Therapy. 2022;44:17–25. doi: 10.1016/j.htct.2021.09.019. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 5.Pierskalla WP, Sassetti RJ, Director BC, Chicaqo IL. Regionalization of blood banking services. National Health Care Management Center, University of Pennsylvania; 1980. [Google Scholar]
  • 6.Zhou Y, Zou T, Liu C, Yu H, Chen L, Su J. Blood supply chain operation considering lifetime and transshipment under uncertain environment. Appl Soft Comput. 2021;106:107364. doi: 10.1016/j.asoc.2021.107364. [DOI] [Google Scholar]
  • 7.Dehghani M, Abbasi B, Oliveira F. Proactive transshipment in the blood supply chain: a stochastic programming approach. Omega. 2021;98:102112. doi: 10.1016/j.omega.2019.102112. [DOI] [Google Scholar]
  • 8.Brodheim E, Prastacos GP. The Long Island blood distribution system as a prototype for regional blood management. Interfaces. 1979;9:3–20. doi: 10.1287/inte.9.5.3. [DOI] [Google Scholar]
  • 9.Haeri A, Hosseini-Motlagh S, Ghatreh Samani MR, Rezaei M. A mixed resilient-efficient approach toward blood supply chain network design. Int Trans Oper Res. 2020;27:1962–2001. doi: 10.1111/itor.12714. [DOI] [Google Scholar]
  • 10.Zhang P, Gao GJ, Cai Z, Jian-Wei YE, Qiu Y (2004) Management for blood suppling during SARS epidemic period in Beijing. Chinese J Nosoconmiol
  • 11.Wang KM, Ma ZJ, Zhou YF. Age-based transshipment strategy for overstock blood in emergency relief. Adv Inf Sci Serv Sci. 2012 doi: 10.4156/AISS.vol4.issue18.78. [DOI] [Google Scholar]
  • 12.Jabbarzadeh A, Fahimnia B, Seuring S. Dynamic supply chain network design for the supply of blood in disasters: a robust model with real world application. Transport Res Part E. 2014;70:225–244. doi: 10.1016/j.tre.2014.06.003. [DOI] [Google Scholar]
  • 13.Ma ZJ, Wang KM, Dai Y. An emergency blood allocation approach considering blood group compatibility in disaster relief operations. Int J Disaster Risk Sci. 2019;10:74–88. doi: 10.1007/s13753-018-0212-7. [DOI] [Google Scholar]
  • 14.Asadpour M, Olsen TL, Boyer O. An updated review on blood supply chain quantitative models: a disaster perspective. Transport Res Part E. 2022;158:102583. doi: 10.1016/j.tre.2021.102583. [DOI] [Google Scholar]
  • 15.Torrado A, Barbosa-Póvoa A. Towards an optimized and sustainable blood supply chain network under uncertainty: a literature review. Clean Logistics Supply Chain. 2022;3:100028. doi: 10.1016/j.clscn.2022.100028. [DOI] [Google Scholar]
  • 16.Hamdan B, Diabat A. A two-stage multi-echelon stochastic blood supply chain problem. Comput Oper Res. 2019;101:130–143. doi: 10.1016/j.cor.2018.09.001. [DOI] [Google Scholar]
  • 17.Kenan N, Diabat A. The supply chain of blood products in the wake of the COVID-19 pandemic: appointment scheduling and other restrictions. Transport Res Part E. 2022;159:102576. doi: 10.1016/j.tre.2021.102576. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 18.Wang KM, Ma ZJ. Age-based policy for blood transshipment during blood shortage. Transport Res Part E. 2015;80:166–183. doi: 10.1016/j.tre.2015.05.007. [DOI] [Google Scholar]
  • 19.Liu W, Ke GY, Chen J, Zhang L. Scheduling the distribution of blood products: a vendor-managed inventory routing approach. Transport Res Part E. 2020;140:101964. doi: 10.1016/j.tre.2020.101964. [DOI] [Google Scholar]
  • 20.Hamdan B, Diabat A. Robust design of blood supply chains under risk of disruptions using Lagrangian relaxation. Transport Res Part E. 2020;134:101764. doi: 10.1016/j.tre.2019.08.005. [DOI] [Google Scholar]
  • 21.Wang C, Chen S. A distributionally robust optimization for blood supply network considering disasters. Transport Res Part E. 2020;134:101840. doi: 10.1016/j.tre.2020.101840. [DOI] [Google Scholar]
  • 22.Hosseini-Motlagh SM, Samani MRG, Homaei S. Toward a coordination of inventory and distribution schedules for blood in disasters. Socio-Econ Plann Sci. 2020;72:100897. doi: 10.1016/j.seps.2020.100897. [DOI] [Google Scholar]
  • 23.Shokouhifar M, Sabbaghi MM, Pilevari N. Inventory management in blood supply chain considering fuzzy supply/demand uncertainties and lateral transshipment. Transfus Apheresis Sci. 2021;60:103103. doi: 10.1016/j.transci.2021.103103. [DOI] [PubMed] [Google Scholar]
  • 24.Hosseini-Motlagh SM, Cheraghi S, Ghatreh Samani M. A robust optimization model for blood supply chain network design. IUST. 2016;27:425–444. doi: 10.22068/ijiepr.27.4.425. [DOI] [Google Scholar]
  • 25.Jafarkhan F, Yaghoubi S. An efficient solution method for the flexible and robust inventory-routing of red blood cells. Comput Indust Eng. 2018;117:191–206. doi: 10.1016/j.cie.2018.01.029. [DOI] [Google Scholar]
  • 26.Khalilpourazari S, Hashemi Doulabi H. A flexible robust model for blood supply chain network design problem. Ann Oper Res. 2022 doi: 10.1007/s10479-022-04673-9. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 27.Sapountzis C. Allocating blood to hospitals from a central blood bank. Eur J Oper Res. 1984;16:157–162. doi: 10.1016/0377-2217(84)90070-5. [DOI] [Google Scholar]
  • 28.Sivakumar P, Ganesh K, Parthiban P. Multi-phase composite analytical model for integrated allocation-routing problem application of blood bank logistics. Int J Logistics Econ Globalis. 2008;1:251–281. doi: 10.1504/IJLEG.2008.023161. [DOI] [Google Scholar]
  • 29.Hemmelmayr V, Doerner KF, Hartl RF, Savelsbergh MWP. Delivery strategies for blood products supplies. OR Spectrum. 2009;31:707–725. doi: 10.1007/s00291-008-0134-7. [DOI] [Google Scholar]
  • 30.Lang JC. Production and inventory management with substitutions. Berlin: Springer Science & Business Media; 2009. [Google Scholar]
  • 31.di Martinelly C, Meskens N, Riane F, Hssini I (2021) Inventory routing problem with transshipment and substitution for blood products using the case of the belgian blood distribution, advances in production management systems. Artificial intelligence for sustainable and resilient production systems. Springer International Publishing, Cham, pp 87–96. 10.1007/978-3-030-85914-510
  • 32.Behroozi F, Monfared MAS, Hosseini SMH. Investigating the conflicts between different stakeholders preferences in a blood supply chain at emergencies: a trade-off between six objectives. Soft Comput. 2021;25:13389–13410. doi: 10.1007/s00500-021-06157-7. [DOI] [Google Scholar]
  • 33.Luan D, Liu A, Wang X, Xie Y, Wu Z. Robust two-stage location allocation for emergency temporary blood supply in postdisaster. Discret Dyn Nat Soc. 2022;2022:6184170. doi: 10.1155/2022/6184170. [DOI] [Google Scholar]
  • 34.Zhang X, Liu X, Song X, Zheng M. Stochastic location-allocation modelling for emergency mobile blood collection. IFAC-PapersOnLine. 2019;52:1114–1119. doi: 10.1016/j.ifacol.2019.11.345. [DOI] [Google Scholar]
  • 35.Ghorashi SB, Hamedi M, Sadeghian R (2020) Modeling and optimization of a reliable blood supply chain network in crisis considering blood compatibility using MOGWO. Neural Comput Appl 32:12173–12200. 10.1007/s00521-019-04343-1
  • 36.Gehrie EA, Frank SM, Goobie SM. Balancing supply and demand for blood during the COVID-19 pandemic. Anesthesiology. 2020;133:16–18. doi: 10.1097/ALN.0000000000003341. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 37.Ayyildiz E, Erdogan M, Taskin A. Forecasting COVID-19 recovered cases with Artificial Neural Networks to enable designing an effective blood supply chain. Comput Biol Med. 2021;139:105029. doi: 10.1016/j.compbiomed.2021.105029. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 38.Gilani Larimi N, Azhdari A, Ghousi R, Du B. Integrating GIS in reorganizing blood supply network in a robust-stochastic approach by combating disruption damages. Socio-Econ Plann Sci. 2022;82:101250. doi: 10.1016/j.seps.2022.101250. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 39.Samani MRG, Hosseini-Motlagh S-M. A novel capacity sharing mechanism to collaborative activities in the blood collection process during the COVID-19 outbreak. Appl Soft Comput. 2021;112:107821. doi: 10.1016/j.asoc.2021.107821. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 40.Nahmias S. Perishable inventory theory: a review. Oper Res. 1982;30:680–708. doi: 10.1287/opre.30.4.680. [DOI] [PubMed] [Google Scholar]
  • 41.Wang KM, Ma ZJ. Optimization of multi-stage emergency blood transferring. Xitong Gongcheng Lilun Yu Shijian/Syst Eng Theory Pract. 2014;34:1687–1696. doi: 10.12011/1000-6788(2014)7-1687. [DOI] [Google Scholar]
  • 42.Fan Y, Xiao R, Zhao S. Study of the effects of three different types of transportations on the quality of red cell suspension. Chin J Blood Transfus. 2008;21:577–580. doi: 10.3969/j.issn.1004-549X.2008.08.004. [DOI] [Google Scholar]
  • 43.Luo Q, Zheng Q, Deng J. Research on factors having influence on blood quality during highway transportation. Chin J Blood Transfus. 2000;13:171–173. [Google Scholar]
  • 44.Ma ZJ, Zhou YF. Dynamic model for emergency blood collection in large-scale sudden-onset emergencies. J Syst Eng. 2017;32:125–135. doi: 10.13383/j.cnki.jse.2017.01.012. [DOI] [Google Scholar]
  • 45.Mirjalili S, Lewis A. The whale optimization algorithm. Adv Eng Softw. 2016;95:51–67. doi: 10.1016/j.advengsoft.2016.01.008. [DOI] [Google Scholar]
  • 46.Kumawat IR, Nanda SJ, Maddila RK (2017) Multi-objective whale optimization, TENCON 2017—2017 IEEE Region 10 Conference. 2747–2752. 10.1109/TENCON.2017.8228329
  • 47.Tirkolaee EB, Goli A, Ghasemi P, Goodarzian F. Designing a sustainable closed-loop supply chain network of face masks during the COVID-19 pandemic: pareto-based algorithms. J Clean Prod. 2022;333:130056. doi: 10.1016/j.jclepro.2021.130056. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 48.Yuan M, Li Y, Zhang L, Pei F. Research on intelligent workshop resource scheduling method based on improved NSGA-II algorithm. Robot Comput-Integrat Manuf. 2021;71:102141. doi: 10.1016/j.rcim.2021.102141. [DOI] [Google Scholar]
  • 49.He L, Cao Y, Li W, Cao J, Zhong L. Optimization of energy-efficient open shop scheduling with an adaptive multi-objective differential evolution algorithm. Appl Soft Comput. 2022;118:108459. doi: 10.1016/j.asoc.2022.108459. [DOI] [Google Scholar]
  • 50.Zitzler E, Thiele L. Multiobjective evolutionary algorithms: a comparative case study and the strength Pareto approach. IEEE Trans Evol Comput. 1999;3:257–271. doi: 10.1109/4235.797969. [DOI] [Google Scholar]

Articles from Complex & Intelligent Systems are provided here courtesy of Nature Publishing Group

RESOURCES