Abstract
Inorganic perovskite wafers with good stability and adjustable sizes are promising in X-ray detection but the high synthetic temperature is a hindrance. Herein, dimethyl sulfoxide (DMSO) is used to prepare the CsPbBr3 micro-bricks powder at room temperature. The CsPbBr3 powder has a cubic shape with few crystal defects, small charge trap density, and high crystallinity. A trace amount of DMSO attaches to the surface of the CsPbBr3 micro-bricks via Pb-O bonding, forming the CsPbBr3-DMSO adduct. During hot isostatic processing, the released DMSO vapor merges the CsPbBr3 micro-bricks, producing a compact and dense CsPbBr3 wafer with minimized grain boundaries and excellent charge transport properties. The CsPbBr3 wafer shows a large mobility-lifetime (μτ) product of 5.16 × 10−4 cm2·V−1, high sensitivity of 14,430 μC·Gyair−1·cm−2, low detection limit of 564 nGyair·s−1, as well as robust stability in X-ray detection. The results reveal a novel strategy with immense practical potential pertaining to high-contrast X-ray detection.
Electronic Supplementary Material
Supplementary material (further details of the characterization, SEM images, AFM images, KPFM images, schematic illustration, XRD patterns, XPS spectra, FTIR spectra, UPS spectra, and stability tests) is available in the online version of this article at 10.1007/s12274-023-5487-3.
Keywords: CsPbBr3-DMSO, inorganic perovskites wafer, grain growth, crystal defect, X-ray detector
Electronic Supplementary Material
CsPbBr3-DMSO merged perovskite micro-bricks for efficient X-ray detection
Acknowledgements
This work was financially supported by the National Natural Science Foundation of China (Nos. 21975280, 62004091, and 12235006), the Shenzhen Excellent Science and Technology Innovation Talent Training Project — Outstanding Youth Project (No. RCJC20200714114435061), the Shenzhen Basic Research Program (No. JCYJ20200109115212546), the Chinese Academy of Sciences Special Research Assistant Project (Nos. Y95909 and E15907), the Chinese Academy of Sciences Excellent Youth Innovation Fund grade B (No. E2G0161001), the Youth Innovation Promotion Association Chinese Academy of Sciences (No. 2020354), the Hong Kong ITC (Innovation and Technology Commission) ITF (Innovation and Technology Fund) (Nos. GHP/149/20SZ and CityU 9440296), and the City University of Hong Kong Donation Research Grant (DON-RMG No. 9229021).
Footnotes
Tongyu Shi and Wenjun Liu contributed equally to this work.
Contributor Information
Yanliang Liu, Email: yl.liu4@siat.ac.cn.
Xue-Feng Yu, Email: xf.yu@siat.ac.cn.
References
- [1].Ozturk T, Talo M, Yildirim E A, Baloglu U B, Yildirim O, Acharya U R. Automated detection of COVID-19 cases using deep neural networks with X-ray images. Comput. Biol. Med. 2020;121:103792. doi: 10.1016/j.compbiomed.2020.103792. [DOI] [PMC free article] [PubMed] [Google Scholar]
- [2].Sakdinawat A, Attwood D. Nanoscale X-ray imaging. Nat. Photonics. 2010;4:840–848. doi: 10.1038/nphoton.2010.267. [DOI] [Google Scholar]
- [3].Casalta S, Daquino G G, Metten L, Oudaert J, Van De Sande A. Digital image analysis of X-ray and neutron radiography for the inspection and the monitoring of nuclear materials. NDT & E Int. 2003;36:349–355. doi: 10.1016/S0963-8695(03)00008-2. [DOI] [Google Scholar]
- [4].Zhou F G, Li Z Z, Lan W, Wang Q, Ding L M, Jin Z W. Halide perovskite, a potential scintillator for X-ray detection. Small Methods. 2020;4:2000506. doi: 10.1002/smtd.202000506. [DOI] [Google Scholar]
- [5].Li Z Z, Zhou F G, Yao H H, Ci Z, Yang Z, Jin Z W. Halide perovskites for high-performance X-ray detector. Mater. Today. 2021;48:155–175. doi: 10.1016/j.mattod.2021.01.028. [DOI] [Google Scholar]
- [6].Kasap S O. X-ray sensitivity of photoconductors: Application to stabilized a-Se. J. Phys. D Appl. Phys. 2000;33:2853–2865. doi: 10.1088/0022-3727/33/21/326. [DOI] [Google Scholar]
- [7].Street R A, Ready S E, Lemmi F, Shah K S, Bennett P, Dmitriyev Y. Electronic transport in polycrystalline PbI2 films. J. Appl. Phys. 1999;86:2660–2667. doi: 10.1063/1.371107. [DOI] [Google Scholar]
- [8].Liang J, Wang C X, Wang Y R, Xu Z R, Lu Z P, Ma Y, Zhu H F, Hu Y, Xiao C C, Yi X, et al. All-inorganic perovskite solar cells. J. Am. Chem. Soc. 2016;138:15829–15832. doi: 10.1021/jacs.6b10227. [DOI] [PubMed] [Google Scholar]
- [9].Liu C, Li W Z, Zhang C L, Ma Y P, Fan J D, Mai Y. All-inorganic CsPbI2Br perovskite solar cells with high efficiency exceeding 13% J. Am. Chem. Soc. 2018;140:3825–3828. doi: 10.1021/jacs.7b13229. [DOI] [PubMed] [Google Scholar]
- [10].Leguy A M A, Frost J M, McMahon A P, Sakai V G, Kockelmann W, Law C, Li X E, Foglia F, Walsh A, O’Regan B C, et al. The dynamics of methylammonium ions in hybrid organic—inorganic perovskite solar cells. Nat. Commun. 2015;6:7124. doi: 10.1038/ncomms8124. [DOI] [PMC free article] [PubMed] [Google Scholar]
- [11].Zhang L Q, Yang X L, Jiang Q, Wang P Y, Yin Z G, Zhang X W, Tan H R, Yang Y, Wei M Y, Sutherland B R, et al. Ultra-bright and highly efficient inorganic based perovskite light-emitting diodes. Nat. Commun. 2017;8:15640. doi: 10.1038/ncomms15640. [DOI] [PMC free article] [PubMed] [Google Scholar]
- [12].Wang C, Xiao J W, Yan Z G, Niu X W, Lin T F, Zhou Y C, Li J Y, Han X D. Colloidal synthesis and phase transformation of all-inorganic bismuth halide perovskite nanoplates. Nano Res. 2023;16:1703–1711. doi: 10.1007/s12274-022-4656-0. [DOI] [Google Scholar]
- [13].Dierks H, Zhang Z J, Lamers N, Wallentin J. 3D X-ray microscopy with a CsPbBr3 nanowire scintillator. Nano Res. 2023;16:1084–1089. doi: 10.1007/s12274-022-4633-7. [DOI] [Google Scholar]
- [14].Zhang H J, Wang F B, Lu Y F, Sun Q H, Xu Y D, Zhang B B, Jie W, Kanatzidis M G. High-sensitivity X-ray detectors based on solution-grown caesium lead bromide single crystals. J. Mater. Chem. C. 2020;8:1248–1256. doi: 10.1039/C9TC05490A. [DOI] [Google Scholar]
- [15].Li W J, Li H Y, Song J M, Guo C J, Zhang H M, Wei H T, Yang B. Fine-control-valve of halide perovskite single crystal quality for high performance X-ray detection. Sci. Bull. 2021;66:2199–2206. doi: 10.1016/j.scib.2021.06.016. [DOI] [PubMed] [Google Scholar]
- [16].Stoumpos C C, Malliakas C D, Peters J A, Liu Z F, Sebastian M, Im J, Chasapis T C, Wibowo A C, Chung D Y, Freeman A J, et al. Crystal growth of the perovskite semiconductor CsPbBr3: A new material for high-energy radiation detection. Cryst. Growth Des. 2013;13:2722–2727. doi: 10.1021/cg400645t. [DOI] [Google Scholar]
- [17].Peng J L, Xia C Q, Xu Y L, Li R M, Cui L H, Clegg J K, Herz L M, Johnston M B, Lin Q Q. Crystallization of CsPbBr3 single crystals in water for X-ray detection. Nat. Commun. 2021;12:1531. doi: 10.1038/s41467-021-21805-0. [DOI] [PMC free article] [PubMed] [Google Scholar]
- [18].Di J Y, Li H J, Su J, Yuan H D, Lin Z H, Zhao K, Chang J J, Hao Y. Reveal the humidity effect on the phase pure CsPbBr3 single crystals formation at room temperature and its application for ultrahigh sensitive X-ray detector. Adv. Sci. 2022;9:2103482. doi: 10.1002/advs.202103482. [DOI] [PMC free article] [PubMed] [Google Scholar]
- [19].Ding J X, Du S J, Zuo Z Y, Zhao Y, Cui H Z, Zhan X Y. High detectivity and rapid response in perovskite CsPbBr3 single-crystal photodetector. J. Phys. Chem. C. 2017;121:4917–4923. doi: 10.1021/acs.jpcc.7b01171. [DOI] [Google Scholar]
- [20].Pan W C, Yang B, Niu G D, Xue K H, Du X Y, Yin L X, Zhang M Y, Wu H D, Miao X S, Tang J. Hot-pressed CsPbBr3 quasi-monocrystalline film for sensitive direct X-ray detection. Adv. Mater. 2019;31:1904405. doi: 10.1002/adma.201904405. [DOI] [PubMed] [Google Scholar]
- [21].Wang X, Shi H F, Ma H L, Ye W P, Song L L, Zan J, Yao X K, Ou X Y, Yang G H, Zhao Z, et al. Organic phosphors with bright triplet excitons for efficient X-ray-excited luminescence. Nat. Photonics. 2021;15:187–192. doi: 10.1038/s41566-020-00744-0. [DOI] [Google Scholar]
- [22].Shrestha S, Fischer R, Matt G J, Feldner P, Michel T, Osvet A, Levchuk I, Merle B, Golkar S, Chen H W, et al. Highperformance direct conversion X-ray detectors based on sintered hybrid lead triiodide perovskite wafers. Nat. Photonics. 2017;11:436–440. doi: 10.1038/nphoton.2017.94. [DOI] [Google Scholar]
- [23].Yang B, Pan W C, Wu H D, Niu G D, Yuan J H, Xue K H, Yin L X, Du X Y, Miao X S, Yang X Q, et al. Heteroepitaxial passivation of Cs2AgBiBr6 wafers with suppressed ionic migration for X-ray imaging. Nat. Commun. 2019;10:1989. doi: 10.1038/s41467-019-09968-3. [DOI] [PMC free article] [PubMed] [Google Scholar]
- [24].Daum M, Deumel S, Sytnyk M, Afify H A, Hock R, Eigen A, Zhao B L, Halik M, These A, Matt G J, et al. Self-healing Cs3Bi2Br3I6 perovskite wafers for X-ray detection. Adv. Funct. Mater. 2021;31:2102713. doi: 10.1002/adfm.202102713. [DOI] [Google Scholar]
- [25].López C A, Abia C, Alvarez-Galván M C, Hong B K, Martínez-Huerta M V, Serrano-Sánchez F, Carrascoso F, Castellanos-Gómez A, Fernández-Díaz M T, Alonso J A. Crystal structure features of CsPbBr3 perovskite prepared by mechanochemical synthesis. ACS Omega. 2020;5:5931–5938. doi: 10.1021/acsomega.9b04248. [DOI] [PMC free article] [PubMed] [Google Scholar]
- [26].Palazon F, El Ajjouri Y, Sebastia-Luna P, Lauciello S, Manna L, Bolink H J. Mechanochemical synthesis of inorganic halide perovskites: Evolution of phase-purity, morphology, and photoluminescence. J. Mater. Chem. C. 2019;7:11406–11410. doi: 10.1039/C9TC03778K. [DOI] [Google Scholar]
- [27].Rakita Y, Kedem N, Gupta S, Sadhanala A, Kalchenko V, Böhm M L, Kulbak M, Friend R H, Cahen D, Hodes G. Low-temperature solution-grown CsPbBr3 single crystals and their characterization. Cryst. Growth Des. 2016;16:5717–5725. doi: 10.1021/acs.cgd.6b00764. [DOI] [Google Scholar]
- [28].Liu Y, Zhu X F, Li M R, Liu H Y, Cong Y, Yang W S. Stabilization of low-temperature degradation in mixed ionic and electronic conducting perovskite oxygen permeation membranes. Angew. Chem., Int. Ed. 2013;125:3314–3318. doi: 10.1002/ange.201209077. [DOI] [PubMed] [Google Scholar]
- [29].Wei W, Zhang Y, Xu Q, Wei H T, Fang Y J, Wang Q, Deng Y H, Li T, Gruverman A, Cao L, et al. Monolithic integration of hybrid perovskite single crystals with heterogenous substrate for highly sensitive X-ray imaging. Nat. Photonics. 2017;11:315–321. doi: 10.1038/nphoton.2017.43. [DOI] [Google Scholar]
- [30].Dong S H, Hu Z Y, Wei P, Han J R, Wang Z, Liu J, Su B L, Zhao D Y, Liu Y. All-inorganic perovskite single-crystal photoelectric anisotropy. Adv. Mater. 2022;34:2204342. doi: 10.1002/adma.202204342. [DOI] [PubMed] [Google Scholar]
- [31].Zhang C X, Chen J Y, Wang S, Kong L M, Lewis S W, Yang X Y, Rogach A L, Jia G H. Metal halide perovskite nanorods: Shape matters. Adv. Mater. 2020;32:2002736. doi: 10.1002/adma.202002736. [DOI] [PubMed] [Google Scholar]
- [32].Zhou B, Ding D, Wang Y, Fang S F, Liu Z X, Tang J, Li H N, Zhong H Z, Tian B B, Shi Y M. A scalable H2O-DMF-DMSO solvent synthesis of highly luminescent inorganic perovskite-related cesium lead bromides. Adv. Opt. Mater. 2021;9:2001435. doi: 10.1002/adom.202001435. [DOI] [Google Scholar]
- [33].Lou S Q, Xuan T T, Liang Q Y, Huang J J, Cao L Y, Yu C Y, Cao M M, Xia C, Wang J, Zhang D F, et al. Controllable and facile synthesis of CsPbBr3-Cs4PbBr6 perovskite composites in pure polar solvent. J. Colloid Interface Sci. 2019;537:384–388. doi: 10.1016/j.jcis.2018.11.041. [DOI] [PubMed] [Google Scholar]
- [34].Qin Z J, Dai S Y, Hadjiev V G, Wang C, Xie L X, Ni Y Z, Wu C Z, Yang G, Chen S, Deng L Z, et al. Revealing the origin of luminescence center in 0D Cs4PbBr6 perovskite. Chem. Mater. 2019;31:9098–9104. doi: 10.1021/acs.chemmater.9b03426. [DOI] [Google Scholar]
- [35].Nielsen O F, Christensen D H, Praestgaard E. Interaction between dimethylsulfoxide and formamide in the liquid state. J. Chem. Phys. 1985;82:1183–1185. doi: 10.1063/1.448491. [DOI] [Google Scholar]
- [36].Ahn N, Son D Y, Jang I H, Kang S M, Choi M, Park N G. Highly reproducible perovskite solar cells with average efficiency of 18.3% and best efficiency of 19.7% fabricated via lewis base adduct of lead(II) iodide. J. Am. Chem. Soc. 2015;137:8696–8699. doi: 10.1021/jacs.5b04930. [DOI] [PubMed] [Google Scholar]
- [37].Gu E N, Tang X F, Langner S, Duchstein P, Zhao Y C, Levchuk I, Kalancha V, Stubhan T, Hauch J, Egelhaaf H J, et al. Robot-based high-throughput screening of antisolvents for lead halide perovskites. Joule. 2020;4:1806–1822. doi: 10.1016/j.joule.2020.06.013. [DOI] [Google Scholar]
- [38].Huang W X, Manser J S, Kamat P V, Ptasinska S. Evolution of chemical composition, morphology, and photovoltaic efficiency of CH3NH3PbI3 perovskite under ambient conditions. Chem. Mater. 2016;28:303–311. doi: 10.1021/acs.chemmater.5b04122. [DOI] [Google Scholar]
- [39].Chen S H, Zhong Q X, Liu J, Guan W H, Li P L, Mahmood I, Cao M H, Zhang Q. Improved photophysical properties and durability of CsPbBr3 NCs endowed by inorganic oxoacid and bromide ions. Nanoscale. 2021;13:9634–9640. doi: 10.1039/D1NR01198G. [DOI] [PubMed] [Google Scholar]
- [40].Kim B W, Heo J H, Park J K, Lee D S, Park H, Kim S Y, Kim J H, Im S H. Morphology controlled nanocrystalline CsPbBr3 thin-film for metal halide perovskite light emitting diodes. J. Ind. Eng. Chem. 2021;97:417–425. doi: 10.1016/j.jiec.2021.02.028. [DOI] [Google Scholar]
- [41].Wang H R, Zhang X Y, Wu Q Q, Cao F, Yang D W, Shang Y Q, Ning Z J, Zhang W, Zheng W T, Yan Y F, et al. Trifluoroacetate induced small-grained CsPbBr3 perovskite films result in efficient and stable light-emitting devices. Nat. Commun. 2019;10:665. doi: 10.1038/s41467-019-08425-5. [DOI] [PMC free article] [PubMed] [Google Scholar]
- [42].Batra V, Kotru S, Varagas M, Ramana C V. Optical constants and band gap determination of Pb0.95La0.05Zr0.54Ti0.46O3 thin films using spectroscopic ellipsometry and UV-visible spectroscopy. Opt. Mater. 2015;49:123–128. doi: 10.1016/j.optmat.2015.08.019. [DOI] [Google Scholar]
- [43].Gao Y B, Wu Y J, Lu H B, Chen C, Liu Y, Bai X, Yang L L, Yu W W, Dai Q L, Zhang Y. CsPbBr3 proovskite nanoparticles as additive for environmentally stable perovskite solar cells with 20.46% efficiency. Nano Energy. 2019;59:517–526. doi: 10.1016/j.nanoen.2019.02.070. [DOI] [Google Scholar]
Associated Data
This section collects any data citations, data availability statements, or supplementary materials included in this article.
Supplementary Materials
CsPbBr3-DMSO merged perovskite micro-bricks for efficient X-ray detection