Skip to main content
Springer Nature - PMC COVID-19 Collection logoLink to Springer Nature - PMC COVID-19 Collection
. 2023 Feb 28;16(5):7248–7259. doi: 10.1007/s12274-023-5374-3

Comparison of extruded cell nanovesicles and exosomes in their molecular cargos and regenerative potentials

Xianyun Wang 1,2,3,4,5,6, Shiqi Hu 5,6, Dashuai Zhu 5,6, Junlang Li 5,6, Ke Cheng 5,6,, Gang Liu 1,3,4,
PMCID: PMC9971669  PMID: 37223430

Abstract

Extracellular vesicles (EVs) generated from mesenchymal stem cells (MSCs) play an essential role in modulating cell—cell communication and tissue regeneration. The clinical translation of EVs is constrained by the poor yield of EVs. Extrusion has recently become an effective technique for producing a large scale of nanovesicles (NVs). In this study, we systematically compared MSC NVs (from extrusion) and EVs (from natural secretion). Proteomics and RNA sequencing data revealed that NVs resemble MSCs more closely than EVs. Additionally, microRNAs in NVs are related to cardiac repair, fibrosis repression, and angiogenesis. Lastly, intravenous delivery of MSC NVs improved heart repair and cardiac function in a mouse model of myocardial infarction.

graphic file with name 12274_2023_5374_Fig1_HTML.jpg

Electronic Supplementary Material

Supplementary material (Figs. S1–S4) is available in the online version of this article at 10.1007/s12274-023-5374-3.

Keywords: nanovesicles (NVs), exosomes, cardiac repair, mesenchymal stem cells (MSCs), extracellular vesicles (EVs), myocardial infarction (MI)

Electronic Supplementary Material

12274_2023_5374_MOESM1_ESM.pdf (1,000.1KB, pdf)

Comparison of extruded cell nanovesicles and exosomes in their molecular cargos and regenerative potentials

Acknowledgements

The funding for this study was provided in part by NC State University, the National Natural Science Foundation of China (No. 82200276), the Grant of Key Research and Development Program of Hebei Province (No. 203777117D), the Key Project of Hebei Provincial Health Commission (Nos. 20201159 and 20180224), the Natural Science Foundation of Hebei Province (Nos. H2021206399 and H2022206295). The overall experiments were designed by X. Y. W. The experiments and data analysis were done by X. Y. W, S. Q. H., J. L. L., and D. H. Z. The article was written by X. Y. W., K. C., and G. L. The final manuscript does have approval of all authors. Each author has given written permission to be listed as an author in the article by the corresponding author. The study’s design, data collection, analysis, and interpretation, and the preparation of the manuscript were all done independently of the sponsoring organizations. BioRender was used to make the illustrations.

Contributor Information

Ke Cheng, Email: ke_cheng@unc.edu.

Gang Liu, Email: cardio2004@hebmu.edu.cn.

References

  • [1].Harting M T, Jimenez F, Cox C S., Jr. The pulmonary first-pass effect, xenotransplantation and translation to clinical trials—A commentary. Brain. 2008;131:e100. doi: 10.1093/brain/awn142. [DOI] [PubMed] [Google Scholar]
  • [2].Fischer U M, Harting M T, Jimenez F, Monzon-Posadas W O, Xue H, Savitz S I, Laine G A, Cox C S., Jr. Pulmonary passage is a major obstacle for intravenous stem cell delivery: The pulmonary first-pass effect. Stem Cells Dev. 2009;18:683–692. doi: 10.1089/scd.2008.0253. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • [3].Leibacher J, Henschler R. Biodistribution. migration and homing of systemically applied mesenchymal stem/stromal cells. Stem Cell Res. Ther. 2016;7:7. doi: 10.1186/s13287-015-0271-2. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • [4].Barbash I M, Chouraqui P, Baron J, Feinberg M S, Etzion S, Tessone A, Miller L, Guetta E, Zipori D, Kedes L H, et al. Systemic delivery of bone marrow-derived mesenchymal stem cells to the infarcted myocardium: Feasibility, cell migration, and body distribution. Circulation. 2003;108:863–868. doi: 10.1161/01.CIR.0000084828.50310.6A. [DOI] [PubMed] [Google Scholar]
  • [5].Adamiak M, Sahoo S. Exosomes in myocardial repair: Advances and challenges in the development of next-generation therapeutics. Mol. Ther. 2018;26:1635–1643. doi: 10.1016/j.ymthe.2018.04.024. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • [6].Balbi C, Vassalli G. Exosomes: Beyond stem cells for cardiac protection and repair. Stem Cells. 2020;38:1387–1399. doi: 10.1002/stem.3261. [DOI] [PubMed] [Google Scholar]
  • [7].Wang Y L, Xie W P, Liu B, Huang H, Luo W, Zhang Y, Pan X B, Yu X Y, Shen Z Y, Li Y X. Stem cell-derived exosomes repair ischemic muscle injury by inhibiting the tumor suppressor Rb1-mediated NLRP3 inflammasome pathway. Signal Transduct. Target. Ther. 2021;6:121. doi: 10.1038/s41392-021-00520-8. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • [8].Wang X Y, Tang Y D, Liu Z, Yin Y J, Li Q H, Liu G, Yan B Y. The application potential and advance of mesenchymal stem cell-derived exosomes in myocardial infarction. Stem Cells Int. 2021;2021:5579904. doi: 10.1155/2021/5579904. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • [9].Popowski K D, de Juan Abad B L, George A, Silkstone D, Belcher E, Chung J, Ghodsi A, Lutz H, Davenport J, Flanagan M, et al. Inhalable exosomes outperform liposomes as mRNA and protein drug carriers to the lung. Extracell. Vesicle. 2022;1:100002. doi: 10.1016/j.vesic.2022.100002. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • [10].Wang X, Zhu Y H, Wu C C, Liu W N, He Y J, Yang Q. Adipose-derived mesenchymal stem cells-derived exosomes carry microRNA-671 to alleviate myocardial infarction through inactivating the TGFBR2/Smad2 axis. Inflammation. 2021;44:1815–1830. doi: 10.1007/s10753-021-01460-9. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • [11].Mathiyalagan P, Sahoo S. Exosomes-based gene therapy for microRNA delivery. In: Ishikawa K, editor. Cardiac Gene Therapy. New York: Humana Press; 2017. pp. 139–152. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • [12].Qiao L, Hu S Q, Liu S Y, Zhang H, Ma H, Huang K, Li Z H, Su T, Vandergriff A, Tang J N, et al. MicroRNA-21-5p dysregulation in exosomes derived from heart failure patients impairs regenerative potential. J. Clin. Invest. 2019;129:2237–2250. doi: 10.1172/JCI123135. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • [13].Zhu D S, Liu S, Huang K, Wang Z Z, Hu S Q, Li J L, Li Z H, Cheng K. Intrapericardial exosome therapy dampens cardiac injury via activating Foxo3. Circ. Res. 2022;131:e135–e150. doi: 10.1161/CIRCRESAHA.122.321384. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • [14].Vaka R, Van Remortel S, Ly V, Davis D R. Extracellular vesicle therapy for non-ischemic heart failure: A systematic review of preclinical studies. Extracell. Vesicle. 2022;1:100009. [Google Scholar]
  • [15].Debbi L, Guo S W, Safina D, Levenberg S. Boosting extracellular vesicle secretion. Biotechnol. Adv. 2022;59:107983. doi: 10.1016/j.biotechadv.2022.107983. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • [16].Lee J H, Ha D H, Go H K, Youn J, Kim H K, Jin R C, Miller R B, Kim D H, Cho B S, Yi Y W. Reproducible large-scale isolation of exosomes from adipose tissue-derived mesenchymal stem/stromal cells and their application in acute kidney injury. Int. J. Mol. Sci. 2020;21:4774. doi: 10.3390/ijms21134774. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • [17].Z Q, Shi J F, Xie J, Wang Y F, Sun J Y, Liu T Z, Zhao Y R, Zhao X T, Wang X M, Ma Y F, et al. Large-scale generation of functional mRNA-encapsulating exosomes via cellular nanoporation. Nat. Biomed. Eng. 2020;4:69–83. doi: 10.1038/s41551-019-0485-1. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • [18].Ilahibaks N F, Lei Z Y, Mol E A, Deshantri A K, Jiang L L, Schiffelers R M, Vader P, Sluijter J P G. Biofabrication of cell-derived nanovesicles: A potential alternative to extracellular vesicles for regenerative medicine. Cells. 2019;8:1509. doi: 10.3390/cells8121509. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • [19].Jang S C, Kim O Y, Yoon C M, Choi D S, Roh T Y, Park J, Nilsson J, Lötvall J, Kim Y K, Gho Y S. Bioinspired exosome-mimetic nanovesicles for targeted delivery of chemotherapeutics to malignant tumors. ACS Nano. 2013;7:7698–7710. doi: 10.1021/nn402232g. [DOI] [PubMed] [Google Scholar]
  • [20].Wang X Y, Hu S Q, Li J L, Zhu D S, Wang Z Z, Cores J, Cheng K, Liu G, Huang K. Extruded mesenchymal stem cell nanovesicles are equally potent to natural extracellular vesicles in cardiac repair. ACS Appl. Mater. Interfaces. 2021;13:55767–55779. doi: 10.1021/acsami.1c08044. [DOI] [PubMed] [Google Scholar]
  • [21].Popowski K D, Moatti A, Scull G, Silkstone D, Lutz H, de Juan Abad B L, George A, Belcher E, Zhu D S, Mei X, et al. Inhalable dry powder mRNA vaccines based on extracellular vesicles. Matter. 2022;5:2960–2974. doi: 10.1016/j.matt.2022.06.012. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • [22].Wen Y, Fu Q, Soliwoda A, Zhang S, Zheng M F, Mao W J, Wan Y. Cell-derived nanovesicles prepared by membrane extrusion are good substitutes for natural extracellular vesicles. Extracell. Vesicle. 2022;1:100004. doi: 10.1016/j.vesic.2022.100004. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • [23].Skotland T, Sandvig K, Llorente A. Lipids in exosomes: Current knowledge and the way forward. Prog. Lipid Res. 2017;66:30–41. doi: 10.1016/j.plipres.2017.03.001. [DOI] [PubMed] [Google Scholar]
  • [24].Arslan F, Lai R C, Smeets M B, Akeroyd L, Choo A, Aguor E N E, Timmers L, van Rijen H V, Doevendans P A, Pasterkamp G, et al. Mesenchymal stem cell-derived exosomes increase ATP levels, decrease oxidative stress and activate PI3K/Akt pathway to enhance myocardial viability and prevent adverse remodeling after myocardial ischemia/reperfusion injury. Stem Cell Res. 2013;10:301–312. doi: 10.1016/j.scr.2013.01.002. [DOI] [PubMed] [Google Scholar]
  • [25].Liu Z, Xu Y Q, Wan Y G, Gao J, Chu Y Y, Li J. Exosomes from adipose-derived mesenchymal stem cells prevent cardiomyocyte apoptosis induced by oxidative stress. Cell Death Discov. 2019;5:79. doi: 10.1038/s41420-019-0159-5. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • [26].Zhou T, Yuan Z N, Weng J Y, Pei D Q, Du X, He C, Lai P L. Challenges and advances in clinical applications of mesenchymal stromal cells. J. Hematol. Oncol. 2021;14:24. doi: 10.1186/s13045-021-01037-x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • [27].Brown C, McKee C, Bakshi S, Walker K, Hakman E, Halassy S, Svinarich D, Dodds R, Govind C K, Chaudhry G R. Mesenchymal stem cells: Cell therapy and regeneration potential. J. Tissue Eng. Regen. Med. 2019;13:1738–1755. doi: 10.1002/term.2914. [DOI] [PubMed] [Google Scholar]
  • [28].Allan D, Tieu A, Lalu M, Burger D. Mesenchymal stromal cell-derived extracellular vesicles for regenerative therapy and immune modulation: Progress and challenges toward clinical application. Stem Cells Transl. Med. 2020;9:39–46. doi: 10.1002/sctm.19-0114. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • [29].Khan M, Kishore R. Stem cell exosomes: Cell-freetherapy for organ repair. In: Di Nardo P, Dhingra S, Singla D K, editors. Adult Stem Cells. New York: Humana Press; 2017. pp. 315–321. [DOI] [PubMed] [Google Scholar]
  • [30].Martin-Rendon E, Brunskill S J, Hyde C J, Stanworth S J, Mathur A, Watt S M. Autologous bone marrow stem cells to treat acute myocardial infarction: A systematic review. Eur. Heart J. 2008;29:1807–1818. doi: 10.1093/eurheartj/ehn220. [DOI] [PubMed] [Google Scholar]
  • [31].Cheng G, Li W Q, Ha L, Han X H, Hao S J, Wan Y, Wang Z Q, Dong F P, Zou X, Mao Y W, et al. Self-assembly of extracellular vesicle-like metal-organic framework nanoparticles for protection and intracellular delivery of biofunctional proteins. J. Am. Chem. Soc. 2018;140:7282–7291. doi: 10.1021/jacs.8b03584. [DOI] [PubMed] [Google Scholar]
  • [32].Liu J W, Jiang M, Deng S Q, Lu J D, Huang H, Zhang Y, Gong P H, Shen X M, Ruan H J, Jin M M, et al. MiR-93-5p-containing exosomes treatment attenuates acute myocardial infarction-induced myocardial damage. Mol. Ther. Nucleic Acids. 2018;11:103–115. doi: 10.1016/j.omtn.2018.01.010. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • [33].Zhou Y, Richards A M, Wang P P. MicroRNA-221 is cardioprotective and anti-fibrotic in a rat model of myocardial infarction. Mol. Ther. Nucleic Acids. 2019;17:185–197. doi: 10.1016/j.omtn.2019.05.018. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • [34].K, Serpooshan V, Hurtado C, Diez-Cuñado M, Zhao M M, Maruyama S, Zhu W H, Fajardo G, Noseda M, Nakamura K, et al. Epicardial FSTL1 reconstitution regenerates the adult mammalian heart. Nature. 2015;525:479–485. doi: 10.1038/nature15372. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • [35].Wong L L, Saw E L, Lim J Y, Zhou Y, Richards A M, Wang P P. MicroRNA Let-7d-3p contributes to cardiac protection via targeting HMGA2. Int. J. Mol. Sci. 2019;20:1522. doi: 10.3390/ijms20071522. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • [36].Kim H Y, Bhang S H. Stem cell-engineered nanovesicles exert proangiogenic and neuroprotective effects. Materials. 2021;14:1078. doi: 10.3390/ma14051078. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • [37].Mulcahy L A, Pink R C, Carter D R F. Routes and mechanisms of extracellular vesicle uptake. J. Extracell. Vesicles. 2014;3:24641. doi: 10.3402/jev.v3.24641. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • [38].Jurgielewicz B J, Yao Y, Stice S L. Kinetics and specificity of HEK293T extracellular vesicle uptake using imaging flow cytometry. Nanoscale Res. Lett. 2020;15:170. doi: 10.1186/s11671-020-03399-6. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • [39].Esmaeili A, Alini M, Eslaminejad M B, Hosseini S. Engineering strategies for customizing extracellular vesicle uptake in a therapeutic context. Stem Cell Res. Ther. 2022;13:129. doi: 10.1186/s13287-022-02806-2. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • [40].Sancho-Albero M, Navascués N, Mendoza G, Sebastián V, Arruebo M, Martín-Duque P, Santamaría J. Exosome origin determines cell targeting and the transfer of therapeutic nanoparticles towards target cells. J. Nanobiotechnol. 2019;17:16. doi: 10.1186/s12951-018-0437-z. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • [41].Zech D, Rana S, Büchler M W, Zöller M. Tumor-exosomes and leukocyte activation: An ambivalent crosstalk. Cell Commun. Signal. 2012;10:37. doi: 10.1186/1478-811X-10-37. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • [42].Caponnetto F, Manini I, Skrap M, Palmai-Pallag T, Di Loreto C, Beltrami A P, Cesselli D, Ferrari E. Size-dependent cellular uptake of exosomes. Nanomedicine:Nanotechnol. Biol. Med. 2017;13:1011–1020. doi: 10.1016/j.nano.2016.12.009. [DOI] [PubMed] [Google Scholar]
  • [43].Wang H, Agarwal P, Zhao S T, Yu J H, Lu X B, He X M. A near-infrared laser-activated “nanobomb” for breaking the barriers to microRNA delivery. Adv. Mater. 2016;28:347–355. doi: 10.1002/adma.201504263. [DOI] [PubMed] [Google Scholar]
  • [44].Xu J S, Liu Y H, Li Y J, Wang H, Stewart S, Van der Jeught K, Agarwal P, Zhang Y T, Liu S, Zhao G, et al. Precise targeting of POLR2A as a therapeutic strategy for human triple negative breast cancer. Nat. Nanotechnol. 2019;14:388–397. doi: 10.1038/s41565-019-0381-6. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • [45].Xu J S, Liu Y H, Liu S, Ou W Q, White A, Stewart S, Tkaczuk K H R, Ellis L M, Wan J, Lu X B, et al. Metformin bicarbonate-mediated efficient RNAi for precise targeting of TP53 deficiency in colon and rectal cancers. Nano Today. 2022;43:101406. doi: 10.1016/j.nantod.2022.101406. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • [46].Li Z H, Wang Z Z, Dinh P U C, Zhu D S, Popowski K D, Lutz H, Hu S Q, Lewis M G, Cook A, Andersen H, et al. Cell-mimicking nanodecoys neutralize SARS-CoV-2 and mitigate lung injury in a non-human primate model of COVID-19. Nat. Nanotechnol. 2021;16:942–951. doi: 10.1038/s41565-021-00923-2. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • [47].M, Li H, Shen D L, Wang Z S, Liu H F, Zhu D S, Wang Z Z, Li L Y, Popowski K D, Ou C W, et al. Decoy exosomes offer protection against chemotherapy-induced toxicity. Adv. Sci. 2022;9:2203505. doi: 10.1002/advs.202203505. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • [48].Chen X R, Zhu L Y, Liu J Y, Lu Y, Pan L L, Xiao J J. Greasing wheels of cell-free therapies for cardiovascular diseases: Integrated devices of exosomes/exosome-like nanovectors with bioinspired materials. Extracell. Vesicle. 2022;1:100010. [Google Scholar]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

12274_2023_5374_MOESM1_ESM.pdf (1,000.1KB, pdf)

Comparison of extruded cell nanovesicles and exosomes in their molecular cargos and regenerative potentials


Articles from Nano Research are provided here courtesy of Nature Publishing Group

RESOURCES