The content is available as a PDF (79.0 KB).
Contributor Information
Shaoshi Chen, Email: schen@amss.ac.cn.
Chenqi Mou, Email: chenqi.mou@buaa.edu.cn.
References
- [1].Yu L J, Gao X S. Improve robustness and accuracy of deep neural network with L2,∞ normalization. Journal of Systems Science & Complexity. 2023;36(1):3–28. [Google Scholar]
- [2].Hu C F, Hu H, Lin H W, et al. Isogeometric analysis-based topological optimization for heterogeneous parametric porous structures. Journal of Systems Science & Complexity. 2023;36(1):29–52. [Google Scholar]
- [3].Ji Y, Wang M Y, Yu Y Y, et al. Curvature-based r-adaptive isogeometric analysis with injectivity-preserving multi-sided domain parameterization. Journal of Systems Science & Complexity. 2023;36(1):53–76. [Google Scholar]
- [4].Zheng X P, Lu D, Wang D K, et al. New results on the equivalence of bivariate polynomial matrices. Journal of Systems Science & Complexity. 2023;36(1):77–95. [Google Scholar]
- [5].Ma X R, Wang J. Nonlinear inverse relations of the bell polynomials via the Lagrange inversion formula (II) Journal of Systems Science & Complexity. 2023;36(1):96–116. [Google Scholar]
- [6].Xie M H Y, Zhang P B. The log-concavity of Kazhdan-Lusztig polynomials of uniform matroids. Journal of Systems Science & Complexity. 2023;36(1):117–128. [Google Scholar]
- [7].Ding J, Ke P H, Lin C L, et al. Ramp scheme based on CRT for polynomial ring over finite field. Journal of Systems Science & Complexity. 2023;36(1):129–150. [Google Scholar]
- [8].Liu J W, Wu T, Li D M. Smith form of triangular multivariate polynomial matrix. Journal of Systems Science & Complexity. 2023;36(1):151–164. [Google Scholar]