Skip to main content
Journal of Southern Medical University logoLink to Journal of Southern Medical University
. 2023 Jan 20;43(1):111–116. [Article in Chinese] doi: 10.12122/j.issn.1673-4254.2023.01.15

甘草查尔酮A通过调控PI3K/AKT信号通路诱导肺鳞癌细胞周期阻滞

Licochalcone A induces cell cycle arrest in human lung squamous carcinoma cells via the PI3K/Akt signaling pathway

Xiaoli FAN 1, Juan WANG 1, Liming WANG 2,*
PMCID: PMC9978734  PMID: 36856218

Abstract

Objective

To investigate the effect of licochalcone A (LCA) on the proliferation and cell cycle of human lung squamous carcinoma cells and explore its possible molecular mechanism.

Methods

MTT assay was used to detect the changes in proliferation of H226 cells after treatment with different concentrations of LCA for 48 h, and the IC50 of LCA was calculated. Flow cytometry was used to analyze cell cycle changes in H226 cells treated with 10, 20, and 40 μmol/L LCA, and the expressions of cyclin D1, cyclin-dependent kinase CDK2 and CDK4, and p-PI3K, PI3K, p-Akt, and Akt in the treated cells were detected using Western blotting. The effect of intraperitoneal injection of LCA for 24 days on tumor volume and weight was assessed in a BALB/c-nu mouse model bearing lung squamous carcinoma xenografts.

Results

MTT assay showed that LCA significantly decreased the viability of H226 cells with an IC50 of 28.3 μmol/L at 48 h. Flow cytometry suggested that LCA treatment induced obvious cell cycle arrest at the G1 phase. LCA treatment also significantly decreased the expressions of cyclin D1, CDK2, and CDK4, and inhibited the phosphorylation of PI3K and Akt in H226 cells. In the tumor-bearing mice, LCA treatment for 24 days significantly reduced the tumor volume and weight.

Conclusion

LCA is capable of inhibiting the proliferation and inducing cell cycle arrest in lung squamous carcinoma cells possibility by regulating the PI3K/Akt singling pathway.

Keywords: licochalcone A, cell proliferation, cell cycle, PI3K/Akt signaling pathway


肺癌是世界上最常见的恶性肿瘤之一,死亡率居恶性肿瘤的首位[1]。在新发病例中,约85%的病人诊断为非小细胞肺癌[2](NSCLC),主要包括腺癌、鳞癌和大细胞癌,其中肺鳞癌约占30%[3]。目前,对于肺鳞癌的治疗,仍以外科手术切除为主,其次为细胞毒性化疗和免疫治疗。近年来,驱动基因表皮生长因子受体、间变性淋巴瘤激酶的靶向治疗取得了非常好的效果[4, 5]。但是,由于缺乏相应的治疗靶点,靶向治疗对于肺鳞癌患者受益很少[6]。肺鳞状细胞癌总体预后较差, 存在较高的转移率和复发率,只有约18%的患者存活五年或更长时间[7]。因此,开发新的药物或者治疗方法仍是亟待解决的问题。

近年来,在传统中药中发现很多有效成分,成为肿瘤治疗的新策略。甘草查尔酮A(LCA)是一种从甘草中分离出来的类黄酮物质,具有抗炎[8],抗氧化[9, 10]和抗肿瘤[11]等多种药理活性,在体外抗肿瘤中的作用日益明显。研究表明,LCA在胃癌[12]、肝癌[13],乳腺癌[14],前列腺癌[15]以及骨肉瘤[16]等多种细胞系中具有抗肿瘤作用。LCA在肺癌中的研究很少,有课题组发现,LCA可以通过抑制肺癌细胞A549和H460增殖而发挥抗肿瘤作用[17],在肺癌细胞株H292中还可以通过上调mir-144-3p引起内质网应激和细胞凋亡[18]。由于肺腺癌和鳞癌的病理类型不同,药物作用的机制也可能有很大不同。因此,探究LCA在肺鳞癌中的作用很有意义。

PI3K/Akt信号通路是大多数人类肿瘤中最常激活的途径之一,在肺癌的发生和进展中起到非常重要的作用[19],PI3K/Akt信号通路与细胞增殖相关,其激活可诱导细胞周期G1/S期转变[20]。有研究表明,许多药物可通过抑制PI3K/Akt信号通路抑制肿瘤的生长[21]。前期研究表明,LCA可能通过抑制PI3K/AKT/mTOR信号通路在体外抑制肾癌细胞的增殖、侵袭迁移以及诱导自噬[22]。本研究中,我们检测了LCA在肺鳞癌H226细胞和异种移植模型中的抗肿瘤作用,并探究与PI3K/Akt信号通路的关系,以期为甘草查尔酮A用于临床治疗肺鳞癌提供理论依据。

1. 材料和方法

1.1. 细胞系

人肺鳞癌细胞系H226购于中科院上海细胞所,用含10%胎牛血清的RMPI 1640培养基进行培养,细胞生长至对数期后进行实验。

实验分组:对照组(0.1%DMSO的培养液)、不同浓度的LCA溶液(10、20、40 μmol/L)。先将LCA溶解在DMSO中配制成120 mmol/L的储存液,使用时用培养液稀释至相应浓度。

1.2. 药物与试剂

LCA(MCE),胎牛血清、RMPI 1640培养基(GIBCO),胰蛋白酶和青链霉素、PBS及MTT试剂(索莱宝),RIPA蛋白裂解液、BCA蛋白定量试剂盒(碧云天),CDK2、CDK4、CyclinD1、Akt、p-Akt、PI3K(110 000)以及p-PI3K(85 000)抗体(abcam),GAPDH(Proteintech),鼠二抗、兔二抗(北京依玛博科技有限公司)。

1.3. MTT实验

将H226细胞接种在96孔板中,根据预实验结果,加入不同浓度的LCA溶液(0、2、5、10、20、30 μmol/L)培养48 h,每组设置6个复孔。每孔加入20 μL的MTT溶液,于培养箱中继续孵育4 h后每孔加入150 μL的DMSO,避光在摇床混匀10 min,检测490 nm波长处的吸光度值(A值)。通过细胞抑制率计算48 h的半数抑制浓度。细胞增殖抑制率=(A对照组-A实验组)/(A对照组-A空白组)×100%。

1.4. PI染色检测细胞周期

对数生长期的细胞以4×105/孔接种于6孔板,过夜贴壁后,加入终浓度为0、10、20以及40 μmol/L的LCA处理48 h,用不含EDTA的胰酶消化细胞,离心收集细胞,用70%的乙醇固定过夜,使用前,2000 r/min离心10 min,弃去70%冰乙醇,预冷的PBS洗涤1次,用0.5 mL RNase悬浮细胞后,37 ℃水浴30 min,最后加入PI避光染色30 min,300目筛网过滤,上机进行检测,实验重复3次。

1.5. Western blot检测相关蛋白的表达

对数生长期的细胞接种在7 cm培养皿中,加入相应浓度的LCA溶液(0、10、20、40 μmol/L),48 h后收集细胞,用碧云天的RIPA裂解液提取细胞总蛋白,通过BCA法进行蛋白定量。定量20 μg蛋白进行SDS-PAGE凝胶电泳,将目的蛋白转移至硝酸纤维素膜,室温下,5%脱脂奶粉封闭1 h,加入相应的一抗,4 ℃孵育过夜。次日,加入相应的二抗,室温孵育1 h。通过化学发光液显色,通过Image Lab 6.0软件分析蛋白灰度值。蛋白相对表达量=目的蛋白灰度值/内参蛋白灰度值。

1.6. 动物实验

无胸腺裸鼠(BALB/c-nu)购于湖南斯莱克景达实验动物公司,生产许可证:SCXK(湘)2019-0004,裸鼠饲养于桂林医学院实验动物中心SPF级动物房,本实验使用雄鼠,4周龄,共8只,适应性饲养1周后随机分为2组。LCA用含20% SBE-β-CD的生理盐水溶解。将1×107 H226细胞种植入小鼠右侧腋下,大约7 d瘤体长径长至0.8 cm时,给予药物治疗,对照组小鼠注射含20% SBE- β-CD的生理盐水(200 μL),实验组小鼠注射15 mg/kg的LCA溶液(200 μL),注射1次/d,连续24 d,实验结束时,脱颈处死裸鼠,取肿瘤观察每组肿瘤大小,并称量肿瘤的质量。所有动物实验均通过桂林医学院动物伦理委员会审批(GLMC202103038)。

1.7. 统计学分析

计量资料均采用均数±标准差来表示,每个实验至少重复3次。通过GraphPad Prism 5.0软件进行数据作图。采用SPSS 22.0进行数据统计,多组间数据比较采用单因素方差分析,P < 0.05为差异有统计学意义。

2. 结果

2.1. LCA处理H226细胞48 h的半数抑制浓度

不同剂量的LCA处理48 h后,H226细胞活力明显受到抑制,随着浓度的增加,其抑制作用越来越显著(图 1B)。在LCA浓度为2、5、10、20及30 μmol/L时,细胞活力分别为(90.54±2.99)%、(86.31±3.33)%、(73.15± 2.78)%、(60.56±2.45)%、(44.86±3.67)%,当LCA浓度高于5 μmol/L时,可以有效的抑制H226细胞活力(P < 0.05)。LCA处理48 h,IC50为28.3 μmol/L。因此,我们选择10、20以及40 μmol/L的浓度进行下一步实验。细胞生长至密度大约40%左右,向培养皿中加入终浓度为0、10、20以及40 μmol/L的LCA,继续培养48 h后,倒置显微镜下观察细胞形态变化(图 1C),随着LCA浓度的增加,细胞数量明显减少。

1.

1

LCA抑制肺鳞癌H226细胞增殖

LCA inhibits proliferation of H226 cells. A: Chemical structure of LCA. B: Viability of H226 cells treated with different concentrations of LCA for 48 h (Mean±SD, n=3). C: Morphology of H226 cells treated with different concentrations of LCA for 48 h.

2.2. LCA对H226细胞周期的影响

我们通过流式细胞术检测不同浓度LCA对H226细胞周期的影响(图 2),对照组及LCA(10、20、40 μmol/L)处理组G1期的细胞百分率分别为(23.53±0.50)%、(26.93±0.67)%、(27.70±1.97)%、(32.20±2.07)%。与对照组相比,LCA处理组细胞周期G1期的比例明显升高(P < 0.05),并呈现剂量依赖性,说明LCA可以使细胞阻滞在G1期。

2.

2

LCA对肺鳞癌H226细胞周期的影响

Effect of LCA on cell cycle of H226 cells. A: Flow cytometry of H226 cells treated with different concentrations of LCA for 48 h. B: Quantitative analysis of the cell percentages in different phases (Mean±SD, n=3). *P < 0.05, **P < 0.01 vs control.

2.3. LCA对H226细胞中细胞周期相关蛋白表达的影响

Western blot结果显示,LCA可以降低细胞周期蛋白cyclinD1、CDK2以及CDK4的蛋白表达水平,CDK2的相对表达量从2.39降低到0.44,CDK4的相对表达量从2.14降低到0.17,同时cyclinD1的相对表达量从3.25降低到0.18,差异有统计学意义(P < 0.05,图 3)。

3.

3

LCA对细胞周期蛋白CyclinD1及细胞周期蛋白依赖性激酶CDK2和CDK4表达的影响

Effect of LCA on expressions of cyclin D1, CDK2 and CDK4 proteins in H226 cells detected by Western blotting (Mean±SD, n=3). **P < 0.01 vs control.

2.4. LCA对Akt,p-Akt,PI3K以及p-PI3K蛋白表达的影响

通过Western blot检测PI3K和Akt的磷酸化水平,发现LCA浓度依赖性的降低p-PI3K和p-Akt的磷酸化水平,p-PI3K的相对表达量从1.41降低到0.11,p-Akt的相对表达量从1.08降低到0.18,差异有统计学意义(P < 0.05,图 4),但是对总的PI3K和Akt的表达无明显影响(P>0.05,图 4)。

4.

4

LCA对AKT,p-AKT,PI3K以及p-PI3K蛋白表达的影响

Effect of LCA on expressions of Akt, p-AKT, PI3K and p-PI3K proteins in H226 cells detected by Western blotting (Mean±SD, n=3). **P < 0.01 vs control.

2.5. LCA在体内抑制H226细胞增殖

裸鼠成瘤实验结果发现,与对照组小鼠相比,实验组小鼠在注射LCA后肿瘤体积明显缩小(图 5A)。通过对生长曲线的分析发现,对照组小鼠的平均体积为1270.85 mm3,LCA处理组小鼠的平均体积为841 mm3,差异有统计学意义(P < 0.05,图 5B),说明注射LCA后肿瘤体积明显受到抑制。通过解剖称量肿瘤的湿重,发现对照组小鼠的平均湿重为0.69,LCA处理组小鼠的平均湿重为0.46,差异有统计学意义(P < 0.01,图 5C),LCA处理后肿瘤的质量明显降低(P < 0.01)。Western blot显示对照组中p-PI3K/PI3K蛋白的相对表达量为0.95,LCA处理组为0.24,对照组中p-AKT/AKT蛋白的相对表达量为0.59,LCA处理组为0.19,差异有统计学意义(P < 0.05,图 5DE)。

5.

5

LCA体内抑制H226肿瘤生长

LCA suppresses growth of H226 xenografts in mice. A: Representative image of the tumors. B: Average tumor volume (mm3). C: Weight of wet tumor. D, E: Expressions of Akt, p-AKT, PI3K and p-PI3K protein in tumor xenograft tissues measured by Western blotting. Data are presented as Mean±SD (n=4). *P < 0.05 vs control.

3. 讨论

甘草查尔酮A是一种常见的具有抗炎和抗菌作用的天然药物,既往研究发现其在体内外具有很好的抗肿瘤作用,作用机制主要与抑制细胞增殖、诱导细胞凋亡相关,但是在肺鳞癌中的作用尚未见报道。在本研究中,我们通过体内外实验探究甘草查尔酮A对肺鳞癌增殖的影响及可能的机制。MTT结果表明,随着LCA浓度的升高,肺鳞癌H226细胞活力呈剂量依赖性降低,说明LCA可以抑制H226细胞增殖。裸鼠荷瘤实验结果显示,LCA腹腔注射后,肿瘤的体积和重量都明显减小,说明LCA从体内水平抑制了H226细胞的增殖。

细胞癌变与细胞周期的关系是近年来关注的焦点,通过调节细胞周期来抑制癌细胞的增殖是癌症治疗的一个重要策略。研究表明LCA不仅能抑制肿瘤细胞的增殖[23],还能诱导细胞周期阻滞[13, 24]。为了进一步揭示LCA在肺鳞癌中的作用机制,本实验通过流式细胞术检测其对细胞周期的影响,结果表明,LCA处理H226细胞48 h后,G1期细胞数量明显增多,且呈剂量依赖性。说明LCA可引起细胞周期G1期阻滞。细胞周期中大多数与细胞增殖相关的基因事件发生在G1期,因此G1/S期过渡在细胞周期进程中起到非常重要的作用。细胞周期调控蛋白如CyclinD1[25]以及相关的细胞周期调控蛋白激酶CDK2及CDK4是细胞周期进程中从G1期进入S期非常重要的蛋白[26],因此,我们通过Western blot探究了不同浓度LCA对CyclinD1、CDK2及CDK4的表达的影响,结果显示,LCA可以下调cyclinD1、CDK2及CDK4的表达,且呈浓度依赖性。

PI3K可参与调控细胞增殖、凋亡、转录和血管发生等多种细胞过程[27],AKT是PI3K的主要下游效应因子,可被PI3K激活,并磷酸化多种酶、激酶和转录因子[28]。有文献证明,PI3K/AKT信号通路通过影响细胞周期相关分子来调节细胞周期进程[29, 30]。而且研究还发现,许多药物都可以通过靶向PI3K/AKT信号通路发挥抗肿瘤作用[31-33]。为了进一步探究LCA对肺鳞癌H226细胞的抑制作用是否通过靶向PI3K/AKT信号通路,我们研究了不同浓度LCA对p-PI3K、PI3K、p-AKT、AKT表达的影响,Western blot的结果显示,PI3K和AKT的表达几乎无变化,而p-PI3K和p-AKT的表达明显降低,且呈浓度依赖性,这个结果表明,LCA抑制细胞增殖和诱导周期阻滞的作用可能与抑制PI3K/AKT信号通路磷酸化有关。

本研究发现,LCA可以有效的抑制H226细胞增殖并诱导细胞周期阻滞,并引起细胞周期蛋白cyclinD1和细胞周期蛋白依赖性激酶CDK2和CDK4表达降低。裸鼠荷瘤实验也表明LCA可以在体内抑制肺鳞癌的生长。其作用机制可能与抑制PI3K/AKT信号通路磷酸化有关。本研究初步揭示了LCA作为抗肺鳞癌治疗药物的可能作用机制,为LCA将来用于肺鳞癌的治疗提供了理论和实验依据。

Biography

范晓丽,在读博士研究生,E-mail: fxl911@126.com

Funding Statement

广西省教育厅中青年能力提升项目(2019KY0541)

Contributor Information

范 晓丽 (Xiaoli FAN), Email: fxl911@126.com.

王 梨明 (Liming WANG), Email: wlmkeyan@126.com.

References

  • 1.Siegel RL, Miller KD, Jemal A. Cancer statistics, 2020. CA Cancer J Clin. 2020;70(1):7–30. doi: 10.3322/caac.21590. [Siegel RL, Miller KD, Jemal A. Cancer statistics, 2020[J]. CA Cancer J Clin, 2020, 70(1): 7-30.] [DOI] [PubMed] [Google Scholar]
  • 2.Bray F, Ferlay J, Soerjomataram I, et al. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin. 2018;68(6):394–424. doi: 10.3322/caac.21492. [Bray F, Ferlay J, Soerjomataram I, et al. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries[J]. CA Cancer J Clin, 2018, 68(6): 394-424.] [DOI] [PubMed] [Google Scholar]
  • 3.Derman BA, Mileham KF, Bonomi PD, et al. Treatment of advanced squamous cell carcinoma of the lung: a review. Transl Lung Cancer Res. 2015;4(5):524–32. doi: 10.3978/j.issn.2218-6751.2015.06.07. [Derman BA, Mileham KF, Bonomi PD, et al. Treatment of advanced squamous cell carcinoma of the lung: a review[J]. Transl Lung Cancer Res, 2015, 4(5): 524-32.] [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 4.Zhang T, Wan B, Zhao Y, et al. Treatment of uncommon EGFR mutations in non-small cell lung cancer: new evidence and treatment. Transl Lung Cancer Res. 2019;8(3):302–16. doi: 10.21037/tlcr.2019.04.12. [Zhang T, Wan B, Zhao Y, et al. Treatment of uncommon EGFR mutations in non-small cell lung cancer: new evidence and treatment [J]. Transl Lung Cancer Res, 2019, 8(3): 302-16.] [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 5.Thai AA, Solomon BJ. Treatment of ALK-positive nonsmall cell lung cancer: recent advances. Curr Opin Oncol. 2018;30(2):84–91. doi: 10.1097/CCO.0000000000000431. [Thai AA, Solomon BJ. Treatment of ALK-positive nonsmall cell lung cancer: recent advances[J]. Curr Opin Oncol, 2018, 30(2): 84-91.] [DOI] [PubMed] [Google Scholar]
  • 6.Shtivelman E, Hensing T, Simon GR, et al. Molecular pathways and therapeutic targets in lung cancer. Oncotarget. 2014;5(6):1392–433. doi: 10.18632/oncotarget.1891. [Shtivelman E, Hensing T, Simon GR, et al. Molecular pathways and therapeutic targets in lung cancer[J]. Oncotarget, 2014, 5(6): 1392-433.] [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 7.Cheng TY, Cramb SM, Baade PD, et al. The international epidemiology of lung cancer: Latest Trends, Disparities, and Tumor Characteristics. J Thorac Oncol. 2016;11(10):1653–71. doi: 10.1016/j.jtho.2016.05.021. [Cheng TY, Cramb SM, Baade PD, et al. The international epidemiology of lung cancer: Latest Trends, Disparities, and Tumor Characteristics[J]. J Thorac Oncol, 2016, 11(10): 1653-71.] [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 8.Bortolotto LFB, Barbosa FR, Silva G, et al. Cytotoxicity of transChalcone and licochalcone A against breast cancer cells is due to apoptosis induction and cell cycle arrest. Biomed Pharmacother. 2017;85:425–33. doi: 10.1016/j.biopha.2016.11.047. [Bortolotto LFB, Barbosa FR, Silva G, et al. Cytotoxicity of transChalcone and licochalcone A against breast cancer cells is due to apoptosis induction and cell cycle arrest[J]. Biomed Pharmacother, 2017, 85: 425-33.] [DOI] [PubMed] [Google Scholar]
  • 9.Lv HM, Ren H, Wang LD, et al. Lico A enhances Nrf2-mediated defense mechanisms against t-BHP-induced oxidative stress and cell death via Akt and ERK activation in RAW 264.7 cells. http://europepmc.org/articles/4630662. Oxid Med Cell Longev. 2015;2015:709845. doi: 10.1155/2015/709845. [Lv HM, Ren H, Wang LD, et al. Lico A enhances Nrf2-mediated defense mechanisms against t-BHP-induced oxidative stress and cell death via Akt and ERK activation in RAW 264.7 cells[J]. Oxid Med Cell Longev, 2015, 2015: 709845.] [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 10.de Freitas KS, Squarisi IS, Acésio NO, et al. Licochalcone A, a licorice flavonoid: antioxidant, cytotoxic, genotoxic, and chemopreventive potential. J Toxicol Environ Health A. 2020;83(21/22):673–86. doi: 10.1080/15287394.2020.1813228. [de Freitas KS, Squarisi IS, Acésio NO, et al. Licochalcone A, a licorice flavonoid: antioxidant, cytotoxic, genotoxic, and chemopreventive potential[J]. J Toxicol Environ Health A, 2020, 83(21/22): 673-86.] [DOI] [PubMed] [Google Scholar]
  • 11.Egler J, Lang F. Licochalcone A induced suicidal death of human erythrocytes. Cell Physiol Biochem. 2015;37(5):2060–70. doi: 10.1159/000438565. [Egler J, Lang F. Licochalcone A induced suicidal death of human erythrocytes[J]. Cell Physiol Biochem, 2015, 37(5): 2060-70.] [DOI] [PubMed] [Google Scholar]
  • 12.Hao WJ, Yuan X, Yu LN, et al. Licochalcone A-induced human gastric cancer BGC-823 cells apoptosis by regulating ROSmediated MAPKs and PI3K/AKT signaling pathways. Sci Rep. 2015;5:10336. doi: 10.1038/srep10336. [Hao WJ, Yuan X, Yu LN, et al. Licochalcone A-induced human gastric cancer BGC-823 cells apoptosis by regulating ROSmediated MAPKs and PI3K/AKT signaling pathways[J]. Sci Rep, 2015, 5: 10336.] [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 13.Wang J, Zhang YS, Thakur K, et al. Licochalcone A from licorice root, an inhibitor of human hepatoma cell growth via induction of cell apoptosis and cell cycle arrest. Food Chem Toxicol. 2018;120:407–17. doi: 10.1016/j.fct.2018.07.044. [Wang J, Zhang YS, Thakur K, et al. Licochalcone A from licorice root, an inhibitor of human hepatoma cell growth via induction of cell apoptosis and cell cycle arrest[J]. Food Chem Toxicol, 2018, 120: 407-17.] [DOI] [PubMed] [Google Scholar]
  • 14.Huang WC, Su HH, Fang LW, et al. Licochalcone A inhibits cellular motility by suppressing E-cadherin and MAPK signaling in breast cancer. Cells. 2019;8(3):218. doi: 10.3390/cells8030218. [Huang WC, Su HH, Fang LW, et al. Licochalcone A inhibits cellular motility by suppressing E-cadherin and MAPK signaling in breast cancer[J]. Cells, 2019, 8(3): 218.] [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 15.Yo YT, Shieh GS, Hsu KF, et al. Licorice and licochalcone-A induce autophagy in LNCaP prostate cancer cells by suppression of Bcl-2 expression and the mTOR pathway. J Agric Food Chem. 2009;57(18):8266–73. doi: 10.1021/jf901054c. [Yo YT, Shieh GS, Hsu KF, et al. Licorice and licochalcone-A induce autophagy in LNCaP prostate cancer cells by suppression of Bcl-2 expression and the mTOR pathway[J]. J Agric Food Chem, 2009, 57 (18): 8266-73.] [DOI] [PubMed] [Google Scholar]
  • 16.Lin RC, Yang SF, Chiou HL, et al. Licochalcone A-induced apoptosis through the activation of p38MAPK pathway mediated mitochondrial pathways of apoptosis in human osteosarcoma cells in vitro and in vivo. Cells. 2019;8(11):1441. doi: 10.3390/cells8111441. [Lin RC, Yang SF, Chiou HL, et al. Licochalcone A-induced apoptosis through the activation of p38MAPK pathway mediated mitochondrial pathways of apoptosis in human osteosarcoma cells in vitro and in vivo[J]. Cells, 2019, 8(11): 1441.] [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 17.Qiu CY, Zhang TT, Zhang WX, et al. Licochalcone A inhibits the proliferation of human lung cancer cell lines A549 and H460 by inducing G2/M cell cycle arrest and ER stress. Int J Mol Sci. 2017;18(8):E1761. doi: 10.3390/ijms18081761. [Qiu CY, Zhang TT, Zhang WX, et al. Licochalcone A inhibits the proliferation of human lung cancer cell lines A549 and H460 by inducing G2/M cell cycle arrest and ER stress[J]. Int J Mol Sci, 2017, 18(8): E1761.] [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 18.Chen G, Ma YP, Jiang Z, et al. Lico A causes ER stress and apoptosis via up-regulating miR-144-3p in human lung cancer cell line H292. Front Pharmacol. 2018;9:837. doi: 10.3389/fphar.2018.00837. [Chen G, Ma YP, Jiang Z, et al. Lico A causes ER stress and apoptosis via up-regulating miR-144-3p in human lung cancer cell line H292 [J]. Front Pharmacol, 2018, 9: 837.] [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 19.Tan AC. Targeting the PI3K/Akt/mTOR pathway in non-small cell lung cancer (NSCLC) Thorac Cancer. 2020;11(3):511–8. doi: 10.1111/1759-7714.13328. [Tan AC. Targeting the PI3K/Akt/mTOR pathway in non-small cell lung cancer (NSCLC)[J]. Thorac Cancer, 2020, 11(3): 511-8.] [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 20.Wen W, Ding J, Sun W, et al. Cyclin G1-mediated epithelialmesenchymal transition via phosphoinositide 3-kinase/Akt signaling facilitates liver cancer progression. Hepatology. 2012;55(6):1787–98. doi: 10.1002/hep.25596. [Wen W, Ding J, Sun W, et al. Cyclin G1-mediated epithelialmesenchymal transition via phosphoinositide 3-kinase/Akt signaling facilitates liver cancer progression[J]. Hepatology, 2012, 55(6): 1787-98.] [DOI] [PubMed] [Google Scholar]
  • 21.Li Y, Lv Y, Zhu Y, et al. Low-temperature plasma-activated medium inhibited proliferation and progression of lung cancer by targeting the PI3K/Akt and MAPK pathways. Oxid Med Cell Longev. 2022;2022:9014501. doi: 10.1155/2022/9014501. [Li Y, Lv Y, Zhu Y, et al. Low-temperature plasma-activated medium inhibited proliferation and progression of lung cancer by targeting the PI3K/Akt and MAPK pathways[J]. Oxid Med Cell Longev, 2022, 2022: 9014501.] [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 22.Xin H, Xu W. Effect of licochalcone A on autophagy in renal cell carcinoma via PI3K/Akt/mTOR signaling pathway. Zhongguo Zhong Yao Za Zhi. 2018;43(17):3545–52. doi: 10.19540/j.cnki.cjcmm.20180427.001. [Xin H, Xu W. Effect of licochalcone A on autophagy in renal cell carcinoma via PI3K/Akt/mTOR signaling pathway[J]. Zhongguo Zhong Yao Za Zhi, 2018, 43(17): 3545-52.] [DOI] [PubMed] [Google Scholar]
  • 23.Liu XS, Xing Y, Li MY, et al. Licochalcone A inhibits proliferation and promotes apoptosis of colon cancer cell by targeting programmed cell death-ligand 1 via the NF-κB and Ras/Raf/MEK pathways. J Ethnopharmacol. 2021;273:113989. doi: 10.1016/j.jep.2021.113989. [Liu XS, Xing Y, Li MY, et al. Licochalcone A inhibits proliferation and promotes apoptosis of colon cancer cell by targeting programmed cell death-ligand 1 via the NF-κB and Ras/Raf/MEK pathways[J]. J Ethnopharmacol, 2021, 273: 113989.] [DOI] [PubMed] [Google Scholar]
  • 24.欧 玲, 温 海泉, 陈 仁. 甘草查尔酮A可能通过调控miR-506-5p对宫颈癌细胞增殖和凋亡的分子机制. https://www.cnki.com.cn/Article/CJFDTOTAL-ZYYA202202006.htm. 中国优生与遗传杂志. 2022;30(2):202–6. [欧玲, 温海泉, 陈仁. 甘草查尔酮A可能通过调控miR-506-5p对宫颈癌细胞增殖和凋亡的分子机制[J]. 中国优生与遗传杂志, 2022, 30 (2): 202-6.] [Google Scholar]
  • 25.Qie S, Diehl JA. Cyclin D1, cancer progression, and opportunities in cancer treatment. J Mol Med: Berl. 2016;94(12):1313–26. doi: 10.1007/s00109-016-1475-3. [Qie S, Diehl JA. Cyclin D1, cancer progression, and opportunities in cancer treatment[J]. J Mol Med: Berl, 2016, 94(12): 1313-26.] [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 26.Wang J, Li XM, Bai Z, et al. Curcumol induces cell cycle arrest in colon cancer cells via reactive oxygen species and Akt/GSK3β/cyclin D1 pathway. J Ethnopharmacol. 2018;210:1–9. doi: 10.1016/j.jep.2017.06.037. [Wang J, Li XM, Bai Z, et al. Curcumol induces cell cycle arrest in colon cancer cells via reactive oxygen species and Akt/GSK3β/cyclin D1 pathway[J]. J Ethnopharmacol, 2018, 210: 1-9.] [DOI] [PubMed] [Google Scholar]
  • 27.Almutairi AR, Alkhatib N, Martin J, et al. Comparative efficacy and safety of immunotherapies targeting the PD-1/PD-L1 pathway for previously treated advanced non-small cell lung cancer: a Bayesian network meta-analysis. Crit Rev Oncol Hematol. 2019;142:16–25. doi: 10.1016/j.critrevonc.2019.07.004. [Almutairi AR, Alkhatib N, Martin J, et al. Comparative efficacy and safety of immunotherapies targeting the PD-1/PD-L1 pathway for previously treated advanced non-small cell lung cancer: a Bayesian network meta-analysis[J]. Crit Rev Oncol Hematol, 2019, 142: 16-25.] [DOI] [PubMed] [Google Scholar]
  • 28.Shu F, Zou XQ, Tuo H, et al. Stathmin gene silencing suppresses proliferation, migration and invasion of gastric cancer cells via AKT/sCLU and STAT3 signaling. Int J Oncol. 2019;54(3):1086–98. doi: 10.3892/ijo.2019.4674. [Shu F, Zou XQ, Tuo H, et al. Stathmin gene silencing suppresses proliferation, migration and invasion of gastric cancer cells via AKT/sCLU and STAT3 signaling[J]. Int J Oncol, 2019, 54(3): 1086-98.] [DOI] [PubMed] [Google Scholar]
  • 29.Liao K, Li J, Wang ZL. Dihydroartemisinin inhibits cell proliferation via AKT/GSK3β/cyclinD1 pathway and induces apoptosis in A549 lung cancer cells. Int J Clin Exp Pathol. 2014;7(12):8684–91. [Liao K, Li J, Wang ZL. Dihydroartemisinin inhibits cell proliferation via AKT/GSK3β/cyclinD1 pathway and induces apoptosis in A549 lung cancer cells[J]. Int J Clin Exp Pathol, 2014, 7(12): 8684-91.] [PMC free article] [PubMed] [Google Scholar]
  • 30.Zhang S, Lu Z, Mao WQ, et al. CDK5 regulates paclitaxel sensitivity in ovarian cancer cells by modulating AKT activation, p21Cip1- and p27Kip1-mediated G1 cell cycle arrest and apoptosis. PLoS One. 2015;10(7):e0131833. doi: 10.1371/journal.pone.0131833. [Zhang S, Lu Z, Mao WQ, et al. CDK5 regulates paclitaxel sensitivity in ovarian cancer cells by modulating AKT activation, p21Cip1- and p27Kip1-mediated G1 cell cycle arrest and apoptosis[J]. PLoS One, 2015, 10(7): e0131833.] [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 31.Liu X, He HJ, Zhang FW, et al. m6A methylated EphA2 and VEGFA through IGF2BP2/3 regulation promotes vasculogenic mimicry in colorectal cancer via PI3K/AKT and ERK1/2 signaling. Cell Death Dis. 2022;13(5):483. doi: 10.1038/s41419-022-04950-2. [Liu X, He HJ, Zhang FW, et al. m6A methylated EphA2 and VEGFA through IGF2BP2/3 regulation promotes vasculogenic mimicry in colorectal cancer via PI3K/AKT and ERK1/2 signaling[J]. Cell Death Dis, 2022, 13(5): 483.] [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 32.Liu BL, Fang XN, Kwong DLW, et al. Targeting TROY-mediated P85a/AKT/TBX3 signaling attenuates tumor stemness and elevates treatment response in hepatocellular carcinoma. J Exp Clin Cancer Res. 2022;41(1):182. doi: 10.1186/s13046-022-02401-6. [Liu BL, Fang XN, Kwong DLW, et al. Targeting TROY-mediated P85a/AKT/TBX3 signaling attenuates tumor stemness and elevates treatment response in hepatocellular carcinoma[J]. J Exp Clin Cancer Res, 2022, 41(1): 182.] [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 33.Chi M, Liu J, Mei CX, et al. TEAD4 functions as a prognostic biomarker and triggers EMT via PI3K/AKT pathway in bladder cancer. J Exp Clin Cancer Res. 2022;41(1):175. doi: 10.1186/s13046-022-02377-3. [Chi M, Liu J, Mei CX, et al. TEAD4 functions as a prognostic biomarker and triggers EMT via PI3K/AKT pathway in bladder cancer[J]. J Exp Clin Cancer Res, 2022, 41(1): 175.] [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Journal of Southern Medical University are provided here courtesy of Editorial Department of Journal of Southern Medical University

RESOURCES