Skip to main content

This is a preprint.

It has not yet been peer reviewed by a journal.

The National Library of Medicine is running a pilot to include preprints that result from research funded by NIH in PMC and PubMed.

bioRxiv logoLink to bioRxiv
[Preprint]. 2023 Feb 22:2023.02.21.529460. [Version 1] doi: 10.1101/2023.02.21.529460

Ketosis Prevents Abdominal Aortic Aneurysm Rupture Through CCR2 Downregulation and Enhanced MMP Balance

Sergio Sastriques-Dunlop, Santiago Elizondo-Benedetto, Batool Arif, Rodrigo Meade, Mohamed S Zaghloul, Sean J English, Yongjian Liu, Mohamed A Zayed
PMCID: PMC9980063  PMID: 36865192

Abstract

Abdominal aortic aneurysms (AAAs) are common in aging populations, and AAA rupture is associated with high morbidity and mortality. There is currently no effective medical preventative therapy for AAAs to avoid rupture. It is known that the monocyte chemoattractant protein (MCP-1) / C-C chemokine receptor type 2 (CCR2) axis critically regulates AAA tissue inflammation, matrix-metalloproteinase (MMP) production, and in turn extracellular matrix (ECM) stability. However, therapeutic modulation of the CCR2 axis for AAA disease has so far not been accomplished. Since ketone bodies (KBs) are known to trigger repair mechanisms in response to vascular tissue inflammation, we evaluated whether systemic in vivo ketosis can impact CCR2 signaling, and therefore impact AAA expansion and rupture. To evaluate this, male Sprague-Dawley rats underwent surgical AAA formation using porcine pancreatic elastase (PPE), and received daily β-aminopropionitrile (BAPN) to promote AAA rupture. Animals with formed AAAs received either a standard diet (SD), ketogenic diet (KD), or exogenous KB supplements (EKB). Animals that received KD and EKB reached a state of ketosis, and had significantly reduced AAA expansion and incidence of rupture. Ketosis also led to significantly reduced CCR2, inflammatory cytokine content, and infiltrating macrophages in AAA tissue. Additionally, animals in ketosis had improved balance in aortic wall matrix-metalloproteinase (MMP), reduced extracellular matrix (ECM) degradation, and higher aortic media Collagen content. This study demonstrates that ketosis plays an important therapeutic role in AAA pathobiology, and provides the impetus for future studies investigating the role of ketosis as a preventative strategy for individuals with AAAs.

Full Text Availability

The license terms selected by the author(s) for this preprint version do not permit archiving in PMC. The full text is available from the preprint server.


Articles from bioRxiv are provided here courtesy of Cold Spring Harbor Laboratory Preprints

RESOURCES