Skip to main content
Scientific Reports logoLink to Scientific Reports
. 2023 Mar 4;13:3659. doi: 10.1038/s41598-023-30573-4

Optomechanically induced gain using a trapped interacting Bose-Einstein condensate

H Mikaeili 1, A Dalafi 1,, M Ghanaatshoar 1, B Askari 2
PMCID: PMC9985636  PMID: 36871065

Abstract

We investigate the realization of the phenomenon of optomechanically induced gain in a hybrid optomechanical system consisting of an interacting Bose-Einstein condensate trapped inside the optical lattice of a cavity which is generated by an external coupling laser tuned to the red sideband of the cavity. It is shown that the system behaves as an optical transistor while the cavity is exposed to a weak input optical signal which can be amplified considerably in the cavity output if the system is in the unresolved sideband regime. Interestingly, the system has the capability to switch from the resolved to unresolved sideband regime by controlling the s-wave scattering frequency of atomic collisions. We show that the system gain can be enhanced considerably by controlling the s-wave scattering frequency as well as the coupling laser intensity while the system remains in the stable regime. Based on our obtained results, the input signal can be amplified more than 100 million percent in the system output which is much larger than those already reported in the previously proposed similar schemes.

Subject terms: Matter waves and particle beams, Quantum mechanics

Introduction

In recent decades, ultracold atomic ensembles trapped in optical lattices generated by quantized light fields1 and hybrid optomechanical systems containing Bose-Einstein condensates (BECs)25, where the excitation of a collective mode of the trapped atoms plays the role of the vibrational mode of the moving mirror in a bare optomechanical system (OMS)6, have attracted much attention. Such systems have been known as a good platform for studying the interaction of light with matter in the regime where their quantum mechanical properties are manifested in the same level711.

The optomechanical coupling generated by an external coupling laser between the optical mode of the cavity and the fluctuation of the collective excitation of the BEC (the so-called Bogoliubov mode)12,13, makes the system behave effectively as a two-mode quantum system in which the phenomenon of optomechanically induced transparency (OMIT)1417 can be observable while the cavity is also driven by another external weak probe laser. One of the most important features of a hybrid OMS containing a BEC is the nonlinear effect of atomic collisions which behaves as an atomic parametric oscillator1821 which brings more controllability22,23 and can increase the quantum effects at the macroscopic level2426.

A remarkable feature of the OMIT phenomenon is the possibility of slow and fast light realization2735 which has important applications in quantum information and quantum communications. As is well-known in the standard OMIT phenomenon, the transmitted light intensity at the probe frequency in the cavity output is lower than or equal to that in the input where the equality (corresponding to 100% probe transmission) occurs when the damping rate of the mechanical oscillator is much lower than the optical damping rate. Nevertheless, there is a very interesting case in which the transmitted probe amplitude in the cavity output is stronger than that in the input of the cavity. In such a situation, the system exhibits a special kind of OMIT known as optomechanically induced gain (OMIG) or optomechanically induced amplification, so that it can be used as an optical transistor3644. More recently, it has been shown45,46 that the phenomenon of OMIG can occur in a bare OMS in the unresolved sideband (URSB) regime47 while the coupling laser frequency has been tuned on the red sideband of the cavity (the red detuned regime of optomechanics). Although OMIG can be also achieved in the blue detuned regime of optomechanics, but the important problem is that OMSs are rarely stable in the blue regime.

Motivated by the above-mentioned investigations, in the present work we study a hybrid OMS consisting of an interacting BEC whose cavity is pumped by a coupling laser responsible for generation of an optical lattice inside the cavity. The optical lattice provides an effective optomechanical coupling between the cavity optical mode and the Bogoliubov mode of the BEC through a radiation pressure interaction. It is also assumed that the cavity is exposed to an input optical signal which is modeled as a time-dependent perturbation (playing the role of a weak probe laser).

Our aim in the present work is to demonstrate that the present hybrid OMS can be used as an optical transistor which can amplify the input optical signal in the output of the cavity. It is explicitly shown that in the URSB and red detuned regimes of optomechanics, the present hybrid OMS exhibits much larger gain in comparison to the previously studied schemes3644 while the system is stable. Furthermore, one of the most important advantages of the present scheme in comparison to the previous ones is the controllability of the system gain which can be manipulated not only through the coupling laser pumping rate but also through the s-wave scattering frequency of atomic collisions, which itself is experimentally controllable through the transverse trapping frequency of the BEC48.

The structure of the paper is as follows: In section “System Hamiltonian” the Hamiltonian of the hybrid OMS is introduced. In section “Dynamics of the system” the dynamical equations of the system are derived based on the Heisenberg-Langevin equations and the response of the system to the input signal, which behaves as a time-dependent probe perturbation, is obtained. Then, in section “Results and discussion” we present the behavior of the system response to the input signal and the cavity power reflection coefficient. Finally, the summary and conclusions are given in section “Summary and conclusions”.

System Hamiltonian

The studied system is a Fabry-Perot cavity with a length of L and a resonance frequency of ω0 containing a trapped one dimensional BEC as has been shown in Fig. 1. The BEC has been formed by N identical two-level atoms having transition frequency ωa and mass ma confined in a cylindrically symmetric trap with a transverse trapping frequency ω and negligible longitudinal confinement along the x direction. The cavity is driven by a strong external (coupling) laser with a power of Pc and frequency ωc at the rate of |εc|=2κePc/ħωc along its axis from the partially transparent mirror on the left side of the cavity which is responsible to produce a radiation pressure coupling with the matter field of the BEC. In order to see how the present system acts as an optical transistor, it is assumed that a weak optical signal (playing the role of a probe laser) with frequency ωs enters the cavity as an input coherent field through the left mirror at the rate of εs.

Figure 1.

Figure 1

(Color online) A Fabry-Perot cavity containing a trapped BEC is driven by a strong coupling laser along its axis from the left mirror of the cavity where a weak input signal is also entered. The system behaves as an optical transistor that can amplify the input signal in the output which emanates from the left side of the cavity.

In the dispersive regime, where the difference between the frequency of the coupling laser and that of the atomic transition is much larger than the atomic linewidth (Γa), i.e., Δa=ωc-ωaΓa, the excited electronic state of the atoms can be adiabatically eliminated and spontaneous emission can be ignored49,50, so that the second quantized Hamiltonian of the system can be written as

H^=ħω0a^a^+-L/2L/2dxΨ^(x)(-ħ22mad2dx2+ħU0cos2(kx)a^a^+12UsΨ^(x)Ψ^(x))Ψ^(x)+iħ(εce-iωcta^-εceiωcta^)+iħ(εse-iωsta^-εseiωsta^), 1

where Ψ^(x) represents the atomic field annihilation operator in position space and a^ indicates the cavity mode annihilation operator in momentum space. Besides, k=ωc/c is the wave number of the intracavity optical field, U0=g02/Δa is the depth of the optical lattice potential per single-photon, g0 is the vacuum Rabi frequency, Us=4πħ2as/ma is the strength of the atom-atom scattering wherein as is the length of the two-body s-wave scattering.

If the condition of U0aa10ωR is satisfied, in which ωR=ħk2/2ma is the atom recoil frequency, the system is in weak optical lattice regime. Under this condition and using the Bogoliubov approximation, the matter field Ψ^(x) can be expanded as51

Ψ^(x)=NL+2Lcos(2kx)c^, 2

where c^ is the BEC’s first excited mode annihilation operator in the momentum space satisfying the commutation relation [c^,c^]=1.

By substituting Eq. (2) into Eq. (1), the system’s Hamiltonian in the frame rotating at the coupling laser frequency can be rewritten as

H^=ħδca^a^+ħζa^a^Q^+12ħΩcP^2+Q^2+12ħωswQ^2+iħεca^-εca^+iħεse-iδta^-εseiδta^, 3

where δ=ωs-ωc is the detuning between the frequencies of the coupling and signal lasers. Besides, Q^=(c^+c^)/2 and P^=(c^-c^)/2i are, respectively, the position and momentum quadratures of the BEC satisfying the commutation relation [Q^,P^]=i. Furthermore, δc=Δc+12NU0 is the Stark-shifed cavity frequency due to the presence of the BEC in which Δc=ω0-ωc is the cavity resonance detuning with the frequency of the coupling laser. In fact, the presence of the BEC makes the bare resonance frequency of the cavity be changed from ω0 to ω0+12NU0. As is seen from the second and third terms of Eq. (3), the BEC behaves as a mechanical oscillator (the so-called Bogoliubov mode) with the frequency Ωc=4ωR+ωsw/2 that has been coupled to the optical mode of the cavity through the optomechanical coupling parameter of ζ=12NU0. Besides, the effect of atom-atom interaction with the s-wave scattering frequency ωsw=8πħasN/maLw2 leads to the manifestation of the fourth term in Eq. (3), where w is the waist radius of the optical mode.

Dynamics of the system

In this section, we study the dynamics of the system with the Hamiltonian of Eq. (3) in the framework of open quantum systems which is described by the following Heisenberg-Langevin equations of motion

da^dt=-(κ+iδc)a^-ζQ^a^+εc+εse-iδt+2κea^in+2κia^int, 4a
dP^dt=-γBP^-(Ωc+ωsw)Q^-ζa^a^+P^in, 4b
dQ^dt=ΩcP^, 4c

where 2κea^in and 2κia^int are the input and internal noises, which are respectively originated by the input-output coupling and non-perfectness of the mirrors or light scattering of the remaining air molecules inside the cavity (κi is the cavity internal decay rate). In principle, the dissipation of the intracavity field takes place in two different ways: the first one is the leakage that occurs through the left mirror with the rate of κe which appears as the output field of the cavity that is detected on the left mirror, and the second one is the loss that occurs through inaccessible channels with the rate of κi. Therefore the cavity field amplitude damping rate is κ=κe+κi52. Furthermore, the output coupling ratio is defined by the coupling parameter (rc=κe/κ) and the damping rate of the Bogoliubov mode of the BEC is denoted by γB. Here P^in is the BEC atomic field input noise, whose mean value is zero.

Assuming no correlation between any two system operators, i.e., a^b^=a^b^, which is called the mean-field approximation, and supposing that a^in=a^int=P^in=0, the mean-value equations of motion for a^, P^, and Q^ from Eqs. (4a4c) can be obtained as

da^dt=-(κ+iδc)a^-ζQ^a^+εc+εse-iδt, 5a
dP^dt=-γBP^-(Ωc+ωsw)Q^-ζa^a^, 5b
dQ^dt=ΩcP^. 5c

By eliminating P^ from Eqs. (5b) and (5c) the dynamical equation of motion for the mean-value of Q^ operator of the BEC Bogoliubov mode is obtained as the following second order differential equation

d2Q^dt2+γBdQ^dt+ωB2Q^=-Ωcζa^a^. 6

As is seen from Eq. (6) the Bogoliubov mode of the BEC behaves as a driven-damped simple harmonic oscillator with an effective resonance frequency of ωB=(4ωR+12ωsw)(4ωR+32ωsw), which is called the Bogoliubov frequency.

In the case where the signal field amplitude is much smaller than the coupling field amplitude, i.e., |εs||εc|, the steady state solutions to Eqs. (5a) and (6), to the first order of |εs| in the frame rotating at ωc can be written as

a^=a0+a+e-iδt+a-eiδt, 7a
Q^=Q0+Q+e-iδt+Q-eiδt. 7b

The right hand side of Eqs. (7a) and (7b) contain three terms corresponding to the first three components of the Fourier expansion which are the steady state solutions at zero, first, and second order of εs, respectively oscillating at the coupling laser frequency ωc, signal field frequency ωs, and the four-wave mixing frequency 2ωc-ωs in the laboratory frame36. Now, by inserting Eqs. (7a) and (7b) in Eqs. (5a) and (6), the zeroth order components can be derived as

a0=εcκ+iΔ, 8a
Q0=-Ωcζ|a0|2ωB2, 8b

wherein Δ=δc+ζQ0 is the effective cavity detuning. Furthermore, by equalizing the coefficients with the same frequencies on both sides of the equations of motion, the following algebraic equations can be obtained

(i(Δ-δ)+κ)a+=-iζa0Q++εs, 9a
(i(Δ+δ)+κ)a-=-iζa0Q-, 9b
(ωB2-δ2+iγBδ)Q+=-Ωcζ(a0a++a0a-), 9c
(ωB2-δ2-iγBδ)Q-=-Ωcζ(a0a++a0a-). 9d

Assuming a0 is real, the solutions of Eqs. (9a9d) are obtained as follows

a+=1+ifi(Δ-δ)+κ-2fΔεs, 10a
a-=-a+1+i/f, 10b
Q-=Q+, 10c

wherein χ=ΩcωB2-δ2-iγBδ is called the mechanical susceptibility of the BEC Bogoliubov mode and f is defined as f=χζ2a02-i(Δ+δ)+κ.

Since we are going to derive the amplitude of the cavity output field emanating through the left mirror, we make use of the input-output relation, εout+εin=2κea^, where εin and εout are, respectively, the cavity input and output field amplitudes. Similar to relations (7a) and (7b), the cavity output field amplitude in the rotating frame can be written as follows

εout=εout0+εout+e-iδt+εout-eiδt, 11

where εout0 is the central band amplitude of the cavity output field oscillating at the frequency ωc while εout+ and εout- are the two sidebands oscillating, respectively, at frequencies ωs and 2ωc-ωs in the laboratory frame. Based on Eq. (4a), the input field amplitude is εin=εc+εse-iδt. If we substitute the input field amplitude as well as a^ and εout from Eqs. (7a) and (11) in the input-output relation, the central band amplitude of the output field is obtained as εout0=2κea0-εc, while the two sideband amplitudes are determined by εout+=2κea+-εs, and εout-=2κea-.

The cavity reflected field amplitude oscillating at the signal frequency is defined as the ratio of the cavity reflected field amplitude oscillating at the signal frequency (εout+) to the input signal field amplitude (εs), i.e., εR=εout+/εs. In the critical regime, where the rate of the cavity inaccessible loss (κi) is equal to the loss rate of the intracavity optical field (κe), the coupling parameter is rc=1/2, and the cavity reflected field amplitude at the signal frequency is obtained as

εR=κ(1+if)i(Δ-δ)+κ-2fΔ-1. 12

Finally, the cavity power reflection coefficient at the signal frequency is defined as the square of the reflected field amplitude at the signal frequency as

R=|εR|2. 13

Results and discussion

In order to investigate how the present hybrid OMS behaves as an optical transistor that can amplify the input signal, we study the behavior of the real part of reflected field amplitude given by Eq. (12), which represents the cavity absorptive behavior at the signal frequency, as well as the cavity power reflection coefficient at the signal frequency (Eq. (13)) in terms of the coupling-signal detuning δ=ωs-ωc in the regime where the system is stable.

Here, our results have been obtained based on the experimentally feasible parameters given in Refs.53,54. We have considered a cavity with the length of L=178 μm, damping rate of κ=106 Hz, and bare frequency of ω0=2.41494×1015 Hz which corresponds to a wavelength of λ=780 nm. The cavity contains a trapped BEC formed by N=106 Rb atoms having a transition frequency of ωa=2.41419×1015 Hz. The strength of the atom-field coupling is g0=2π×14.1 MHz, the atom recoil frequency is ωR=23.7 kHz, and the BEC damping rate of the Bogoliubov mode of the BEC is γB=10-4κ.

In order that the system is on-resonance, we obtain our results in the red detuning regime of Δ=ωB which leads to the following cubic equation in terms of ωc

ω0-ωc+12Ng02ωc-ωa-Ng04Ωc4ωB2|a0|2(ωc-ωa)2=ωB. 14

For any specified value of ωsw the value of ωB and subsequently the square of the optical zero-order component, i.e, |a0|2=|εc|2/(κ2+ωB2) are determined based on Eq. (8a). Since Eq. (14) is a third order algebraic equation, it has three roots for each value of ωsw. However, only for one of them the system is stable according to the Routh-Hurwitz criteria55.

In Fig. 2, the stable and unstable regions of the system have been indicated based on the Routh-Hurwitz criteria as a contour plot in terms of two experimentally controllable parameters of the system: the normalized coupling laser pumping rate (|εc|/κ) and the normalized s-wave scattering frequency (ωsw/ωR). The stable and unstable regions have been shown, respectively, by blue and red colors. Experimentally, the coupling laser pumping rate can be controlled by the power of the coupling laser while the s-wave scattering frequency of atomic collisions can be manipulated by the transverse frequency of the optical trap of the BEC?. Figure 2 shows that for |εc|0.14κ the s-wave scattering frequency is bound to have a nonzero minimum value so that the system remains in the stable regime, where the mentioned minimum of ωsw increases by increasing |εc|. On the other hand, for any fixed value of the s-wave scattering frequency, |εc| should be lower than a maximum value so that the system is stable.

Figure 2.

Figure 2

(Color online) The stable (blue) and unstable (red) regions, derived from the Routh-Hurwitz criteria where the horizontal axis is the normalized coupling laser pumping rate (|εc|/κ) and the vertical axis is the normalized s-wave scattering frequency (ωsw/ωR). The parameters are given in the second paragraph of section “Results and discussion”.

To study the mechanism of the system response to the input signal, we have plotted in Fig. 3 the real and imaginary parts of the output (reflected) field amplitude as well as the cavity power reflection coefficient at the input signal frequency versus the normalized frequency detuning (δ/κ) when the system is in the red detuning regime of Δ=ωB. Here the coupling laser pumping rate has been fixed at |εc|=0.10κ for two different values of the s-wave scattering frequency of atomic collisions: ωsw=100ωR (Fig. 3a), and ωsw=30ωR (Fig. 3b). For each value of ωsw the effective frequency of the Bogoliubov mode of the BEC, which plays the role of the mechanical mode frequency in the present hybrid OMS, is determined to be ωB2.16κ in Fig. 3a and ωB0.72κ in Fig. 3b. For each mentioned value of ωB one can solve Eq. (14) to find three roots for ωc which just one of them is acceptable based on the stability condition of the Routh-Hurwitz criteria. In this way, in an experimental setup with specified values of εc and ωsw, the right value of the coupling laser frequency (ωc) can be determined so that if the cavity is driven at that frequency, the system response to the input signal appears as those demonstrated in Fig. 3a and 3b. Here, the three roots of Eq. (14) are approximately given by 2.41494×1015, 2.41419×1015, and 2.41418×1015, where the first root satisfies the stability conditions. In this way, the right value of the coupling laser frequency is ωc2.41494×1015Hz.

Figure 3.

Figure 3

(Color online) Re[εR] (red thick curve) and Im[εR] (blue thin curve) as well as the cavity power reflection coefficient R (black dashed curve) at the signal frequency versus the normalized frequency detuning (δ/κ) for the coupling laser pumping rate of  |εc|=0.10κ, in the red detuning regime of Δ=ωB for two different values of the s-wave scattering frequency: (a) ωsw=100ωR, and (b) ωsw=30ωR. The other parameters are the same as those of Fig. 2.

In the present system, the input signal acts as a time-dependent perturbation (the last term in the Hamiltonian of Eq. (3)) where the absorptive and dispersive responses of the system to it are manifested, respectively, in the real and imaginary parts of the output (reflected) field amplitude. Since in Fig. 3a and b the enhanced effective optomechanical coupling ζa0<κ/2 the system is in the OMIT regime56 where a fairly narrow transparency window appears at δ=ωB. That is why the dip of the transparency window of the OMIT in Fig. 3a and 3b occurs, respectively at δ2.16κ and δ0.72κ. Besides, since at the center of the transparency window Im[εR]=0 and Re[εR]-1, the power reflection coefficient is determined by R=|Re[εR]|2, which is in the range of R1. When the maximum value of the power reflection coefficient at the signal frequency is greater than one, the phenomenon of OMIG45 happens and the cavity acts as an amplifier57.

Since ωB is an increasing function of ωsw, for large values of ωsw, like the case of Fig. 3a, the system is in the resolved sideband (RSB) regime, where ωB>κ, while for small values of ωsw, like the case of Fig. 3b, the system is in the URSB regime, where ωB<κ. In this way, the position of the dip of absorptive response (the red curves) indicates whether the system is in RSB or URSB regimes. Therefore, the system regime can be switched from RSB to URSB or vice versa by manipulating ωsw which itself is controllable through the transverse trapping frequency of the BEC48. As is seen from Fig. 3a, where the system is in the RSB regime, Re[εR]-1 and consequently R1 which corresponds to the situation of the standard OMIT where the reflection of the input signal is nearly 100%. However, in the URSB regime Re[εR]<-1 and consequently, R>1 which corresponds to the OMIG in which the input signal is amplified in the output of the system. As is seen from Fig. 3b the input signal power can be increased more than two times in the output of the cavity since Re[εR]<-2 and consequently R>2.

In Fig. 4, we have plotted the real part of the reflected field amplitude of the system (Fig. 4a) and the cavity power reflection coefficient (Fig. 4b) at the signal frequency versus the normalized coupling-signal detuning (δ/κ) for |εc|=0.10κ and three different values of the s-wave scattering frequency: ωsw=5ωR,10ωR, and 15ωR represented, respectively, by red thick, black dashed and blue thin curves. It should be emphasized that for |εc|=0.10κ the values of ωsw have been so considered that the system is in the stable (blue) region of Fig. 2. Each curve in Fig. 4a, which is a dip of the OMIT transparency window like that of the absorptive response (red thick curve) in Fig. 3, corresponds to a specified value of ωsw for which the cavity is driven at the specified value of ωc determined based on Eq. (14). Figure 4b shows that there exists a peak of power reflection coefficient corresponding to each dip in Fig. 4a. Since all the dips of the OMIT transparency windows in Fig. 4a occur at δ=ωB<κ, the system is in the URSB regime in which it acts as an amplifier. As is seen, the deeper is the dip of the transparency window, the larger is the peak of the power reflection coefficient of the system (the more amplification) so that for ωsw=5ωR the amplitude of the input signal is amplified up to 70 times in the output of the cavity, i.e., 7000% amplification.

Figure 4.

Figure 4

(Color online) (a) The real part of the reflected field amplitude. (b) The cavity power reflection coefficient at the signal frequency, versus the normalized frequency detuning (δ/κ), for the coupling laser pumping rate at |εc|=0.10κ and three different values of ωsw, in the red detuning regime where Δ=ωB. The red thick, black dashed, and blue thin plots correspond to the values of ωsw=5ωR, ωsw=10ωR and ωsw=15ωR, respectively. The other parameters are the same as those of Fig.  2.

To see how the amplification capacity of the system can be enhanced, in Fig. 5a we have plotted the minimum of the real part of the reflected field amplitude (corresponding to the minimum values of OMIT dips of Fig. 4a which occur at δ=ωB for every ωsw), and also we have plotted in Fig. 5b the maximum values of the power reflection coefficient at the signal frequency (corresponding to the maximum values of peaks of Fig. 4b) versus ωsw/ωR for two different values of coupling laser pumping rate: |εc|=0.10κ (the blue thin curves), and |εc|=0.15κ (the red thick curves). It should be noted that the variation range of ωsw in Fig. 5 has been chosen so that the system is stable and in the URSB regime. According to Fig. 5a, by decreasing ωsw the negativity of the real part of the reflected field amplitude increases, and consequently the maximum power reflection coefficient (amplification capacity) increases for each value of |εc|. Furthermore, as is seen from Fig. 5b at any ωsw the maximum value of the power reflection coefficient has a larger value for a larger |εc| (compare the red thick and blue thin curves). For example, at ωsw=3ωR the maximum value of the power reflection coefficient is more than 2000 (corresponding to 2×105% amplification) for |εc|=0.15κ, while it is about 200 (corresponding to 2×104% amplification) for |εc|=0.10κ.

Figure 5.

Figure 5

(Color online) (a) The minimum value of the real part of the reflected field amplitude, (b) the maximum value of the cavity power reflection coefficient at the signal frequency versus ωsw/ωR for two different values of the coupling laser pumping rate: |εc|=0.10κ (the blue thin curve) and |εc|=0.15κ (the red thick curve). The other parameters are the same as those of Fig. 2.

Furthermore, to show explicitly how the maximum value of the power reflection coefficient at the signal frequency increases by increasing the coupling laser pumping rate, in Fig. 6, we have plotted Max[R] versus the normalized coupling laser pumping rate (|εc|/κ), for three different values of the s-wave scattering frequency: ωsw=3ωR ( red thick curve), ωsw=4ωR (black dashed curve), and ωsw=5ωR (the blue thin curve). The inset of Fig. 6 shows Max[R] versus |εc|/κ for ωsw=ωR. As is seen from Fig. 6, Max[R] increases very rapidly by increasing the coupling laser pumping rate where the system gets near to the boundary of the instability region for each ωsw (the red region in Fig. 2). Besides, this increase is more intense for lower values of ωsw so that for ωsw=ωR (the inset of Fig. 6) the maximum value of the power reflection coefficient at the signal frequency exceeds 106 before the system enters the instability regime. It means that in the red detuned and URSB regime, the present hybrid OMS can amplify the input signal more than 108% while it is in the stable regime. This result is much greater than those obtained in the previously proposed schemes3641,45, and specifically three orders of magnitude larger than that obtained in Ref.39, where it has been shown that in the hybrid OMS (in which the effect of atom-atom interaction is neglected and no stability check has been presented) the maximum amplification that can be achieved is less than 2×105% in the blue regime of optomechanics, where the system has usually stability problems.

Figure 6.

Figure 6

(Color online) The maximum value of the cavity power reflection coefficient at the signal frequency versus the normalized coupling laser pumping rate (|εc|/κ) for different values of the s-wave scattering frequency: ωsw=3ωR (red thick curve), ωsw=4ωR (black dashed curve) and ωsw=5ωR (blue thin curve). The inset shows Max[R] versus |εc|/κ for ωsw=ωR. The other parameters are the same as those of Fig. 2.

Finally, it is worth reminding that another scheme for the generation of gain in OMSs has been already proposed based on the coherent modulation of the mechanical oscillator58. Such a scheme can lead to the generation of Casimir photons and phonons59 which makes the system act as a quantum amplifier or squeezer60 or behave as a quantum sensor for weak force sensing below the standard quantum limit (SQL)6163. As an interesting outlook for future researches, one can investigate the possibility of manifestation of OMIG in bare or hybrid OMSs whose mechanical modes are coherently modulated in the URSB regime. One of the best methods for studying the response of such driven-dissipative systems is the approach of Green’s function and the linear response theory6468which have been recently attracted much attention.

Summary and conclusions

We have studied the phenomenon of OMIG in a hybrid OMS consisting of a one dimensional BEC whose cavity is driven by a coupling laser tuned to the red sideband of the cavity in order to generate an effective optomechanical coupling between the optical mode of the cavity and the Bogoliubov mode of the BEC. It has been shown that if the cavity is exposed to a weak input signal behaving as an external signal laser which drives the intracavity mode perturbatively, the system acts as an optical transistor that can magnify the input signal in its output while the system is in the URSB regime. For this purpose, we have solved the Heisenberg-Langevin equations to obtain the reflected field amplitude in the cavity output whose real and imaginary parts represent, respectively, the absorptive and dispersive response of the system to the input signal. We have also shown that the system can switch from RSB to URSB by manipulating the s-wave scattering frequency which itself can be controlled by the transverse trapping frequency of the BEC. More importantly, we have shown that the amount of the system amplification can be enhanced and controlled by the coupling laser power as well as the s-wave scattering frequency as far as the system is stable and in the URSB regime. It has been shown that by decreasing the s-wave scattering frequency from one hand, and by increasing the coupling laser power from the other hand, the cavity power reflection coefficient at the signal frequency can be enhanced considerably before the system enters the instability region. Based on our obtained results, the input signal can be amplified more than 108% which is much larger than those obtained in previous studies.

Author contributions

The authors' contributions in this work are as follows: H. M. carried out the analytical investigation, derived the first version of graphs, and provided the draft of the manuscript with help of the other authors. A. D. conceptualized and supervised the whole work, checked the results, and participated in writing and editing. M. G. contributed in design of the work, checking the results, writing, and editing. B. A. worked on numerical calculations, provided the computational codes, and created the final results.

Data availibility

All data that support the findings of this study are included within the article.

Competing interests

The authors declare no competing interests.

Footnotes

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

References

  • 1.Maschler C, Mekhov IB, Ritsch H. Ultracold atoms in optical lattices generated by quantized light fields. Eur. Phys. J. D. 2008;46:545–560. doi: 10.1140/epjd/e2008-00016-4. [DOI] [Google Scholar]
  • 2.Kanamoto R, Meystre P. Optomechanics of ultracold atomic gases. Phys. Scr. 2010;82:038111. doi: 10.1088/0031-8949/82/03/038111. [DOI] [Google Scholar]
  • 3.Asjad M. Cavity optomechanics with a bose-einstein condensate: Normal mode splitting. J. Mod. Opt. 2012;59:917–922. doi: 10.1080/09500340.2012.679706. [DOI] [Google Scholar]
  • 4.Chen B, Jiang C, Zhu K-D. Tunable all-optical kerr switch based on a cavity optomechanical system with a bose-einstein condensate. JOSA B. 2011;28:2007–2013. doi: 10.1364/JOSAB.28.002007. [DOI] [Google Scholar]
  • 5.Asjad M. Electromagnetically-induced transparency in optomechanical systems with bose-einstein condensate. J. Russ. Laser Res. 2013;34:159–165. doi: 10.1007/s10946-013-9337-8. [DOI] [Google Scholar]
  • 6.Aspelmeyer M, Kippenberg TJ, Marquardt F. Cavity optomechanics. Rev. Mod. Phys. 2014;86:1391. doi: 10.1103/RevModPhys.86.1391. [DOI] [Google Scholar]
  • 7.Brennecke F, et al. Cavity qed with a bose–einstein condensate. nature. 2007;450:268–271. doi: 10.1038/nature06120. [DOI] [PubMed] [Google Scholar]
  • 8.Gupta S, Moore KL, Murch KW, Stamper-Kurn DM. Cavity nonlinear optics at low photon numbers from collective atomic motion. Phys. Rev. Lett. 2007;99:213601. doi: 10.1103/PhysRevLett.99.213601. [DOI] [PubMed] [Google Scholar]
  • 9.Domokos P, Ritsch H. Mechanical effects of light in optical resonators. JOSA B. 2003;20:1098–1130. doi: 10.1364/JOSAB.20.001098. [DOI] [Google Scholar]
  • 10.Maschler C, Ritsch H. Cold atom dynamics in a quantum optical lattice potential. Phys. Rev. Lett. 2005;95:260401. doi: 10.1103/PhysRevLett.95.260401. [DOI] [PubMed] [Google Scholar]
  • 11.Kónya G, Szirmai G, Domokos P. Multimode mean-field model for the quantum phase transition of a bose-einstein condensate in an optical resonator. Eur. Phys. J. D. 2011;65:33–42. doi: 10.1140/epjd/e2011-20050-3. [DOI] [Google Scholar]
  • 12.Dalafi A, Naderi M, Soltanolkotabi M, Barzanjeh S. Nonlinear effects of atomic collisions on the optomechanical properties of a bose-einstein condensate in an optical cavity. Phys. Rev. A. 2013;87:013417. doi: 10.1103/PhysRevA.87.013417. [DOI] [Google Scholar]
  • 13.Asjad M, Saif F. Normal mode splitting in hybrid bec-optomechanical system. Optik. 2014;125:5455–5460. doi: 10.1016/j.ijleo.2014.07.062. [DOI] [Google Scholar]
  • 14.Agarwal GS, Huang S. Electromagnetically induced transparency in mechanical effects of light. Phys. Rev. A. 2010;81:041803. doi: 10.1103/PhysRevA.81.041803. [DOI] [Google Scholar]
  • 15.Huang S, Agarwal G. Electromagnetically induced transparency from two-phonon processes in quadratically coupled membranes. Phys. Rev. A. 2011;83:023823. doi: 10.1103/PhysRevA.83.023823. [DOI] [Google Scholar]
  • 16.Agarwal G, Huang S. Optomechanical systems as single-photon routers. Phys. Rev. A. 2012;85:021801. doi: 10.1103/PhysRevA.85.021801. [DOI] [Google Scholar]
  • 17.Weis S, et al. Optomechanically induced transparency. Science. 2010;330:1520–1523. doi: 10.1126/science.1195596. [DOI] [PubMed] [Google Scholar]
  • 18.Szirmai G, Nagy D, Domokos P. Quantum noise of a bose-einstein condensate in an optical cavity, correlations, and entanglement. Phys. Rev. A. 2010;81:043639. doi: 10.1103/PhysRevA.81.043639. [DOI] [Google Scholar]
  • 19.Dalafi A, Naderi M, Soltanolkotabi M. Squeezed-state generation via atomic collisions in a bose-einstein condensate inside an optical cavity. J. Mod. Opt. 2014;61:1387–1397. doi: 10.1080/09500340.2014.935818. [DOI] [Google Scholar]
  • 20.Dalafi A, Naderi M. Phase noise and squeezing spectra of the output field of an optical cavity containing an interacting bose-einstein condensate. J. Phys. B: At. Mol. Opt. Phys. 2016;49:145501. doi: 10.1088/0953-4075/49/14/145501. [DOI] [Google Scholar]
  • 21.Dalafi A, Naderi M. Dispersive interaction of a bose-einstein condensate with a movable mirror of an optomechanical cavity in the presence of laser phase noise. Phys. Rev. A. 2016;94:063636. doi: 10.1103/PhysRevA.94.063636. [DOI] [Google Scholar]
  • 22.Dalafi A, Naderi M, Soltanolkotabi M, Barzanjeh S. Controllability of optical bistability, cooling and entanglement in hybrid cavity optomechanical systems by nonlinear atom-atom interaction. J. Phys. B: At. Mol. Opt. Phys. 2013;46:235502. doi: 10.1088/0953-4075/46/23/235502. [DOI] [Google Scholar]
  • 23.Dalafi A, Naderi M. Controlling steady-state bipartite entanglement and quadrature squeezing in a membrane-in-the-middle optomechanical system with two bose-einstein condensates. Phys. Rev. A. 2017;96:033631. doi: 10.1103/PhysRevA.96.033631. [DOI] [Google Scholar]
  • 24.Dalafi A, Naderi M, Soltanolkotabi M. The effect of atomic collisions on the quantum phase transition of a bose-einstein condensate inside an optical cavity. J. Phys. B: At. Mol. Opt. Phys. 2015;48:115507. doi: 10.1088/0953-4075/48/11/115507. [DOI] [Google Scholar]
  • 25.Dalafi A, Naderi M. Intrinsic cross-kerr nonlinearity in an optical cavity containing an interacting bose-einstein condensate. Phys. Rev. A. 2017;95:043601. doi: 10.1103/PhysRevA.95.043601. [DOI] [Google Scholar]
  • 26.Dalafi A, Naderi M, Motazedifard A. Effects of quadratic coupling and squeezed vacuum injection in an optomechanical cavity assisted with a bose-einstein condensate. Phys. Rev. A. 2018;97:043619. doi: 10.1103/PhysRevA.97.043619. [DOI] [Google Scholar]
  • 27.Tarhan D, Huang S, Müstecaplıoğlu ÖE. Superluminal and ultraslow light propagation in optomechanical systems. Phys. Rev. A. 2013;87:013824. doi: 10.1103/PhysRevA.87.013824. [DOI] [Google Scholar]
  • 28.Wu Z, et al. Force-induced transparency and conversion between slow and fast light in optomechanics. Phys. Rev. A. 2017;96:033832. doi: 10.1103/PhysRevA.96.033832. [DOI] [Google Scholar]
  • 29.Mikaeili H, Dalafi A, Ghanaatshoar M, Askari B. Ultraslow light realization using an interacting bose-einstein condensate trapped in a shallow optical lattice. Sci. Rep. 2022;12:1–10. doi: 10.1038/s41598-022-08250-9. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 30.Han C-M, Wang X, Chen H, Li H-R. Tunable slow and fast light in an atom-assisted optomechanical system with a mechanical pump. Opt. Commun. 2020;456:124605. doi: 10.1016/j.optcom.2019.124605. [DOI] [Google Scholar]
  • 31.Liao Q, Xiao X, Nie W, Zhou N. Transparency and tunable slow-fast light in a hybrid cavity optomechanical system. Opt. Express. 2020;28:5288–5305. doi: 10.1364/OE.382254. [DOI] [PubMed] [Google Scholar]
  • 32.Li X-X, Li J-Y, Cheng X-X, Li G-A. Optical response with tunneling coupling in a hybrid optomechanical system. Int. J. Theor. Phys. 2022;61:1–12. doi: 10.1007/s10773-022-05151-5. [DOI] [Google Scholar]
  • 33.Chen B, Xing H-W, Chen J-B, Xue H-B, Xing L-L. Tunable fast-slow light conversion based on optomechanically induced absorption in a hybrid atom-optomechanical system. Quant. Inf. Process. 2021;20:1–11. doi: 10.1007/s11128-020-02955-4. [DOI] [Google Scholar]
  • 34.Chen B, Jiang C, Zhu K-D. Slow light in a cavity optomechanical system with a bose-einstein condensate. Phys. Rev. A. 2011;83:055803. doi: 10.1103/PhysRevA.83.055803. [DOI] [Google Scholar]
  • 35.Safavi-Naeini AH, et al. Electromagnetically induced transparency and slow light with optomechanics. Nature. 2011;472:69–73. doi: 10.1038/nature09933. [DOI] [PubMed] [Google Scholar]
  • 36.Huang S, Agarwal G. Normal-mode splitting and antibunching in stokes and anti-stokes processes in cavity optomechanics: Radiation-pressure-induced four-wave-mixing cavity optomechanics. Phys. Rev. A. 2010;81:033830. doi: 10.1103/PhysRevA.81.033830. [DOI] [Google Scholar]
  • 37.Li J, Chu Y, Liu J, Zhu K-D. Optomechanical transistor with phonons and photons. IEEE Sens. J. 2017;17:3041–3044. [Google Scholar]
  • 38.Wang X-Y, Si L-G, Liu Z-X, Lu X-H, Wu Y. Tunable optical amplification arising from blue detuning in a quadratically coupled optomechanical system. JOSA B. 2019;36:1355–1362. doi: 10.1364/JOSAB.36.001355. [DOI] [Google Scholar]
  • 39.Chen B, Jiang C, Li J-J, Zhu K-D. All-optical transistor based on a cavity optomechanical system with a bose-einstein condensate. Phys. Rev. A. 2011;84:055802. doi: 10.1103/PhysRevA.84.055802. [DOI] [Google Scholar]
  • 40.Si L-G, Xiong H, Zubairy MS, Wu Y. Optomechanically induced opacity and amplification in a quadratically coupled optomechanical system. Phys. Rev. A. 2017;95:033803. doi: 10.1103/PhysRevA.95.033803. [DOI] [Google Scholar]
  • 41.Zhang X, Tian L, Li Y. Optomechanical transistor with mechanical gain. Phys. Rev. A. 2018;97:043818. doi: 10.1103/PhysRevA.97.043818. [DOI] [Google Scholar]
  • 42.Goodarzi A, Ghanaatshoar M, Mozafari M. All-optical fiber optic coherent amplifier. Sci. Rep. 2018;8:1–6. doi: 10.1038/s41598-018-33426-7. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 43.Goodarzi A, Ghanaatshoar M. Controlling light by light: Photonic crystal-based coherent all-optical transistor. JOSA B. 2016;33:1594–1599. doi: 10.1364/JOSAB.33.001594. [DOI] [Google Scholar]
  • 44.Goodarzi A, Ghanaatshoar M. Coherent all-optical transistor based on frustrated total internal reflection. Sci. Rep. 2018;8:1–8. doi: 10.1038/s41598-018-23367-6. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 45.Yan X-B. Optomechanically induced transparency and gain. Phys. Rev. A. 2020;101:043820. doi: 10.1103/PhysRevA.101.043820. [DOI] [Google Scholar]
  • 46.Yan X-B. Optomechanically induced optical responses with non-rotating wave approximation. J. Phys. B: At. Mol. Opt. Phys. 2021;54:035401. doi: 10.1088/1361-6455/abd645. [DOI] [Google Scholar]
  • 47.Bennett, J. Quantum optomechanics in the unresolved sideband regime. Ph.D. thesis (2017).
  • 48.Morsch O, Oberthaler M. Dynamics of bose-einstein condensates in optical lattices. Rev. Mod. Phys. 2006;78:179. doi: 10.1103/RevModPhys.78.179. [DOI] [Google Scholar]
  • 49.Maschler C, Ritsch H. Quantum motion of laser-driven atoms in a cavity field. Opt. Commun. 2004;243:145–155. doi: 10.1016/j.optcom.2004.10.038. [DOI] [Google Scholar]
  • 50.Domokos P, Horak P, Ritsch H. Semiclassical theory of cavity-assisted atom cooling. J. Phys. B: At. Mol. Opt. Phys. 2001;34:187. doi: 10.1088/0953-4075/34/2/306. [DOI] [Google Scholar]
  • 51.Nagy D, Domokos P, Vukics A, Ritsch H. Nonlinear quantum dynamics of two bec modes dispersively coupled by an optical cavity. Eur. Phys. J. D. 2009;55:659–668. doi: 10.1140/epjd/e2009-00265-7. [DOI] [Google Scholar]
  • 52.Qu, K. Coherent interference effects and squeezed light generation in optomechanical systems. Ph.D. thesis, Oklahoma State University (2015).
  • 53.Ritter S, et al. Dynamical coupling between a bose-einstein condensate and a cavity optical lattice. Appl. Phys. B. 2009;95:213–218. doi: 10.1007/s00340-009-3436-9. [DOI] [Google Scholar]
  • 54.Brennecke F, Ritter S, Donner T, Esslinger T. Cavity optomechanics with a bose-einstein condensate. Science. 2008;322:235–238. doi: 10.1126/science.1163218. [DOI] [PubMed] [Google Scholar]
  • 55.Bergman HG, Bellman R, Kalaba RE. Selected Papers on Mathematical Trends in Control Theory. Dover Publications; 1964. [Google Scholar]
  • 56.Peng B, Özdemir ŞK, Chen W, Nori F, Yang L. What is and what is not electromagnetically induced transparency in whispering-gallery microcavities. Nat. Commun. 2014;5:1–9. doi: 10.1038/ncomms6082. [DOI] [PubMed] [Google Scholar]
  • 57.Wen J, Dan Y, Ma X, Xu L, Sun P. Frequency measurement and amplification of lidar echo signal based on optomechanical effects. Opt. Continuum. 2022;1:261–270. doi: 10.1364/OPTCON.449204. [DOI] [Google Scholar]
  • 58.Levitan B, Metelmann A, Clerk A. Optomechanics with two-phonon driving. New J. Phys. 2016;18:093014. doi: 10.1088/1367-2630/18/9/093014. [DOI] [Google Scholar]
  • 59.Motazedifard A, Dalafi A, Naderi M, Roknizadeh R. Controllable generation of photons and phonons in a coupled bose-einstein condensate-optomechanical cavity via the parametric dynamical casimir effect. Ann. Phys. 2018;396:202–219. doi: 10.1016/j.aop.2018.07.013. [DOI] [Google Scholar]
  • 60.Motazedifard A, Dalafi A, Naderi M, Roknizadeh R. Strong quadrature squeezing and quantum amplification in a coupled bose-einstein condensate-optomechanical cavity based on parametric modulation. Ann. Phys. 2019;405:202–219. doi: 10.1016/j.aop.2019.03.019. [DOI] [Google Scholar]
  • 61.Motazedifard A, Dalafi A, Bemani F, Naderi M. Force sensing in hybrid bose-einstein-condensate optomechanics based on parametric amplification. Phys. Rev. A. 2019;100:023815. doi: 10.1103/PhysRevA.100.023815. [DOI] [Google Scholar]
  • 62.Motazedifard A, Dalafi A, Naderi M. Ultraprecision quantum sensing and measurement based on nonlinear hybrid optomechanical systems containing ultracold atoms or atomic bose-einstein condensate. AVS Quant. Sci. 2021;3:024701. doi: 10.1116/5.0035952. [DOI] [Google Scholar]
  • 63.Fani M, Dalafi A. Back-action evading measurement of the collective mode of a bose-einstein condensate. JOSA B. 2020;37:1263–1272. doi: 10.1364/JOSAB.386227. [DOI] [Google Scholar]
  • 64.Scarlatella O, Clerk AA, Schiro M. Spectral functions and negative density of states of a driven-dissipative nonlinear quantum resonator. New J. Phys. 2019;21:043040. doi: 10.1088/1367-2630/ab0ce9. [DOI] [Google Scholar]
  • 65.Ban M, Kitajima S, Arimitsu T, Shibata F. Linear response theory for open systems: Quantum master equation approach. Phys. Rev. A. 2017;95:022126. doi: 10.1103/PhysRevA.95.022126. [DOI] [Google Scholar]
  • 66.Motazedifard A, Dalafi A, Naderi M. A green’s function approach to the linear response of a driven dissipative optomechanical system. J. Phys. A: Math. Theor. 2021;54:215301. doi: 10.1088/1751-8121/abf3e9. [DOI] [Google Scholar]
  • 67.Askari B, Dalafi A. Dynamics of a hybrid optomechanical system in the framework of the generalized linear response theory. J. Phys. A: Math. Theor. 2021;55:035301. doi: 10.1088/1751-8121/ac40e2. [DOI] [Google Scholar]
  • 68.Shen H, Li D, Yi X. Non-markovian linear response theory for quantum open systems and its applications. Phys. Rev. E. 2017;95:012156. doi: 10.1103/PhysRevE.95.012156. [DOI] [PubMed] [Google Scholar]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Data Availability Statement

All data that support the findings of this study are included within the article.


Articles from Scientific Reports are provided here courtesy of Nature Publishing Group

RESOURCES