Skip to main content
iScience logoLink to iScience
. 2023 Feb 9;26(3):106137. doi: 10.1016/j.isci.2023.106137

Modular synthesis of unsaturated aza-heterocycles via copper catalyzed multicomponent cascade reaction

Siqi Wei 1,2, Guocong Zhang 1,2, Yahui Wang 1,2, Mengwei You 1, Yanan Wang 1, Liejin Zhou 1,, Zuxiao Zhang 1,3,∗∗
PMCID: PMC9988680  PMID: 36895640

Summary

The unsaturated aza-heterocycles such as tetrahydropyridines pose significant applications in both drug discovery and development. However, the methods to construct polyfunctionalized tetrahydropyridines are still limited. Herein, we report a modular synthesis of tetrahydropyridines via copper catalyzed multicomponent radical cascade reaction. The reaction features mild conditions and broad substrate scope. In addition, the reaction could scale up to gram scale with similar yield. A variety of 1,2,5,6-tetrahydropyridines with C3 and C5 substituents could be assembled from simple starting materials. More importantly, the products could serve as versatile intermediate to access various functionalized aza-heterocycles which further demonstrates its utility.

Subject areas: Chemical reaction, Catalysis, Chemical synthesis

Graphical abstract

graphic file with name fx1.jpg

Highlights

  • A copper catalyzed multi-component radical cascade reaction is realized to access 1,2,5,6-tetrahydropyridines

  • The reaction features with mild conditions and broad substrate scope

  • A various functionalized unsaturated piperidines could be assembled from readily available starting materials

  • Additionally, the products are versatile intermediates to access various functionalized aza-heterocycles which further demonstrates its utility


Chemical reaction; Catalysis; Chemical synthesis

Introduction

Non-aromatic aza-heterocycles are widely existent in a majority of bioactive natural products and pharmaceutical compounds.1,2,3,4 These aza-heterocycles such as tetrahydropyridines and piperidines can be found in a number of FDA approved drugs such as Lisuride, Tadalafil, and Paroxetine (Figure 1A).5,6,7 Moreover, tetrahydropyridines are versatile intermediates to provide a wide range of functionalized piperidines via well-established olefin functionalization,8,9,10,11,12 which are the most prevalent nitrogen heterocycles found in pharmaceutical drugs.13,14,15,16,17 As a result, methods for the rapid assembly of diverse tetrahydropyridines from readily available starting materials are of high value to drug discovery and development.18,19 Albeit considerable effort has been devoted to developing efficient methods of constructing azaheterocycles, the synthesis of 1,2,5,6-tetrahydropyridines with C3 or C5 substituents continues to be a significant challenge. Traditional methods mainly relied on the partial reduction of pre-functionalized pyridines and further reduction of N-alkyl-1,2-dihydropyridines via iminium intermediates.20,21,22,23,24,25,26,27,28,29,30 Recently, Ellman and Bergman developed an elegant cascade strategy which involving Rh-catalyzed C−H activation of α,β-unsaturated imines followed by addition across alkynes, in situ electrocyclization, and reduction or nucleophilic addition in the presence of acid to obtain highly substituted 1,2,5,6-tetrahydropyridines.31,32,33,34 Alternatively, Donohoe et al. developed Iridium catalyzed reductive functionalization of pyridinium salts by harnessing the formation of a nucleophilic enamine intermediate to access C3 functionalized 1,2,5,6-tetrahydropyridines (Figure 1B)35 Notwithstanding these elegant reports, a strategy for the quick assembly of 1,2,5,6-tetrahydropyridines with C3 and C5 substituents is still highly desirable.

Figure 1.

Figure 1

Background and methods to construct unsaturated Aza-heterocycles

(A) Representative drugs containing substituted 6-membered azaheterocycles.

(B) Or each panel or group of panels can be described separately The State-of-the-Art to construct unsaturated aza-heterocycles.

(C) Rational of copper catalyzed multicomponent radical cyclization (this work).

Multicomponent reactions represent one of the most efficient and practical synthetic methods in terms of atom- and step-economy for the expeditious construction of polyfunctionalized molecules with structural diversity from readily available starting materials.36,37,38,39,40,41 Thus, a multicomponent reaction approach would offer us an alternative solution to the modular synthesis of 1,2,5,6-tetrahydropyridines with various functionalities at C3, C4 and C5 positions. In the light of recent progress of copper catalyzed radical relay process which was initiated by generating N-centered radicals in C-H functionalization42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69 and difunctionalization of alkenes,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87 we envisioned that a modular synthesis of valuable 1,2,5,6-tetrahydropyridines could be accomplished by a copper catalyzed radical cascade reaction involving three simple components (Figure 1C). Specifically, an F-masked 4-methyl-N-(2-phenylbuta-2,3-dien-1-yl)benzene-sulfonamide was designed to generate electrophilic N-centered radical via single electron transfer from copper catalyst. Followed by the N centered radical addition toward alkenes to trigger a radical 6-exo-dig cyclization. Finally, the formed allylic carbon radical reacted with a bulky Cu(II) complex to give the 1,2,5,6-tetrahydropyridines with various substituents at C3, C4, and C5 positions, which could provide a wealth of opportunities in both drug discovery and development (Figure 1C). Hence, we report a modular synthesis of functionalized tetrahydropyridines via copper catalyzed three components radical cascade reaction.

Results and discussion

Discovery

To test the feasibility of the proposed strategy, substrate 1a, 1b and TMSCN were as the model substrate. After a careful evaluation of various reaction parameters, the desired cyclization product 1c was isolated in 65% yield with Cu(CH3CN)4PF6 as catalyst, L3 as the ligand, 1b (2 equiv) as coupling partner, TMSCN (2.5 equiv) as nucleophile and fluorobenzene as solvent (see equation in Table 1, entry 1). As expected, the ligand played a pivotal role in this reaction. While using ligands L1 and L2, no desired product was formed. The BOX ligand (L3) was proved to be optimal to give good yield and excellent regioselectivity while installing the cyanide group at less steric hindered primary carbon site. In addition, in line with the proposed mechanism, the use of a chiral ligand did not impart any enantioselectivity and the product was found to be racemic. Other solvents instead of fluorobenzene were less effective and gave diminished yield (entries 2–6). Lots of copper salts could be employed as catalyst to furnish the desired product albeit with decreased yield (entries 7–10). Elevating the reaction temperature to 50°C made the reaction sluggish (entry 11). On the other hand, there was no reaction occurred at 0°C (entry 12). In addition, no matter increasing or decreasing the loading of TMSCN would diminish the yield of the desired product (entries 13–14). Gratifyingly, while using the alkene as limiting reagent, the reaction proceeded smoothly to give the desired product with comparable yield (entries 15–17).

Table 1.

Optimization of copper catalyzed multicomponent cascade reactiona

Inline graphic
Entry Variation from standard conditions 1c Yield [%]
1 None 69 (65)b
2 DME instead of PhF 33
3 DCM instead of PhF 46
4 CH3CN instead of PhF 46
5 benzene instead of PhF 62
6 PhCF3 instead of PhF 55
7 CuOAc instead of Cu(CH3CN)4PF6 44
8 CuI instead of Cu(CH3CN)4PF6 39
9 CuSCN instead of Cu(CH3CN)4PF6 20
10 Cu(OTf)2 instead of Cu(CH3CN)4PF6 22
11 50°C instead of 36°C 40
12 0°C instead of 36°C ND
13 TMSCN 1.5 equiv 48
14 TMSCN 3.0 equiv 51
15 1a:1b = 1:1 56
16 1a:1b = 1.2:1 58
17 1a:1b = 1.5:1 61

ND stands for No desired product. Please define any abbreviations used.

a

General conditions: 1a (0.1 mmol), 1b (0.2 mmol), TMSCN (0.25 mmol), solvent (1.0 mL), 36°C, 12 h.

b

Isolated yield.

Synthetic evaluation

After having established the optimal reaction conditions, we then investigated the generality of this copper catalyzed multicomponent radical cyclization reaction. To install different functional groups at C5 position of the 1,2,5,6-tetrahydropyridines, monosubstituted styrenes were first examined (Scheme 1), and the desired products (1c8c) were obtained in moderate to good yields. Different substituents on the benzene ring, including the alkyl group (2c), halide (5c), alkyl halide group (6c), and alkoxyl group (3c, 7c, 8c) were all tolerated. The substrates bearing two or three substituents on the aromatic ring reacted smoothly with 1a to afford the desired products (9c-13c) in acceptable yields. An extended aromatic ring, such as 2- vinylnaphthalene, was a viable substrate and furnished the desired product 14c in a moderate yield. Alkenes bearing heterocyclic moieties worked nicely in this reaction, gave the corresponding products (15c17c) in 49–75% yield. Notably, heterocycles commonly existing in therapeutics, such as benzofuran, benzothiophene and indole, were well tolerated under the current conditions, which once again showcased the robustness of our method. To our delight, the radical cyclization took place regio-selectively and obtained 18c in 61% yield when we commit our study with diene substrate. Furthermore, hetero atom substituents could be installed at the C5 position while using N-vinyl benzamide, N-vinly lactam and vinyl aryl ether as substrates, and the corresponding products 19c21c could be obtained in medium yield.

Scheme 1.

Scheme 1

Scope of alkenes and allenesa,b

aReaction conditions: 1a (0.2 mmol), 1b (0.4 mmol), TMSCN (0.5 mmol), solvent (2.0 mL), 36°C, 12 h. Isolated yield. bGram-scale reaction (5 mmol).

Next, a variety of F-masked sulfonamides were investigated to install different substituents on the C3 position of the 1,2,5,6-tetrahydropyridines (Scheme 1). A variety of functional groups including both electron donating groups and electron withdrawing groups on the para position of the aryl group were all compatible with the reaction conditions and furnished the corresponding products 22c26c in moderate yields. While changing the substituent to meta and otho position, the reaction went smoothly to give the desired products 27c28c in 77% and 63% yield respectively. The steric more hindered substituents such as naphthalene were tolerated as well 29c-30c. Unfortunately, there was no reaction occurred while changing the aryl group into an alkyl group 31c.

Encouraged by the above results that copper catalyst could trap the allylic carbon radical efficiently and regioselectively, we turned our attention to testing the coupling of allylic carbon radical with other nucleophiles (Scheme 2). TMSN3 and TMSSCN were used as nucleophiles in this reaction, affording the desired product 32c-33c in medium yield. Considering the attractive properties of SCF3 group, AgSCF3 was then examined which could install SCF3 group 34c under slightly modified conditions with acceptable yield as well. At last, a wide array of alkynylating reagents (alkynyltrimethoxysilane) with different substituents on the C−C triple bond, such as tBu, nBu, phenyl, TMS, and cyclopropyl groups, were applied to this multicomponent radical cyclization reaction. As shown in Scheme 2, the reactions proceeded smoothly and yielded the corresponding alkynylation products (35c-39c) in moderate to good yields (43−76%).

Scheme 2.

Scheme 2

Scope of nucleophilesa

aDetailed reaction conditions see supplemental information.

Synthetic utility

To demonstrate the potential synthetic utility of our present method, further transformations of the tetrahydropyridines products were conducted (Figure 2). For example, the reaction of 3c and H2O2 could produce the corresponding amide 40 compound in 72% yield. The Ts group on the nitrogen atom could be removed by Mg/MeOH to give 41 in 83% yield. The Compound 3c could also undergo a dehydrogenation process by DDQ to form 42 in 70% yield. Finally, the 3c treated with oxone and HBr led to an unexpected dihydropyridine 43 in 56% yield. The structure and configuration of 43 were determined by single-crystal X-ray diffraction analysis (see supplemental information).

Figure 2.

Figure 2

Transformations of the 1,2,5,6-tetrahydropyridines

(A) 30% H2O2, NaOH (aq.), MeOH; (B) mg, MeOH; (C) DDQ, PhMe; (D) oxone, HBr, DCM.

Conclusions

In summary, we have developed a copper catalyzed multicomponent radical cascade reaction. Various alkenes, F-masked allenes sufonylamides, and nucleophiles could be assembled to give important unsaturated nitrogen-containing heterocycles under mild conditions. The reaction involved an N-centered radical addition toward alkenes, 6-exo-dig cyclization, and regioselective cross coupling of the formed allylic radical. The transformations of the products and gram scale set up were further showcased the utility of this reaction.

Limitations of the study

This work reports a highly efficient and regioselective method for the preparation of tetrahydropyridines via copper catalyzed multicomponent radical cascade reaction. Although a good substrate scope of alkenes and nucleophiles has been demonstrated, this method shows limitations on substrates of F-masked sulfonamides. Further optimization of catalysts and reaction conditions is needed to expand the scope of F-masked sulfonamides and improve the applicability of the method.

STAR★Methods

Key resources table

REAGENT or RESOURCE SOURCE IDENTIFIER
Chemical reagents and characterization instruments

Cu(CH3CN)4PF6 Energy Chemical CAS: 64443-05-6
CuOAc Energy Chemical CAS: 598-54-9
CuI Energy Chemical CAS: 7681-65-4
CuSCN Energy Chemical CAS: 1111-67-7
Cu(OTf)2 Energy Chemical CAS: 34946-82-2
TMSCN bidepharm CAS: 7677-24-9
TMSN3 Energy Chemical CAS: 4648-54-8
AgSCF3 Energy Chemical CAS: 811-68-7
Styrene Energy Chemical CAS: 100-42-5
4-Acetoxystyrene Energy Chemical CAS: 2628-16-2
4-Chlorostyrene Energy Chemical CAS: 1073-67-2
4-tert-Butylstyrene Energy Chemical CAS: 1746-23-2
4-Methylstyrene Energy Chemical CAS: 622-97-9
4-Methoxystyrene Energy Chemical CAS: 637-69-4
2-Vinylnaphthalene Energy Chemical CAS: 827-54-3
4-Vinylbenzyl chloride Energy Chemical CAS: 1592-20-7
DME Energy Chemical CAS: 110-71-4
DCM Energy Chemical CAS: 75-09-2
CH3CN Energy Chemical CAS: 75-05-8
Benzene Energy Chemical CAS: 71-43-2
PhCF3 Energy Chemical CAS: 98-08-8
PhF Energy Chemical CAS: 462-06-6
2,2′-Bipyridine Energy Chemical CAS: 366-18-7
o-Phenanthroline bidepharm CAS: 66-71-7

Deposited data

CIF of 3a CCDC 2192306 https://www.ccdc.cam.ac.uk/structures/
CIF of 43 CCDC 2192304 https://www.ccdc.cam.ac.uk/structures/

Other

Silica gel (200-300 mesh) Shanxi Nuotai
thin layer chromatography using TLC silica gel plates Shanxi Nuotai
AVIII 400 MHz Bruker https://bruker.com
AVIII 600 MHz Bruker https://bruker.com
X-ray diffraction Bruker https://bruker.com
HRMS Agilent https://www.agilent.com.cn/

Resource availability

Lead contact

Further information and requests for resources should be directed to and will be fulfilled by the lead contact, Zuxiao Zhang (zhangzx@zjnu.edu.cn).

Materials availability

All other datasupporting the findings of this study are available within the article and the supplemental information or from the lead contact upon reasonable request.

Method details

Preparation of substrates

General procedure for the synthesis of N-F.

These substrates can be synthesized from Mitsunobu Reaction with 2-Aryl-2,3-butadien-1-ol and TsNHBoc, then the Boc protecting group can be removed by TFA.1.

graphic file with name fx3.jpg

2-Phenyl-2, 3-butadien-1-ol (1.46g, 10 mmol), TsNHBoc (3.53g, 13 mmol) and PPh3 (3.41g 13 mmol) were suspended in THF (15 ml). The mixture was cooled to 0°C and diethyl azodicarboxylate (DEAD 2.61g, 15 mmol) was added dropwisely. Then the reaction mixture was allowed to warm to room temperature. Water was added when the starting material was disappeared and the mixture was extracted with Et2O. The combined organic extracts were dried overMgSO4. After solvent evaporated, the residue was purified through silica gel to give the allenyl imide product. The allenyl imide was treated with TFA following the process described as above to give the product (1.94g, 65% for two steps).

graphic file with name fx4.jpg

In an oven dried round bottom flask with stir bar, sodium hydride (10 mmol, 2 equiv.) was taken. The sodium hydride was washed with pentane (2 times) and dried under vacuum and filled with nitrogen. Then dry DCM (40 mL) was added to it. A solution of sulfonamide (1 equiv.) in dry DCM (0.5 M) was added dropwise to the NaH suspension in DCM. The total reaction was stirred at room temperature for 30 mins. Then, a solution of NFSI (3 eq.) in dry DCM (0.5 M) was added to dropwise to the reaction mixture at room temperature. The total reaction mixture was stirred for overnight at room temperature. The reaction was quenched with ice with constant stirring. Then 50 mL of water was added to the reaction mixture. The organic part was washed with 30 mL NaHCO3, and 30 mL brine solution respectively. The organic part was concentrated in rotary evaporator and performed silica gel flash column chromatography to isolate the desired N-F (fluorosulfonamide, 25%-50% yield) using hexanes/ethyl acetate mixture as eluent.

Preparation of products

General procedure for the synthesis of products. Related to Scheme 1, 2.

graphic file with name fx5.jpg

Procedure A

In a dried sealed 10 mL Schlenk tube, Cu(CH3CN)4PF6 (5 mol%), bisoxazoline ligand L3 (7.5 mol %) were dissolved in a mixed solvent of PhF (2.0 mL) under a N2 atmosphere, and the mixture was stirred for 30 min. Then substrate N-F (1a, 63.4 mg, 0.2 mmol, 1.0 eq.), styrene (1b, 42.0mg, 0.4 mmol, 2.0 eq.) and TMSCN (67 μl, 0.5 mmol, 2.5 equiv.) were added sequentially into the above solution. The tube was sealed with Teflon septum and the reaction mixture was stirred at 36°C for another 12 hours. After the reaction was completed, the mixture was quenched by a short pad of silica gel with a gradient eluent of petroleum ether and ethyl acetate, solvent was removed under vacuum, and the residue was purified by column chromatography on silica gel with a gradient eluent of petroleum ether and ethyl acetate (Petroleum ether: EtOAc = 10:1) to give the desired product 1c in 65% yield (55.8 mg).

graphic file with name fx6.jpg

Procedure A-1

In a dried sealed 10 mL Schlenk tube, Cu(CH3CN)4PF6 (5 mol%), bisoxazoline ligand L3 (7.5 mol %) were dissolved in a mixed solvent of PhF (2.0 mL) under a N2 atmosphere, and the mixture was stirred for 30 min. Then substrate N-F (1a, 63.4 mg, 0.2 mmol, 1.0 eq.), styrene (1b 42.0mg, 0.4 mmol, 2.0 eq.) and TMSN3 (0.5 mmol, 2.5 equiv.) were added sequentially into the above solution. The tube was sealed with Teflon septum and the reaction mixture was stirred at 36°C for another 12 hours. After the reaction was completed, the mixture was quenched by a short pad of silica gel with a gradient eluent of petroleum ether and ethyl acetate, solvent was removed under vacuum, and the residue was purified by column chromatography on silica gel with a gradient eluent of petroleum ether and ethyl acetate (Petroleum ether: EtOAc = 10:1) to give the desired product 32c in 66% yield (58.9mg).

graphic file with name fx7.jpg

Procedure A-2

In a dried sealed 10 mL Schlenk tube, Cu(CH3CN)4PF6 (5 mol%), bisoxazoline ligand L3 (7.5 mol %) were dissolved in a mixed solvent of PhF (2.0 mL) under a N2 atmosphere, and the mixture was stirred for 30 min. Then substrate N-F (1a, 63.4 mg, 0.2 mmol, 1.0 eq.), 4-methoxystyrene (54 mg, 0.4 mmol, 2.0 eq.) and TMSSCN (0.5 mmol, 2.5 equiv.) were added sequentially into the above solution. The tube was sealed with Teflon septum and the reaction mixture was stirred at 36°C for another 12 hours. After the reaction was completed, the mixture was quenched by a short pad of silica gel with a gradient eluent of petroleum ether and ethyl acetate, solvent was removed under vacuum, and the residue was purified by column chromatography on silica gel with a gradient eluent of petroleum ether and ethyl acetate (Petroleum ether: EtOAc =5:1) to give the desired product 33c in 60% yield (59.0 mg).

graphic file with name fx8.jpg

Procedure B

In a dried sealed 10 mL Schlenk tube, Cu(OTf)2 (10 mol %), bpy (15 mol %) were dissolved in a mixed solvent of DCE (2.0 mL) under a N2 atmosphere, and the mixture was stirred for 30 min. Then substrate N-F (1a, 63.4 mg, 0.2 mmol, 1.0 eq.), 4-methoxystyrene (54 mg, 0.4 mmol, 2.0 eq.), AgSCF3 (83 mg, 0.4 mmol, 2.0 eq.) and CsBr (127 mg, 0.6 mmol, 3.0 eq.) were added sequentially into the above solution. The tube was sealed with Teflon septum and the reaction mixture was stirred at 60°C for another 18 hours. After the reaction was completed, the mixture was quenched by a short pad of silica gel with a gradient eluent of petroleum ether and ethyl acetate, solvent was removed under vacuum, and the residue was purified by column chromatography on silica gel with a gradient eluent of petroleum ether and diethyl ether (Petroleum ether: diethyl ether = 15:1) to give the desired product 34c in 40% yield (42.7 mg).

graphic file with name fx9.jpg

Procedure C

In a dried sealed 10 mL Schlenk tube, Cu(CH3CN)4PF6 (5 mol%), bisoxazoline ligand L3 (7.5 mol %) were dissolved in a mixed solvent of DCM and DMA (9:1, 2.0 mL, v/v = 9:1) under a N2 atmosphere, and the mixture was stirred for 30 min. Then substrate N-F (1a, 63.4 mg, 0.2 mmol, 1.0 eq.), 4-methoxystyrene (54 mg, 0.4 mmol, 2.0 eq.), and alkynyltrimethoxysilane (0.4 mmol, 2.0 eq.) were added sequentially into the above solution. The tube was sealed with Teflon septum and the reaction mixture was stirred at room temperature for another 12 hours. After the reaction was completed, the mixture was quenched by a short pad of silica gel with a gradient eluent of petroleum ether and ethyl acetate, solvent was removed under vacuum, and the residue was purified by column chromatography on silica gel with a gradient eluent of petroleum ether and ethyl acetate to give the desired product 35c-39c.

Transformations of products

General procedure for the transformations of 3c and 20c. Related to Figure 2.

graphic file with name fx10.jpg

3c (45.8 mg, 0.1 mmol) was dissolved in 1 mL methanol followed by the addition of 0.15 mL 30% H2O2, and the pH of the solution is adjusted to 8 by 1 drop of 2 M NaOH solution. The mixture was stirred for 12hat room temperature. Then, the solvent was removed under vacuum and the residue was subject to a short plug of silica gel, eluted with EtOAc in petroleum ether to give the product 40 in 72% yield as a white solid (34.3 mg). Rf = 0.15 (Petroleum ether: EtOAc = 1:1)

graphic file with name fx11.jpg

To a solution of 20c (87.0 mg, 0.2 mmol) in anhydride methanol (2 mL) was added Mg turnings (6.0 eq.) and the reaction mixture was stirred under sonication for 5h at room temperature. After the completion of the reaction, the mixture was quenched with brine, and extracted with DCM. The combined organic layers were dried overNa2SO4 and concentrated in vacuum. The residue was purified by column chromatography to provide the desired product 41 as a yellow solid (46.6 mg, 83% yield). Rf = 0.1 (MeOH: DCM =1:9)

graphic file with name fx12.jpg

To a solution of 3c (45.8 mg, 0.1 mmol) in 2 mL of PhMe was added DDQ (45.4mg, 0.20 mmol), and the reaction was stirred at 100°C for 12 hourstill 3c was completely consumed (monitored by TLC). The mixture was cooled to room temperature and concentrated under reduced pressure. The resulting crude residue was purified via column chromatography on silica gel (8:1 hexanes/EtOAc) to afford the desired product 42 with 70% (32.0 mg) yield.

graphic file with name fx13.jpg

To a solution of 3c (45.8 mg, 0.1 mmol) in 2 mL of DCM was added oxone (1.6 eq.), was added 2N HBr (2 eq.) in one portion result in dark colored solution. The reaction was stirred at room temperature for 18 hourstill 3c was completely consumed (monitored by TLC). Then, the reaction was quenched with 5 mL sodium thiosulfate saturated solution, and extracted with DCM. The combined organic layers were dried overNa2SO4 and concentrated in vacuum. The residue was purified via column chromatography on silica gel (10:1 hexanes/EtOAc) to afford the desired product 43 with 56% (30 mg) yield.

Characterization of substrates 2a-10a

N-fluoro-4-methyl-N-(2-(p-tolyl)buta-2,3-dien-1-yl)benzenesulfonamide (2a)

graphic file with name fx14.jpg

1H NMR (400 MHz, CDCl3) δ 7.87 (d, J = 7.6 Hz, 2H), 7.42 (d, J = 7.7 Hz, 2H), 7.34 (d, J = 7.4 Hz, 2H), 7.16 (d, J = 7.4 Hz, 2H), 5.16 (s, 2H), 4.26 (d, J = 39.8 Hz, 2H), 2.49 (s, 3H), 2.34 (s, 3H).

13C NMR (151 MHz, CDCl3) δ 210.62, 146.45, 137.15, 130.21, 130.07, 130.00, 129.34, 128.91, 126.06, 98.13, 79.24, 54.74 (d, J = 13.1 Hz), 21.85, 21.14.

19F NMR (377 MHz, Chloroform-d) δ -46.98 (t, J = 39.8 Hz).

HRMS (ESI) for C18H19FNO2S[M+H]+m/z: calcd 332.1115, found 332.1100.

N-fluoro-N-(2-(4-methoxyphenyl)buta-2,3-dien-1-yl)-4-methylbenzenesulfonamide (3a)

graphic file with name fx15.jpg

1H NMR (400 MHz, CDCl3) δ 7.87 (d, J = 8.1 Hz, 2H), 7.42 (d, J = 8.1 Hz, 2H), 7.38 (d, J = 8.7 Hz, 2H), 6.89 (d, J = 8.7 Hz, 2H), 5.15 (s, 2H), 4.24 (d, J = 39.9 Hz, 2H), 3.81 (s, 3H), 2.49 (s, 3H).

13C NMR (101 MHz, CDCl3) δ 210.46, 158.95, 146.48, 130.10, 130.01, 128.88, 127.40, 125.39, 114.11, 97.82, 79.26, 55.35, 54.94 (d, J = 13.3 Hz), 21.86.

19F NMR (377 MHz, CDCl3) δ -47.01 (t, J = 39.9 Hz).

N-fluoro-N-(2-(4-fluorophenyl)buta-2,3-dien-1-yl)-4-methylbenzenesulfonamide (4a)

graphic file with name fx16.jpg

1H NMR (400 MHz, CDCl3) δ 7.87 (d, J = 8.3 Hz, 2H), 7.46 – 7.39 (m, 4H), 7.04 (t, J = 8.7 Hz, 2H), 5.18 (s, 2H), 4.25 (d, J = 39.6 Hz, 2H), 2.49 (s, 3H).

13C NMR (101 MHz, Chloroform-d) δ 210.71, 162.12 (d, J = 247.2 Hz), 146.57, 130.12, 130.00, 129.21 (d, J = 3.2 Hz), 128.85, 127.87 (d, J = 8.1 Hz), 115.57 (d, J = 21.7 Hz), 97.53, 79.48, 54.82 (d, J = 13.2 Hz), 21.84.

19F NMR (377 MHz, Chloroform-d) δ -46.99 (t, J = 39.6 Hz),-114.91 – -115.03 (m).

HRMS (ESI) for C17H16F2NO2S[M+H]+m/z: calcd 336.0864, found 336.0869.

N-fluoro-N-(2-(4-chlorophenyl)buta-2,3-dien-1-yl)- 4-methylbenzenesulfonamide (5a)

graphic file with name fx17.jpg

1H NMR (400 MHz, Chloroform-d) δ 7.86 (d, J = 8.2 Hz, 2H), 7.43 (d, J = 8.1 Hz, 2H), 7.38 (d, J = 8.6 Hz, 2H), 7.31 (d, J = 8.7 Hz, 2H), 5.19 (s, 2H), 4.25 (d, J = 39.6 Hz, 2H), 2.49 (s, 3H).

13C NMR (101 MHz, Chloroform-d) δ 210.84, 146.63, 133.15, 131.78, 130.15, 130.00, 128.77, 127.49, 97.56, 79.73, 54.58 (d, J = 13.3 Hz), 21.87.

19F NMR (377 MHz, Chloroform-d) δ -47.09 (t, J = 39.6 Hz).

HRMS (ESI) for C17H16ClFNO2S[M+H]+m/z: calcd 352.0569, found 352.0561.

ethyl 4-(1-((N-fluoro-4-methylphenyl)sulfonamido)buta-2,3-dien-2-yl)benzoate (6a)

graphic file with name fx18.jpg

1H NMR (400 MHz, CDCl3) δ 8.02 (d, J = 8.5 Hz, 2H), 7.87 (d, J = 8.3 Hz, 2H), 7.51 (d, J = 8.5 Hz, 2H), 7.43 (d, J = 8.1 Hz, 2H), 5.25 (s, 2H), 4.46 – 4.31 (m, 2H), 4.26 (s, 2H), 2.49 (s, 3H), 1.39 (t, J = 7.1 Hz, 3H).

13C NMR (101 MHz, CDCl3) δ 211.59, 166.35, 146.61, 138.03, 130.13, 130.00, 129.83, 129.19, 128.90, 126.02, 98.04, 79.84, 60.98, 54.32 (d, J = 12.7 Hz), 21.86, 14.35.

19F NMR (377 MHz, CDCl3) δ -46.95 (t, J = 39.5 Hz).

HRMS (ESI) for C20H21FNO4S[M+H]+m/z: calcd 390.1170, found 390.1145.

N-fluoro-4-methyl-N-(2-(m-tolyl)buta-2,3-dien-1-yl)benzenesulfonamide (7a)

graphic file with name fx19.jpg

1H NMR (600 MHz, CDCl3) δ 7.88 (d, J = 8.3 Hz, 2H), 7.42 (d, J = 8.1 Hz, 2H), 7.28 – 7.24 (m, 3H), 7.07 (s, 1H), 5.17 (s, 2H), 4.27 (d, J = 39.8 Hz, 2H), 2.49 (s, 3H), 2.36 (s, 3H).

13C NMR (151 MHz, CDCl3) δ 210.81, 146.47, 138.20, 133.14, 130.09, 130.00, 128.91, 128.52, 128.17, 126.97, 123.17, 98.28, 79.25, 54.73 (d, J = 12.9 Hz), 21.85, 21.54.

19F NMR (377 MHz, Chloroform-d) δ -46.99.

HRMS (ESI) for C18H19FNO2S[M+H]+m/z: calcd 332.1115, found 332.1100.

N-fluoro-4-methyl-N-(2-(o-tolyl)buta-2,3-dien-1-yl)benzenesulfonamide (8a)

graphic file with name fx20.jpg

1H NMR (400 MHz, CDCl3) δ 7.83 (d, J = 7.9 Hz, 2H), 7.40 (d, J = 7.9 Hz, 2H), 7.26 – 7.16 (m, 4H), 4.94 (s, 2H), 4.13 (d, J = 40.1 Hz, 2H), 2.48 (s, 3H), 2.33 (s, 3H).

13C NMR (101 MHz, CDCl3) δ 209.20, 146.43, 136.66, 133.71, 130.67, 130.07, 129.99, 128.93, 128.30, 127.77, 126.05, 97.20, 77.01, 57.23 (d, J = 12.3 Hz), 21.83, 20.26.

19F NMR (377 MHz, CDCl3) δ -46.78 (t, J = 40.1 Hz).

HRMS (ESI) for C18H19FNO2S[M+H]+m/z: calcd 332.1115, found 332.1101.

N-fluoro-4-methyl-N-(2-(naphthalen-1-yl)buta-2,3-dien-1-yl)benzenesulfonamide (9a)

graphic file with name fx21.jpg

1H NMR (400 MHz, Chloroform-d) δ 8.08 – 8.03 (m, 1H), 7.88 – 7.84 (m, 1H), 7.81 (d, J = 8.2 Hz, 3H), 7.51 – 7.46 (m, 4H), 7.38 (d, J = 7.8 Hz, 2H), 5.03 (t, J = 2.4 Hz, 2H), 4.25 (d, J = 39.9 Hz, 2H), 2.47 (s, 3H).

13C NMR (101 MHz, Chloroform-d) δ 209.70, 146.40, 133.96, 132.21, 131.34, 130.04, 129.99, 128.97, 128.54, 128.37, 126.35, 126.29, 125.91, 125.42, 125.00, 96.29, 77.17, 57.49 (d, J = 12.5 Hz), 21.81.

19F NMR (377 MHz, Chloroform-d) δ -46.28 (t, J = 39.9 Hz).

HRMS (ESI) for C21H19FNO2S[M+H]+m/z: calcd 368.1115, found 368.1092.

N-fluoro-4-methyl-N-(2-(naphthalen-2-yl)buta-2,3-dien-1-yl)benzenesulfonamide (10a)

graphic file with name fx22.jpg

1H NMR (400 MHz, Chloroform-d) δ 8.00 – 7.83 (m, 4H), 7.79 (d, J = 8.6 Hz, 2H), 7.59 (d, J = 8.6 Hz, 1H), 7.53 – 7.45 (m, 2H), 7.43 (d, J = 8.1 Hz, 2H), 5.27 (s, 2H), 4.41 (d, J = 39.7 Hz, 2H), 2.49 (s, 3H).

13C NMR (101 MHz, Chloroform-d) δ 211.42, 146.51, 133.48, 132.57, 130.58, 130.11, 130.03, 129.03, 128.29, 128.15, 127.56, 126.31, 126.09, 124.80, 124.44, 98.58, 79.69, 54.67 (d, J = 13.1 Hz), 21.84.

19F NMR (377 MHz, Chloroform-d) δ -46.48 (t, J = 39.8 Hz).

HRMS (ESI) for C21H19FNO2S[M+H]+m/z: calcd 368.1115, found 368.1095.

Characterization of products 1c-39c

2-(3,5-diphenyl-1-tosyl-1,2,3,6-tetrahydropyridin-4-yl)acetonitrile (1c)

graphic file with name fx23.jpg

Prepared following general procedure A.

1H NMR (400 MHz, CDCl3) δ 7.61 (d, J = 8.3 Hz, 2H), 7.45 – 7.27 (m, 10H), 7.25 – 7.21 (m, 2H), 4.07 (d, J = 16.7 Hz, 1H), 3.80 (s, 1H), 3.66 (d, J = 16.7 Hz, 1H), 3.48 (dd, J = 11.8, 4.5 Hz, 1H), 3.35 (dd, J = 11.8, 4.9 Hz, 1H), 2.97 (d, J = 17.2 Hz, 1H), 2.58 (d, J = 17.3 Hz, 1H), 2.42 (s, 3H).

13C NMR (101 MHz, CDCl3) δ 143.99, 139.30, 137.22, 136.81, 132.74, 129.84, 129.13, 129.07, 128.68, 128.55, 128.37, 127.93, 127.74, 124.33, 117.29, 49.91, 49.66, 44.09, 21.58, 20.42.

HRMS (ESI) for C26H25N2O2S[M+H]+m/z: calcd 429.1631, found 429.1638.

2-(5-phenyl-3-(p-tolyl)-1-tosyl-1,2,3,6-tetrahydropyridin-4-yl)acetonitrile (2c)

graphic file with name fx24.jpg

Prepared following general Procedure A using 1a (63.4 mg, 0.2 mmol), 2b (48 mg, 0.4 mmol). After 12 hours, the reaction mixture was purified by column chromatography to provide the compound 2c (61.0 mg, 69% yield) as a white solid. Rf = 0.2 (Petroleum ether: EtOAc =10:1).

1H NMR (400 MHz, CDCl3) δ 7.61 (d, J = 8.2 Hz, 2H), 7.46 – 7.35 (m, 3H), 7.29 (d, J = 8.0 Hz, 2H), 7.24 – 7.14 (m, 6H), 4.04 (d, J = 16.6 Hz, 1H), 3.77 (s, 1H), 3.67 (d, J = 16.6 Hz, 1H), 3.42 (dd, J = 11.8, 4.7 Hz, 1H), 3.36 (dd, J = 11.8, 5.0 Hz, 1H), 2.95 (d, J = 17.2 Hz, 1H), 2.59 (d, J = 17.2 Hz, 1H), 2.42 (s, 3H), 2.35 (s, 3H).

13C NMR (101 MHz, CDCl3) δ 143.95, 137.60, 137.30, 136.60, 136.22, 132.81, 129.82, 129.74, 129.11, 128.64, 128.41, 128.38, 127.73, 124.55, 117.33, 50.04, 49.68, 43.74, 21.57, 21.15, 20.36.

HRMS (ESI) for C27H27N2O2S[M+H]+ m/z: calcd 443.1788, found 443.1176.

2-(3-(4-methoxyphenyl)-5-phenyl-1-tosyl-1,2,3,6-tetrahydropyridin-4-yl)acetonitrile (3c)

graphic file with name fx25.jpg

Prepared following general Procedure A using 1a (63.4 mg, 0.2 mmol), 3b (54 mg, 0.4 mmol). After 12 hours, the reaction mixture was purified by column chromatography to provide the compound 3c (70.7 mg, 77% yield) as a white solid. Rf = 0.2 (Petroleum ether: EtOAc = 5:1).

1H NMR (400 MHz, CDCl3) δ 7.61 (d, J = 8.2 Hz, 2H), 7.46 – 7.35 (m, 3H), 7.30 (d, J = 8.1 Hz, 2H), 7.23 (t, J = 8.3 Hz, 4H), 6.89 (d, J = 8.6 Hz, 2H), 4.05 (d, J = 16.6 Hz, 1H), 3.81 (s, 3H), 3.76 (s, 1H), 3.65 (d, J = 16.7 Hz, 1H), 3.43 (dd, J = 11.8, 4.5 Hz, 1H), 3.33 (dd, J = 11.7, 4.9 Hz, 1H), 2.95 (d, J = 17.2 Hz, 1H), 2.60 (d, J = 17.2 Hz, 1H), 2.42 (s, 3H).

13C NMR (101 MHz, CDCl3) δ 159.24, 143.98, 137.29, 136.47, 132.77, 131.27, 129.84, 129.58, 129.12, 128.65, 128.38, 127.73, 124.69, 117.35, 114.43, 55.31, 50.09, 49.67, 43.32, 21.57, 20.36.

HRMS (ESI) for C27H27N2O3S[M+H]+m/z: calcd 459.1737, found 459.1724.

2-(3-(4-(tert-butyl)phenyl)-5-phenyl-1-tosyl-1,2,3,6-tetrahydropyridin-4-yl)acetonitrile (4c)

graphic file with name fx26.jpg

Prepared following general Procedure A using 1a (63.4 mg, 0.2 mmol), 4b (64 mg, 0.4 mmol). After 12 hours, the reaction mixture was purified by column chromatography to provide the compound 4c (55.2 mg, 57% yield) as a white solid. Rf = 0.3 (Petroleum ether: EtOAc = 5:1).

1H NMR (400 MHz, CDCl3) δ 7.61 (d, J = 8.3 Hz, 2H), 7.45 – 7.34 (m, 5H), 7.30 (d, J = 8.0 Hz, 2H), 7.25 – 7.20 (m, 4H), 4.04 (d, J = 16.6 Hz, 1H), 3.78 (s, 1H), 3.67 (d, J = 16.6 Hz, 1H), 3.45 (dd, J = 11.7, 4.7 Hz, 1H), 3.37 (dd, J = 11.8, 5.0 Hz, 1H), 2.95 (d, J = 17.2 Hz, 1H), 2.59 (d, J = 17.2 Hz, 1H), 2.42 (s, 3H), 1.32 (s, 9H).

13C NMR (101 MHz, CDCl3) δ 150.72, 143.97, 137.34, 136.40, 136.21, 132.71, 129.83, 129.09, 128.62, 128.39, 128.20, 127.79, 125.95, 124.67, 117.38, 49.90, 49.66, 43.56, 34.55, 31.37, 21.58, 20.38.

2-(3-(4-chlorophenyl)-5-phenyl-1-tosyl-1,2,3,6-tetrahydropyridin-4-yl)acetonitrile(5c)

graphic file with name fx27.jpg

Prepared following general Procedure A using 1a (63.4 mg, 0.2 mmol), 5b (56 mg, 0.4 mmol). After 12 hours, the reaction mixture was purified by column chromatography to provide the title compound 5c (52.8 mg, 57% yield) as a white solid. Rf = 0.25 (Petroleum ether: EtOAc =10:1).

1H NMR (400 MHz, CDCl3) δ 7.59 (d, J = 8.3 Hz, 2H), 7.46 – 7.36 (m, 3H), 7.36 – 7.26 (m, 6H), 7.25 – 7.20 (m, 2H), 4.15 (d, J = 16.7 Hz, 1H), 3.77 (s, 1H), 3.61 – 3.50 (m, 2H), 3.24 (dd, J = 11.8, 4.7 Hz, 1H), 2.99 (d, J = 17.3 Hz, 1H), 2.56 (d, J = 17.4 Hz, 1H), 2.42 (s, 3H).

13C NMR (101 MHz, CDCl3) δ 144.12, 137.91, 137.20, 136.95, 133.84, 132.66, 129.87, 129.82, 129.23, 129.19, 128.81, 128.31, 127.70, 123.79, 117.17, 49.69, 49.59, 43.42, 21.58, 20.48.

HRMS (ESI) for C26H24ClN2O2S[M+H]+ m/z: calcd 463.1242, found 463.1227.

2-(3-(4-(chloromethyl)phenyl)-5-phenyl-1-tosyl-1,2,3,6-tetrahydropyridin-4-yl)acetonitrile (6c)

graphic file with name fx28.jpg

Prepared following general Procedure A using 1a (63.4 mg, 0.2 mmol), 6b (61 mg, 0.4 mmol). After 12 hours, the reaction mixture was purified by column chromatography to provide the compound 6c (68.4 mg, 72% yield) as a white solid. Rf = 0.2 (Petroleum ether: EtOAc =10:1).

1H NMR (400 MHz, CDCl3) δ 7.60 (d, J = 8.2 Hz, 2H), 7.46 – 7.37 (m, 5H), 7.35 – 7.29 (m, 4H), 7.24 – 7.21 (m, 2H), 4.59 (s, 2H), 4.11 (d, J = 16.6 Hz, 1H), 3.81 (s, 1H), 3.61 (d, J = 16.7 Hz, 1H), 3.51 (dd, J = 11.8, 4.0 Hz, 1H), 3.29 (dd, J = 11.8, 4.8 Hz, 1H), 2.98 (d, J = 17.3 Hz, 1H), 2.57 (d, J = 17.3 Hz, 1H), 2.42 (s, 3H).

13C NMR (101 MHz, CDCl3) δ 144.07, 139.68, 137.16, 137.07, 137.01, 132.65, 129.87, 129.29, 129.16, 128.92, 128.75, 128.33, 127.73, 124.02, 117.22, 49.76, 49.62, 45.84, 43.74, 21.57, 20.47.

4-(4-(cyanomethyl)-5-phenyl-1-tosyl-1,2,3,6-tetrahydropyridin-3-yl)phenyl acetate (7c)

graphic file with name fx29.jpg

Prepared following general Procedure A using 1a (63.4 mg, 0.2 mmol), 7b (65 mg, 0.4 mmol). After 12 hours, the reaction mixture was purified by column chromatography to provide the compound 7c (63.3 mg, 65% yield) as a white solid. Rf = 0.2 (Petroleum ether: EtOAc =5:1).

1H NMR (400 MHz, CDCl3) δ 7.60 (d, J = 8.2 Hz, 2H), 7.46 – 7.33 (m, 5H), 7.30 (d, J = 8.0 Hz, 2H), 7.24 – 7.19 (m, 2H), 7.09 (d, J = 8.5 Hz, 2H), 4.08 (d, J = 16.7 Hz, 1H), 3.81 (s, 1H), 3.62 (d, J = 16.7 Hz, 1H), 3.48 (dd, J = 11.8, 4.2 Hz, 1H), 3.31 (dd, J = 11.8, 4.8 Hz, 1H), 2.98 (d, J = 17.3 Hz, 1H), 2.59 (d, J = 17.3 Hz, 1H), 2.42 (s, 3H), 2.31 (s, 3H).

13C NMR (101 MHz, CDCl3) δ 169.42, 150.30, 144.10, 137.08, 136.91, 136.86, 132.56, 129.89, 129.55, 129.16, 128.74, 128.33, 127.75, 124.17, 122.16, 117.24, 49.82, 49.64, 43.43, 21.57, 21.21, 20.44.

HRMS (ESI) for C28H27N2O4S[M+H]+ m/z: calcd 487.1686, found 487.1668.

2-(3-(3-((3-fluorobenzyl)oxy)phenyl)-5-phenyl-1-tosyl-1,2,3,6-tetrahydropyridin-4-yl)acetonitrile (8c)

graphic file with name fx30.jpg

Prepared following general Procedure A using 1a (63.4 mg, 0.2 mmol), 8b (92 mg, 0.4 mmol). After 12 hours, the reaction mixture was purified by column chromatography to provide the compound 8c (67.2 mg, 61% yield) as a white solid. Rf = 0.2 (Petroleum ether: EtOAc =5:1).

1H NMR (400 MHz, CDCl3) δ 7.61 (d, J = 8.3 Hz, 2H), 7.46 – 7.33 (m, 4H), 7.32 – 7.26 (m, 3H), 7.26 – 7.15 (m, 5H), 7.02 (td, J = 8.3, 2.0 Hz, 1H), 6.98 – 6.93 (m, 2H), 5.06 (s, 2H), 4.07 (d, J = 16.6 Hz, 1H), 3.76 (s, 1H), 3.63 (d, J = 16.6 Hz, 1H), 3.46 (dd, J = 11.7, 4.4 Hz, 1H), 3.31 (dd, J = 11.7, 4.8 Hz, 1H), 2.96 (d, J = 17.2 Hz, 1H), 2.60 (d, J = 17.2 Hz, 1H), 2.42 (s, 3H).

13C NMR (101 MHz, CDCl3) δ 164.24, 161.80, 158.21, 144.01, 139.56 (d, J = 7.2 Hz), 137.24, 136.52, 132.70, 131.87, 130.21 (d, J = 8.3 Hz), 129.85, 129.68, 129.12, 128.67, 128.38, 127.74, 124.59, 122.80 (d, J = 2.9 Hz), 117.36, 115.30, 114.90 (d, J = 21.0 Hz), 114.28 (d, J = 21.9 Hz), 69.27, 50.03, 49.67, 43.31, 21.58, 20.40.

19F NMR (377 MHz, CDCl3) δ -112.71 (td, J = 9.2, 6.0 Hz).

HRMS (ESI) for C33H30FN2O3S[M+H]+ m/z: calcd 553.1956, found 553.1937.

2-(3-(2,3-dihydrobenzo[b][1,4]dioxin-6-yl)-5-phenyl-1-tosyl-1,2,3,6-tetrahydropyridin-4-yl)acetonitrile (9c)

graphic file with name fx31.jpg

Prepared following general Procedure A using 1a (63.4 mg, 0.2 mmol), 9b (65 mg, 0.4 mmol). After 16 hours, the reaction mixture was purified by column chromatography to provide the compound 9c (69.0 mg, 71% yield) as a white solid. Rf = 0.2 (Petroleum ether: EtOAc =6:1).

1H NMR (400 MHz, CDCl3) δ 7.61 (d, J = 8.2 Hz, 2H), 7.45 – 7.34 (m, 3H), 7.30 (d, J = 8.1 Hz, 2H), 7.24 – 7.19 (m, 2H), 6.87 – 6.75 (m, 3H), 4.31 – 4.20 (m, 4H), 4.02 (d, J = 16.6 Hz, 1H), 3.69 (s, 1H), 3.63 (d, J = 16.7 Hz, 1H), 3.41 (dd, J = 11.7, 4.6 Hz, 1H), 3.32 (dd, J = 11.7, 4.9 Hz, 1H), 2.95 (d, J = 17.2 Hz, 1H), 2.62 (d, J = 17.2 Hz, 1H), 2.42 (s, 3H).

13C NMR (101 MHz, CDCl3) δ 143.97, 143.75, 143.26, 137.25, 136.62, 132.70, 132.44, 129.83, 129.09, 128.64, 128.39, 127.77, 124.49, 121.60, 117.76, 117.35, 117.11, 64.37, 64.32, 50.01, 49.65, 43.39, 21.58, 20.34.

HRMS (ESI) for C28H27N2O4S[M+H]+ m/z: calcd 487.1686, found 487.1680.

2-(3-(2-fluoro-4-methoxyphenyl)-5-phenyl-1-tosyl-1,2,3,6-tetrahydropyridin-4-yl)acetonitrile (10c)

graphic file with name fx32.jpg

Prepared following general Procedure A using 1a (63.4 mg, 0.2 mmol), 10b (61 mg, 0.4 mmol). After 16 hours, the reaction mixture was purified by column chromatography to provide the compound 10c (59.0 mg, 62% yield) as a white solid. Rf = 0.2 (Petroleum ether: EtOAc =8:1).

1H NMR (400 MHz, CDCl3) δ 7.60 (d, J = 8.2 Hz, 2H), 7.46 – 7.35 (m, 3H), 7.30 (d, J = 8.2 Hz, 2H), 7.26 – 7.17 (m, 3H), 6.70 (dd, J = 8.5, 2.5 Hz, 1H), 6.65 (dd, J = 12.0, 2.5 Hz, 1H), 4.10 (d, J = 14.9 Hz, 2H), 3.80 (s, 3H), 3.60 (d, J = 16.4 Hz, 1H), 3.53 (dd, J = 11.8, 4.2 Hz, 1H), 3.25 (dd, J = 11.7, 4.5 Hz, 1H), 2.97 (d, J = 17.2 Hz, 1H), 2.63 (d, J = 17.3 Hz, 1H), 2.42 (s, 3H).

13C NMR (101 MHz, CDCl3) δ 162.66, 160.55 (d, J = 11.1 Hz), 160.22, 144.01, 137.22 (d, J = 17.4 Hz), 132.82, 130.39 (d, J = 5.7 Hz), 129.85, 129.14, 128.72, 128.34, 127.68, 123.56, 117.57 (d, J = 14.5 Hz), 117.15, 110.34 (d, J = 2.9 Hz), 102.02 (d, J = 25.8 Hz), 55.61, 49.58, 48.79, 36.65, 21.57, 20.48.

19F NMR (565 MHz, Chloroform-d) δ -116.30 (t, J = 10.3 Hz).

HRMS (ESI) for C27H26FN2O3S[M+H]+ m/z: calcd 477.1643, found 477.1635.

2-(3-(2,3-dihydrobenzofuran-6-yl)-5-phenyl-1-tosyl-1,2,3,6-tetrahydropyridin-4-yl)acetonitrile (11c)

graphic file with name fx33.jpg

Prepared following general Procedure A using 1a (63.4 mg, 0.2 mmol), 11b (59 mg, 0.4 mmol). After 18 hours, the reaction mixture was purified by column chromatography to provide the title compound 11c (49.0 mg, 52% yield) as a white solid. Rf = 0.2 (Petroleum ether: EtOAc =5:1).

1H NMR (400 MHz, CDCl3) δ 7.61 (d, J = 8.2 Hz, 2H), 7.45 – 7.35 (m, 3H), 7.30 (d, J = 8.1 Hz, 2H), 7.25 – 7.20 (m, 2H), 7.16 (s, 1H), 7.01 (dd, J = 8.2, 1.6 Hz, 1H), 6.75 (d, J = 8.2 Hz, 1H), 4.58 (t, J = 8.8 Hz, 2H), 4.03 (d, J = 16.6 Hz, 1H), 3.73 (s, 1H), 3.65 (d, J = 16.6 Hz, 1H), 3.41 (dd, J = 11.7, 4.6 Hz, 1H), 3.33 (dd, J = 11.7, 4.9 Hz, 1H), 3.27 – 3.16 (m, 2H), 2.95 (d, J = 17.2 Hz, 1H), 2.63 (d, J = 17.2 Hz, 1H), 2.42 (s, 3H).

13C NMR (101 MHz, CDCl3) δ 159.86, 143.98, 137.32, 136.37, 132.73, 131.19, 129.82, 129.10, 128.63, 128.39, 128.20, 127.87, 127.76, 125.10, 124.84, 117.41, 109.57, 71.43, 50.24, 49.68, 43.58, 29.77, 21.58, 20.36.

HRMS (ESI) for C28H27N2O3S[M+H]+m/z: calcd 471.1737, found 471.1726.

2-(5-phenyl-1-tosyl-3-(3,4,5-trimethoxyphenyl)-1,2,3,6-tetrahydropyridin-4-yl)acetonitrile (12c)

graphic file with name fx34.jpg

Prepared following general Procedure A using 1a (63.4 mg, 0.2 mmol), 12b (78 mg, 0.4 mmol). After 8 hours, the reaction mixture was purified by column chromatography to provide the compound 12c (68.5 mg, 66% yield) as a white solid. Rf = 0.2 (Petroleum ether: EtOAc =2:1).

1H NMR (400 MHz, CDCl3) δ 7.61 (d, J = 8.3 Hz, 2H), 7.46 – 7.35 (m, 3H), 7.30 (d, J = 8.0 Hz, 2H), 7.23 – 7.17 (m, 2H), 6.60 (s, 2H), 4.12 (d, J = 16.6 Hz, 1H), 3.88 (s, 6H), 3.85 (s, 3H), 3.69 (s, 1H), 3.63 – 3.55 (m, 2H), 3.28 (dd, J = 11.8, 4.8 Hz, 1H), 2.97 (d, J = 17.2 Hz, 1H), 2.65 (d, J = 17.3 Hz, 1H), 2.42 (s, 3H).

13C NMR (101 MHz, CDCl3) δ 153.52, 144.06, 137.59, 137.17, 136.48, 135.19, 132.82, 129.88, 129.17, 128.74, 128.30, 127.66, 124.59, 117.53, 105.52, 60.89, 56.27, 49.57, 49.54, 44.16, 21.57, 20.43.

HRMS (ESI) for C29H31N2O5S[M+H]+m/z: calcd 519.1948, found 519.1927.

2-(3-(2-bromo-3,4-dimethoxyphenyl)-5-phenyl-1-tosyl-1,2,3,6-tetrahydropyridin-4-yl)acetonitrile (13c)

graphic file with name fx35.jpg

Prepared following general Procedure A using 1a (63.4 mg, 0.2 mmol), 13b (98 mg, 0.4 mmol). After 5 hours, the reaction mixture was purified by column chromatography to provide the compound 13c (72.4 mg, 64% yield) as a white solid. Rf = 0.2 (Petroleum ether: EtOAc =4:1).

1H NMR (400 MHz, CDCl3) δ 7.59 (d, J = 8.2 Hz, 2H), 7.48 – 7.36 (m, 3H), 7.29 (d, J = 8.1 Hz, 2H), 7.25 – 7.21 (m, 2H), 7.06 (s, 1H), 6.93 (s, 1H), 4.24 (s, 2H), 3.88 (s, 6H), 3.71 (d, J = 11.2 Hz, 1H), 3.52 (d, J = 17.0 Hz, 1H), 3.18 (s, 1H), 2.93 (d, J = 17.1 Hz, 1H), 2.62 (d, J = 17.2 Hz, 1H), 2.42 (s, 3H).

13C NMR (101 MHz, CDCl3) δ 149.21, 148.65, 144.03, 137.37, 137.00, 133.06, 130.10, 129.87, 129.24, 128.82, 128.21, 127.53, 124.42, 117.36, 115.68, 114.77, 112.39, 56.20, 53.50, 49.49, 48.41, 42.56, 21.58, 20.51.

HRMS (ESI) for C28H28BrN2O4S[M+H]+m/z: calcd 567.0948, found 567.0933.

2-(3-(naphthalen-2-yl)-5-phenyl-1-tosyl-1,2,3,6-tetrahydropyridin-4-yl)acetonitril-e (14c)

graphic file with name fx36.jpg

Prepared following general Procedure A using 1a (63.4 mg, 0.2 mmol), 14b (62 mg, 0.4 mmol). After 12 hours, the reaction mixture was purified by column chromatography to provide the compound 14c (53.0 mg, 56% yield) as a white solid. Rf = 0.2 (Petroleum ether: EtOAc = 10:1).

1H NMR (400 MHz, Chloroform-d) δ 7.88 – 7.78 (m, 3H), 7.74 (s, 1H), 7.58 (d, J = 8.3 Hz, 2H), 7.54 – 7.37 (m, 6H), 7.28 (d, J = 6.6 Hz, 2H), 7.23 (d, J = 8.0 Hz, 2H), 4.14 (d, J = 16.8 Hz, 1H), 3.99 (s, 1H), 3.74 (d, J = 16.7 Hz, 1H), 3.56 (dd, J = 11.9, 4.5 Hz, 1H), 3.45 (dd, J = 11.9, 5.0 Hz, 1H), 3.02 (d, J = 17.2 Hz, 1H), 2.61 (d, J = 17.3 Hz, 1H), 2.39 (s, 3H).

13C NMR (101 MHz, Chloroform-d) δ 143.99, 137.22, 137.13, 136.74, 133.46, 132.99, 132.78, 129.79, 129.17, 129.03, 128.74, 128.39, 127.90, 127.78, 127.74, 127.71, 126.45, 126.21, 125.94, 124.22, 117.31, 49.88, 49.67, 44.21, 21.56, 20.49.

HRMS (ESI) for C30H27N2O2S[M+H]+m/z: calcd 479.1788, found 478.1812.

2-(3-(benzo[b]thiophen-2-yl)-5-phenyl-1-tosyl-1,2,3,6-tetrahydropyridin-4-yl)acetonitrile (15c)

graphic file with name fx37.jpg

Prepared following general Procedure A using 1a (63.4 mg, 0.2 mmol), 15b (64 mg, 0.4 mmol). After 16 hours, the reaction mixture was purified by column chromatography to provide the compound 15c (47.3 mg, 49% yield) as a yellow solid. Rf = 0.25 (Petroleum ether: EtOAc =10:1).

1H NMR (400 MHz, CDCl3) δ 7.80 (d, J = 7.6 Hz, 1H), 7.74 (dd, J = 7.0, 1.3 Hz, 1H), 7.63 (d, J = 8.3 Hz, 2H), 7.46 – 7.29 (m, 5H), 7.29-7.25 (m, 3H), 7.24 – 7.20 (m, 2H), 4.26 – 4.14 (m, 2H), 3.86 (dd, J = 11.7, 3.2 Hz, 1H), 3.55 (d, J = 16.7 Hz, 1H), 3.26 (dd, J = 11.8, 4.2 Hz, 1H), 3.05 (d, J = 17.4 Hz, 1H), 2.80 (d, J = 17.4 Hz, 1H), 2.40 (s, 3H).

13C NMR (101 MHz, CDCl3) δ 144.14, 143.26, 140.16, 139.17, 136.87, 136.80, 132.63, 129.85, 129.17, 128.83, 128.24, 127.77, 124.46, 124.41, 124.06, 123.47, 123.35, 122.45, 117.28, 49.52, 49.26, 40.17, 21.58, 20.39.

HRMS (ESI) for C28H25N2O2S2[M+H]+m/z: calcd 485.1352, found 485.1337.

2-(3-(benzofuran-2-yl)-5-phenyl-1-tosyl-1,2,3,6-tetrahydropyridin-4-yl)acetonitril-e (16c)

graphic file with name fx38.jpg

Prepared following general Procedure A using 1a (63.4 mg, 0.2 mmol), 16b (58 mg, 0.4 mmol). After 10 hours, the reaction mixture was purified by column chromatography to provide the compound 16c (70.3 mg, 75% yield) as a white solid. Rf = 0.2 (Petroleum ether: EtOAc =10:1).

1H NMR (400 MHz, CDCl3) δ 7.62 (d, J = 8.1 Hz, 2H), 7.55 (d, J = 7.3 Hz, 1H), 7.48 – 7.36 (m, 4H), 7.31 – 7.20 (m, 6H), 6.75 (s, 1H), 4.04 (d, J = 17.9 Hz, 2H), 3.81 (dd, J = 11.9, 4.8 Hz, 1H), 3.71 (d, J = 16.6 Hz, 1H), 3.40 (dd, J = 12.0, 4.5 Hz, 1H), 3.10 (d, J = 17.3 Hz, 1H), 2.92 (d, J = 17.3 Hz, 1H), 2.40 (s, 3H).

13C NMR (101 MHz, CDCl3) δ 155.04, 154.87, 144.13, 137.73, 136.86, 132.79, 129.87, 129.18, 128.83, 128.23, 128.21, 127.68, 124.30, 123.01, 121.98, 121.12, 117.16, 111.16, 105.49, 49.40, 46.82, 38.23, 21.59, 20.78.

HRMS (ESI) for C28H25N2O3S[M+H]+m/z: calcd 469.1580, found 469.1537.

2-(5-phenyl-1-tosyl-3-(1-tosyl-1H-indol-3-yl)-1,2,3,6-tetrahydropyridin-4-yl)acetonitrile (17c)

graphic file with name fx39.jpg

Prepared following general Procedure A using 1a (63.4 mg, 0.2 mmol), 17b (120 mg, 0.4 mmol). After 12 hours, the reaction mixture was purified by column chromatography to provide the compound 17c (70.8 mg, 57% yield) as a white solid. Rf = 0.2 (Petroleum ether: EtOAc =5:1).

1H NMR (400 MHz, CDCl3) δ 7.97 (d, J = 8.2 Hz, 1H), 7.82 (d, J = 8.4 Hz, 2H), 7.64 – 7.51 (m, 4H), 7.49 – 7.38 (m, 3H), 7.33 (t, J = 7.3 Hz, 1H), 7.28 (d, J = 8.4 Hz, 5H), 7.25 (s, 2H), 4.25 (d, J = 16.7 Hz, 1H), 4.06 (s, 1H), 3.68 – 3.52 (m, 2H), 3.19 (dd, J = 11.7, 4.1 Hz, 1H), 3.03 (d, J = 17.3 Hz, 1H), 2.66 (d, J = 17.3 Hz, 1H), 2.41 (s, 3H), 2.32 (s, 3H).

13C NMR (101 MHz, CDCl3) δ 145.07, 144.11, 136.84, 136.73, 135.22, 134.79, 132.85, 130.12, 129.89, 129.57, 129.20, 128.87, 128.39, 127.61, 127.04, 125.53, 125.15, 123.78, 123.57, 120.33, 118.82, 117.45, 114.03, 49.51, 48.16, 34.94, 21.63, 21.59, 20.64.

HRMS (ESI) for C35H32N3O4S2[M+H]+m/z: calcd 622.1829, found 622.1769.

(E)-2-(3-(4-methoxystyryl)-5-phenyl-1-tosyl-1,2,3,6-tetrahydropyridin-4-yl)acetonitrile (18c)

graphic file with name fx40.jpg

Prepared following general Procedure A using 1a (63.4 mg, 0.2 mmol), 18b (64 mg, 0.4 mmol). After 12 hours, the reaction mixture was purified by column chromatography to provide the compound 18c (59.3 mg, 61% yield) as a white solid. Rf = 0.2 (Petroleum ether: EtOAc =5:1).

1H NMR (400 MHz, CDCl3) δ 7.66 (d, J = 8.2 Hz, 2H), 7.44 – 7.30 (m, 7H), 7.20 (d, J = 6.6 Hz, 2H), 6.87 (d, J = 8.7 Hz, 2H), 6.59 (d, J = 15.8 Hz, 1H), 6.08 (dd, J =15.8, 9.3 Hz, 1H), 4.03 (d, J = 16.6 Hz, 1H), 3.82 (s, 3H), 3.58 – 3.48 (m, 2H), 3.33 – 3.24 (m, 1H), 3.14 (dd, J = 11.6, 4.2 Hz, 1H), 2.96 (s, 2H), 2.43 (s, 3H).

13C NMR (101 MHz, CDCl3) δ 159.51, 144.03, 137.28, 135.94, 133.16, 132.67, 129.89, 129.12, 129.08, 128.62, 128.35, 127.83, 127.76, 124.94, 124.23, 117.77, 114.06, 55.37, 49.64, 48.13, 42.42, 21.59, 20.20.

HRMS (ESI) for C29H29N2O3S[M+H]+m/z: calcd 485.1893, found 485.1853.

N-(4-(cyanomethyl)-5-phenyl-1-tosyl-1,2,3,6-tetrahydropyridin-3-yl)-N-methylbenzamide (19c)

graphic file with name fx41.jpg

Prepared following general Procedure A using 1a (63.4 mg, 0.2 mmol), 19b (65 mg, 0.4 mmol). After 12 hours, the reaction mixture was purified by column chromatography to provide the compound 19c (65.0 mg, 67% yield) as a yellow solid. Rf = 0.25 (Petroleum ether: EtOAc =1:1).

1H NMR (600 MHz, CDCl3) δ 7.66 (d, J = 8.1 Hz, 2H), 7.53 (dd, J = 6.4, 2.8 Hz, 2H), 7.47 – 7.38 (m, 6H), 7.35 (d, J = 8.1 Hz, 2H), 7.21 (d, J = 6.9 Hz, 2H), 5.47 (s, 1H), 4.21 (d, J = 16.7 Hz, 1H), 3.99 (d, J = 12.4 Hz, 1H), 3.36 (d, J = 16.6 Hz, 1H), 3.15 (s, 3H), 3.08 – 2.96 (m, 3H), 2.44 (s, 3H).

13C NMR (101 MHz, CDCl3) δ 172.92, 144.43, 141.27, 136.57, 135.72, 131.88, 130.06, 130.03, 129.29, 129.03, 128.56, 127.82 (d, J = 9.9 Hz), 127.09, 120.76, 117.12, 50.72, 49.54, 48.14, 35.15, 21.62, 19.88.

HRMS (ESI) for C28H28N3O3S[M+H]+m/z: calcd 486.1846, found 486.1833.

2-(3-(2-oxopyrrolidin-1-yl)-5-phenyl-1-tosyl-1,2,3,6-tetrahydropyridin-4-yl)acetonitrile (20c)

graphic file with name fx42.jpg

Prepared following general Procedure A using 1a (63.4 mg, 0.2 mmol), 20b (45 mg, 0.4 mmol). After 18 hours, the reaction mixture was purified by column chromatography to provide the compound 20c (60.0 mg, 69% yield) as a yellow solid. Rf = 0.15 (Petroleum ether: EtOAc =1:1).

1H NMR (400 MHz, CDCl3) δ 7.61 (d, J = 8.2 Hz, 2H), 7.45 – 7.37 (m, 3H), 7.33 (d, J = 8.1 Hz, 2H), 7.20 – 7.15 (m, 2H), 4.91 (s, 1H), 4.20 (d, J = 16.7 Hz, 1H), 3.94 – 3.81 (m, 2H), 3.48 (ddd, J = 9.8, 7.8, 5.3 Hz, 1H), 3.24 (d, J = 16.6 Hz, 1H), 2.95 (d, J = 17.0 Hz, 1H), 2.85 – 2.75 (m, 2H), 2.47 (t, J = 8.1 Hz, 2H), 2.42 (s, 3H), 2.14 – 2.04 (m, 2H).

13C NMR (101 MHz, CDCl3) δ 176.07, 144.44, 140.77, 136.46, 131.75, 130.05, 129.26, 129.01, 127.82, 127.73, 120.58, 117.00, 49.49, 48.24, 48.05, 45.08, 30.94, 21.59, 19.71, 18.24.

HRMS (ESI) for C24H26N3O3S[M+H]+m/z: calcd 436.1689, found 436.1674.

2-(3-(benzyloxy)-5-phenyl-1-tosyl-1,2,3,6-tetrahydropyridin-4-yl)acetonitrile (21c)

graphic file with name fx43.jpg

Prepared following general Procedure A using 1a (63.4 mg, 0.2 mmol), 21b (54 mg, 0.4 mmol). After 12 hours, the reaction mixture was purified by column chromatography to provide the compound 21c (58.4 mg, 64% yield) as a yellow solid. Rf = 0.25 (Petroleum ether: EtOAc =5:1).

1H NMR (400 MHz, CDCl3) δ 7.67 (d, J = 6.0 Hz, 2H), 7.47 – 7.28 (m, 10H), 7.15 (d, J = 6.7 Hz, 2H), 4.79 (dd, J = 11.1, 2.1 Hz, 1H), 4.65 (dd, J =11.1, 2.2 Hz, 1H), 4.29 (s, 1H), 3.86 (d, J = 16.7 Hz, 1H), 3.66 (d, J =17.0 Hz, 1H), 3.56 – 3.45 (m, 1H), 3.37 (d, J = 12.0 Hz, 1H), 3.14 (d, J = 17.1 Hz, 1H), 2.93 (dd, J = 17.1, 1.9 Hz, 1H), 2.43 (s, 1H).

13C NMR (101 MHz, CDCl3) δ 144.14, 138.54, 137.25, 136.44, 132.96, 129.93, 129.10, 128.86, 128.70, 128.43, 128.27, 128.10, 127.72, 123.52, 117.56, 72.25, 71.54, 49.46, 46.09, 21.60, 18.76.

HRMS (ESI) for C27H27N2O3S[M+H]+m/z: calcd 459.1737, found 459.1671.

2-(3-(4-methoxyphenyl)-5-(p-tolyl)-1-tosyl-1,2,3,6-tetrahydropyridin-4-yl)acetonitrile (22c)

graphic file with name fx44.jpg

Prepared following general Procedure A using N-F (66.2 mg, 0.2 mmol). After 12 hours, the reaction mixture was purified by column chromatography to provide the compound 22c (64.3 mg, 68% yield) as a white solid. Rf = 0.25 (Petroleum ether: EtOAc = 5:1).

1H NMR (400 MHz, CDCl3) δ 7.62 (d, J = 8.2 Hz, 2H), 7.31 (d, J = 8.1 Hz, 2H), 7.28 – 7.22 (m, 4H), 7.13 (d, J = 8.0 Hz, 2H), 6.91 (d, J = 8.6 Hz, 2H), 4.06 (d, J = 16.6 Hz, 1H), 3.83 (s, 3H), 3.76 (s, 1H), 3.64 (d, J = 16.6 Hz, 1H), 3.45 (dd, J = 11.7, 4.5 Hz, 1H), 3.33 (dd, J = 11.7, 4.9 Hz, 1H), 3.00 (d, J = 17.2 Hz, 1H), 2.61 (d, J = 17.2 Hz, 1H), 2.44 (s, 3H), 2.40 (s, 3H).

13C NMR (101 MHz, CDCl3) δ 159.22, 143.193, 138.60, 136.40, 134.27, 132.77, 131.35, 129.80, 129.74, 129.58, 128.27, 127.73, 124.41, 117.45, 114.193, 55.30, 50.08, 49.71, 43.34, 21.56, 21.23, 20.193.

HRMS (ESI) for C28H29N2O3S[M+H]+m/z: calcd 473.1893, found 473.1864.

2-(3,5-bis(4-methoxyphenyl)-1-tosyl-1,2,3,6-tetrahydropyridin-4-yl)acetonitrile (23c)

graphic file with name fx45.jpg

Prepared following general Procedure A using N-F (69.4 mg, 0.2 mmol). After 12 hours, the reaction mixture was purified by column chromatography to provide the compound 23c (62.5 mg, 64% yield) as a yellow solid. Rf = 0.2 (Petroleum ether: EtOAc =5:1).

1H NMR (400 MHz, CDCl3) δ 7.60 (d, J = 8.1 Hz, 2H), 7.29 (d, J = 8.0 Hz, 2H), 7.23 (d, J = 8.5 Hz, 2H), 7.15 (d, J = 8.5 Hz, 2H), 6.93 (d, J = 8.5 Hz, 2H), 6.88 (d, J = 8.5 Hz, 2H), 4.03 (d, J = 16.6 Hz, 1H), 3.83 (s, 3H), 3.81 (s, 3H), 3.73 (s, 1H), 3.60 (d, J = 16.7 Hz, 1H), 3.42 (dd, J = 11.7, 4.4 Hz, 1H), 3.29 (dd, J = 11.7, 4.8 Hz, 1H), 2.98 (d, J = 17.2 Hz, 1H), 2.59 (d, J = 17.2 Hz, 1H), 2.42 (s, 3H).

13C NMR (101 MHz, CDCl3) δ 159.73, 159.20, 143.94, 136.04, 132.69, 131.37, 129.82, 129.67, 129.58, 129.29, 127.74, 124.45, 117.54, 114.44, 114.38, 55.40, 55.31, 50.07, 49.75, 43.39, 21.58, 20.40.

HRMS (ESI) for C28H29N2O4S[M+H]+m/z: calcd 489.1843, found 489.1848.

2-(5-(4-fluorophenyl)-3-(4-methoxyphenyl)-1-tosyl-1,2,3,6-tetrahydropyridin-4-yl)acetonitrile (24c)

graphic file with name fx46.jpg

Prepared following general Procedure A using substrate (67.0 mg, 0.2 mmol). After 12 hours, the reaction mixture was purified by column chromatography to provide the compound 24c (43.0 mg, 45% yield) as a white solid. Rf = 0.2 (Petroleum ether: EtOAc = 8:1).

1H NMR (400 MHz, CDCl3) δ 7.60 (d, J = 8.1 Hz, 2H), 7.30 (d, J = 8.0 Hz, 2H), 7.25 – 7.17 (m, 4H), 7.11 (t, J = 8.5 Hz, 2H), 6.89 (d, J = 8.5 Hz, 2H), 4.02 (d, J = 16.7 Hz, 1H), 3.81 (s, 3H), 3.74 (s, 1H), 3.61 (d, J = 16.6 Hz, 1H), 3.43 (dd, J = 11.8, 4.4 Hz, 1H), 3.31 (dd, J = 11.7, 4.8 Hz, 1H), 2.91 (d, J = 17.2 Hz, 1H), 2.60 (d, J = 17.2 Hz, 1H), 2.42 (s, 3H).

13C NMR (101 MHz, CDCl3) δ 162.69 (d, J = 248.7 Hz), 159.29, 144.02, 135.51, 133.14 (d, J = 3.5 Hz), 132.72, 131.08, 130.24 (d, J =8.3 Hz), 129.85, 129.54, 127.72, 125.38, 117.19, 116.22 (d, J = 21.7 Hz), 114.46, 55.30, 50.01, 49.69, 43.40, 21.57, 20.34.

19F NMR (377 MHz, CDCl3) δ -112.22 – -112.37 (m).

HRMS (ESI) for C27H26FN2O3S[M+H]+m/z: calcd 477.1643, found 477.1607.

2-(5-(4-chlorophenyl)-3-(4-methoxyphenyl)-1-tosyl-1,2,3,6-tetrahydropyridin-4-yl)acetonitrile (25c)

graphic file with name fx47.jpg

Prepared following general Procedure A using N-F (70.4 mg, 0.2 mmol). After 12 hours, the reaction mixture was purified by column chromatography to provide the compound 25c (56.1 mg, 57% yield) as a white solid. Rf = 0.2 (Petroleum ether: EtOAc = 5:1).

1H NMR (400 MHz, CDCl3) δ 7.60 (d, J = 8.2 Hz, 2H), 7.39 (d, J = 8.3 Hz, 2H), 7.30 (d, J = 8.1 Hz, 2H), 7.22 (d, J = 8.6 Hz, 2H), 7.17 (d, J = 8.3 Hz, 2H), 6.88 (d, J = 8.6 Hz, 2H), 4.00 (d, J = 16.6 Hz, 1H), 3.80 (s, 3H), 3.74 (s, 1H), 3.61 (d, J = 16.6 Hz, 1H), 3.41 (dd, J = 11.8, 4.5 Hz, 1H), 3.32 (dd, J = 11.8, 4.9 Hz, 1H), 2.90 (d, J = 17.2 Hz, 1H), 2.61 (d, J = 17.3 Hz, 1H), 2.42 (s, 3H).

13C NMR (101 MHz, CDCl3) δ 159.29, 144.08, 135.61, 135.38, 134.76, 132.64, 131.00, 129.88, 129.81, 129.56, 129.40, 127.72, 125.52, 117.12, 114.47, 55.31, 50.01, 49.54, 43.40, 21.59, 20.35.

HRMS (ESI) for C27H26ClN2O3S[M+H]+m/z: calcd 493.1347, found 493.1323.

ethyl-4-(4-(cyanomethyl)-5-(4-methoxyphenyl)-1-tosyl-1,2,5,6-tetrahydropyridin-3-yl)benzoate (26c)

graphic file with name fx48.jpg

Prepared following general Procedure A using N-F (77.8 mg, 0.2 mmol). After 12 hours, the reaction mixture was purified by column chromatography to provide the compound 26c (54.1 mg, 51% yield) as a white solid. Rf = 0.2 (Petroleum ether: EtOAc = 8:1).

1H NMR (600 MHz, CDCl3) δ 8.09 (d, J = 8.2 Hz, 2H), 7.59 (t, J = 9.3 Hz, 2H), 7.30 (d, J = 8.1 Hz, 4H), 7.23 (d, J = 8.6 Hz, 2H), 6.89 (d, J = 8.6 Hz, 2H), 4.39 (q, J = 7.1 Hz, 2H), 4.04 (d, J = 16.7 Hz, 1H), 3.81 (s, 3H), 3.76 (s, 1H), 3.64 (d, J = 16.7 Hz, 1H), 3.43 (dd, J = 11.8, 4.5 Hz, 1H), 3.34 (dd, J = 11.8, 4.9 Hz, 1H), 2.88 (d, J = 17.3 Hz, 1H), 2.61 (d, J = 17.4 Hz, 1H), 2.42 (s, 3H), 1.40 (t, J = 7.1 Hz, 3H).

13C NMR (151 MHz, CDCl3) δ 165.85, 159.30, 144.07, 141.74, 135.70, 132.68, 130.93, 130.80, 130.31, 129.86, 129.54, 128.46, 127.70, 125.63, 116.96, 114.48, 61.30, 55.30, 50.00, 49.35, 43.36, 21.56, 20.34, 14.33.

HRMS (ESI) for C30H31N2O5S[M+H]+m/z: calcd 531.1948, found 531.1917.

2-(3-(4-methoxyphenyl)-5-(m-tolyl)-1-tosyl-1,2,3,6-tetrahydropyridin-4-yl)acetonitrile (27c)

graphic file with name fx49.jpg

Prepared following general Procedure A using N-F (66.2 mg, 0.2 mmol). After 12 hours, the reaction mixture was purified by column chromatography to provide the compound 27c (72.8 mg, 77% yield) as a white solid. Rf = 0.25 (Petroleum ether: EtOAc = 5:1).

1H NMR (400 MHz, CDCl3) δ 7.60 (d, J = 8.2 Hz, 2H), 7.32 – 7.27 (m, 3H), 7.24 (d, J = 8.7 Hz, 2H), 7.18 (d, J = 7.6 Hz, 1H), 7.03 (s, 1H), 7.00 (d, J = 7.6 Hz, 1H), 6.89 (d, J = 8.7 Hz, 2H), 4.04 (d, J = 16.6 Hz, 1H), 3.81 (s, 3H), 3.75 (s, 1H), 3.62 (d, J = 16.6 Hz, 1H), 3.43 (dd, J = 11.7, 4.5 Hz, 1H), 3.31 (dd, J = 11.7, 4.9 Hz, 1H), 2.97 (d, J = 17.2 Hz, 1H), 2.58 (d, J = 17.2 Hz, 1H), 2.42 (s, 3H), 2.38 (s, 3H).

13C NMR (101 MHz, CDCl3) δ 159.22, 143.93, 138.95, 137.24, 136.58, 132.77, 131.33, 129.81, 129.57, 129.35, 128.96, 128.94, 127.74, 125.42, 124.40, 117.42, 114.41, 55.30, 50.09, 49.70, 43.28, 21.56, 21.39, 20.37.

HRMS (ESI) for C28H29N2O3S[M+H]+m/z: calcd 473.1893, found 473.1862.

2-(3-(4-methoxyphenyl)-5-(o-tolyl)-1-tosyl-1,2,3,6-tetrahydropyridin-4-yl)acetonitrile (28c)

graphic file with name fx50.jpg

Prepared following general Procedure A using N-F (66.2 mg, 0.2 mmol). After 12 hours, the reaction mixture was purified by column chromatography to provide the compound 28c (59.6 mg, 63% yield) as a white solid. Rf = 0.25 (Petroleum ether: EtOAc = 5:1).

1H NMR (400 MHz, Chloroform-d) major: δ 7.66 – 7.59 (t, 2H), 7.36 – 7.21 (m, 7H), 7.10 (d, J = 7.3 Hz, 1H), 6.93 (d, J = 3.6 Hz, 2H), 3.98 (d, J = 16.5 Hz, 1H), 3.89 – 3.80 (m, 4H), 3.75 (s, 1H), 3.58 – 3.53 (m, 1H), 3.34 (d, J = 5.2 Hz, 1H), 2.73 (d, J = 17.1 Hz, 1H), 2.57 (s, 1H), 2.45 (s, 3H), 2.27 (s, 3H). minor: 1H NMR (400 MHz, Chloroform-d) δ 7.65 – 7.53 (t, 2H), 7.34 – 7.16 (m, 7H), 7.02 (d, J = 7.4 Hz, 1H), 6.89 (d, J = 3.6 Hz, 2H), 3.88 – 3.77 (m, 5H), 3.66 (d, J = 16.8 Hz, 1H), 3.49 – 3.44 (m, 1H), 3.29 (d, J = 5.1 Hz, 1H), 2.77 (d, J = 17.3 Hz, 1H), 2.50 (s, 1H), 2.42 (s, 3H), 2.26 (s, 3H).

13C NMR (101 MHz, Chloroform-d) δ 159.25, 159.23, 143.96, 143.88, 136.51, 136.45, 136.23, 135.93, 135.76, 135.43, 132.92, 132.86, 131.62, 131.06, 130.87, 130.72, 129.82, 129.79, 129.56, 129.53, 128.76, 128.72, 128.64, 127.72, 126.70, 126.46, 125.09, 125.03, 116.97, 116.78, 114.47, 55.30, 50.28, 50.09, 49.17, 43.24, 43.16, 21.57, 19.94, 19.89, 19.36, 19.20.

HRMS (ESI) for C28H29N2O3S[M+H]+m/z: calcd 473.1893, found 473.1862.

2-(3-(4-methoxyphenyl)-5-(naphthalen-1-yl)-1-tosyl-1,2,3,6-tetrahydropyridin-4-yl)acetonitrile (29c)

graphic file with name fx51.jpg

Prepared following general Procedure A using N-F (73.4 mg, 0.2 mmol). After 12 hours, the reaction mixture was purified by column chromatography to provide the compound 29c (60 mg, 59% yield) as a white solid. Rf = 0.2 (Petroleum ether: EtOAc = 5:1).

1H NMR (600 MHz, Chloroform-d) major: δ 7.94 – 7.84 (m, 2H), 7.73 (d, J = 8.1 Hz, 1H), 7.62 – 7.41 (m, 6H), 7.36 – 7.27 (m, 4H), 6.97 (d, J = 8.6 Hz, 2H), 4.19 (d, J = 16.7 Hz, 1H), 3.94 (d, J = 17.0 Hz, 1H), 3.84 (s, 3H), 3.69 – 3.61 (m, 1H), 3.59 (d, J = 16.7 Hz, 1H), 3.39 – 3.33 (m, 1H), 2.69 (d, J = 3.6 Hz, 1H), 2.51 (d, J = 17.3 Hz, 1H), 2.43 (s, 3H). minor: δ 7.94 – 7.84 (m, 2H), 7.78 (d, J = 9.5 Hz, 1H), 7.62 – 7.41 (m, 6H), 7.36 – 7.27 (m, 4H), 6.92 (d, J = 8.6 Hz, 2H), 4.00 (s, 1H), 3.87 (s, 1H), 3.82 (s, 4H), 3.69 – 3.61 (m, 1H), 3.39 – 3.33 (m, 1H), 2.72 (d, J = 3.6 Hz, 1H), 2.56 (d, J =17.3 Hz, 1H), 2.42 (s, 3H).

13C NMR (151 MHz, Chloroform-d) major: δ 159.29, 143.99, 134.70, 134.40, 133.85, 131.72, 130.65, 129.85, 129.59, 129.08, 129.00, 128.61, 127.75, 127.38, 126.70, 126.65, 125.69, 125.40, 123.87, 117.15, 114.58, 55.34, 50.21, 49.81, 43.29, 21.57, 20.29. minor: 159.29, 143.90, 134.98, 134.59, 133.81, 130.95, 130.58, 129.85, 129.67, 129.05, 128.76, 128.03, 127.72, 127.50, 126.77, 126.50, 125.71, 125.40, 124.33, 116.78, 114.51, 55.32, 50.44, 49.85, 43.52, 21.57, 20.40.

HRMS (ESI) for C31H29N2O3S[M+H]+m/z: calcd 509.1893, found 509.1858.

2-(3-(4-methoxyphenyl)-5-(naphthalen-2-yl)-1-tosyl-1,2,3,6-tetrahydropyridin-4-yl)acetonitrile (30c)

graphic file with name fx52.jpg

Prepared following general Procedure A using N-F (73.4 mg, 0.2 mmol). After 12 hours, the reaction mixture was purified by column chromatography to provide the compound 30c (64.0 mg, 63% yield) as a white solid. Rf = 0.2 (Petroleum ether: EtOAc = 5:1).

1H NMR (400 MHz, CDCl3) δ 7.95 – 7.82 (m, 3H), 7.71 (s, 1H), 7.62 (d, J = 8.0 Hz, 2H), 7.58 – 7.51 (m, 2H), 7.35 – 7.27 (m, 5H), 6.92 (d, J =8.4 Hz, 2H), 4.16 (d, J =16.6 Hz, 1H), 3.82 (s, 4H), 3.73 (d, J = 16.7 Hz, 1H), 3.48 (dd, J = 11.7, 4.4 Hz, 1H), 3.37 (dd, J =11.7, 4.9 Hz, 1H), 3.01 (d, J = 17.2 Hz, 1H), 2.64 (d, 1H), 2.42 (s, 3H).

13C NMR (101 MHz, CDCl3) δ 159.27, 144.01, 136.45, 134.58, 133.19, 132.97, 132.69, 131.28, 129.86, 129.63, 129.03, 128.01, 127.83, 127.76, 127.70, 126.94, 126.90, 125.87, 125.12, 117.37, 114.46, 55.33, 50.15, 49.76, 43.41, 21.58, 20.48.

HRMS (ESI) for C31H29N2O3S[M+H]+m/z: calcd 509.1893, found 509.1856.

4-(azidomethyl)-3,5-diphenyl-1-tosyl-1,2,3,6-tetrahydropyridine (32c)

graphic file with name fx53.jpg

1H NMR (400 MHz, CDCl3) δ 7.60 (d, J =8.2 Hz, 2H), 7.44 – 7.27 (m, 10H), 7.21 (d, J =6.6 Hz, 2H), 4.04 (d, J =16.7 Hz, 1H), 3.85 – 3.75 (m, 2H), 3.70 (d, J = 16.7 Hz, 1H), 3.44 (dd, J =11.7, 4.6 Hz, 1H), 3.33 (dd, J = 11.7, 4.8 Hz, 1H), 3.22 (d, J = 13.1 Hz, 1H), 2.42 (s, 3H).

13C NMR (101 MHz, CDCl3) δ 143.85, 140.16, 137.50, 136.74, 132.74, 129.80, 129.46, 128.75 (t, J = 12.1 Hz), 128.31, 127.77, 127.52, 50.57, 49.94, 49.62, 42.82, 21.60.

HRMS (ESI) for C25H25N4O2S[M+H]+m/z: calcd 445.1693, found 445.1671.

3-(4-methoxyphenyl)-5-phenyl-4-(thiocyanatomethyl)-1-tosyl-1,2,3,6-tetrahydropyridine (33c)

graphic file with name fx54.jpg

1H NMR (400 MHz, CDCl3) δ 7.60 (d, J =8.1 Hz, 2H), 7.45 – 7.34 (m, 3H), 7.30 (d, J = 8.0 Hz, 2H), 7.24 (d, J = 8.1 Hz, 4H), 6.89 (d, J =8.5 Hz, 2H), 4.01 (d, J = 16.9 Hz, 1H), 3.91 (s, 1H), 3.81 (s, 3H), 3.76 – 3.68 (m, 2H), 3.42 (dd, J =11.7, 4.7 Hz, 1H), 3.35 (dd, J = 11.7, 4.8 Hz, 1H), 2.92 (d, J = 12.7 Hz, 1H), 2.43 (s, 3H).

13C NMR (101 MHz, CDCl3) δ 159.17, 143.99, 138.78, 137.03, 132.67, 131.47, 129.89, 129.62, 129.01, 128.78, 128.54, 128.17, 127.73, 114.44, 111.72, 55.33, 50.08, 41.57, 34.74, 21.61.

HRMS (ESI) for C27H27N2O3S2[M+H]+m/z: calcd 491.1458, found 491.1413.

3-(4-methoxyphenyl)-5-phenyl-1-tosyl-4-(((trifluoromethyl)thio)methyl)-1,2,3,6-tetrahydropyridine (34c)

graphic file with name fx55.jpg

1H NMR (400 MHz, CDCl3) δ 7.59 (d, J = 8.2 Hz, 2H), 7.43 – 7.32 (m, 3H), 7.29 (d, J = 8.1 Hz, 2H), 7.22 (d, J = 8.6 Hz, 2H), 7.21 – 7.16 (m, 2H), 6.88 (d, J = 8.6 Hz, 2H), 3.98 (d, J = 16.7 Hz, 1H), 3.89 (s, 1H), 3.81 (s, 3H), 3.67 (d, J = 16.7 Hz, 1H), 3.57 (d, J = 12.8 Hz, 1H), 3.34 (ddd, J = 28.9, 11.7, 4.9 Hz, 2H), 2.91 (d, J = 12.9 Hz, 1H), 2.42 (s, 3H).

13C NMR (101 MHz, CDCl3) δ 159.03, 143.81, 137.62, 136.39, 132.93, 131.89, 129.77, 129.62, 128.79, 128.63, 128.42, 128.32, 127.74, 114.27, 55.27, 50.17, 49.90, 41.78, 30.84, 21.55.

19F NMR (377 MHz, CDCl3) δ -41.21 (s).

HRMS (ESI) for C27H27F3NO3S2[M+H]+m/z: calcd 534.1379, found 534.1383.

4-(4,4-dimethylpent-2-yn-1-yl)-3-(4-methoxyphenyl)-5-phenyl-1-tosyl-1,2,3,6-tetrahydropyridine (35c)

graphic file with name fx56.jpg

Prepared following general Procedure C using 1a (63.4 mg, 0.2 mmol), 4-methoxystyrene (54 mg, 0.4 mmol, 2.0 eq.), and (3,3-dimethylbut-1-yn-1-yl)trimethoxysilane (81 mg, 0.4 mmol, 2.0 eq.). After 12 hours, the reaction mixture was purified by column chromatography to provide the title compound 35c (44.5 mg, 43% yield) as a white solid. Rf = 0.3 (Petroleum ether: EtOAc =5:1)

1H NMR (400 MHz, CDCl3) δ 7.60 (d, J = 8.2 Hz, 2H), 7.39 – 7.27 (m, 5H), 7.26 – 7.22 (m, 4H), 6.86 (d, J = 8.7 Hz, 2H), 3.99 (d, J = 15.9 Hz, 1H), 3.90 (s, 1H), 3.81 (s, 3H), 3.59 (d, J = 15.9 Hz, 1H), 3.38 (dd, J = 11.4, 4.5 Hz, 1H), 3.26 (dd, J =11.4, 4.8 Hz, 1H), 2.80 (d, J = 17.1 Hz, 1H), 2.42 – 2.38 (m, 4H), 1.16 (s, 9H).

13C NMR (101 MHz, CDCl3) δ 158.69, 143.58, 138.72, 133.04, 132.83, 131.20, 131.04, 129.71, 129.67, 128.80, 128.52, 127.85, 127.71, 113.89, 89.85, 75.55, 55.25, 50.43, 49.49, 42.74, 31.25, 27.37, 21.58, 21.55.

HRMS (ESI) for C32H36NO3S[M+H]+m/z: calcd 514.2410, found 514.2342.

4-(hept-2-yn-1-yl)-3-(4-methoxyphenyl)-5-phenyl-1-tosyl-1,2,3,6-tetrahydropyridine (36c)

graphic file with name fx57.jpg

Prepared following general Procedure C using 1a (63.4 mg, 0.2 mmol), 4-methoxystyrene (54 mg, 0.4 mmol, 2.0 eq.), and hex-1-yn-1-yltrimethoxysilane (81 mg, 0.4 mmol, 2.0 eq.). After 12 hours, the reaction mixture was purified by column chromatography to provide the title compound 36c (63.7 mg, 62% yield) as a white solid. Rf = 0.3 (Petroleum ether: EtOAc =5:1)

1H NMR (400 MHz, CDCl3) δ 7.62 (d, J =8.1 Hz, 2H), 7.42 – 7.32 (m, 3H), 7.31 – 7.26 (m, 6H), 6.89 (d, J =8.5 Hz, 2H), 4.08 (d, J =16.0 Hz, 1H), 3.93 (s, 1H), 3.83 (s, 3H), 3.56 (d, J =16.0 Hz, 1H), 3.48 (dd, J =11.4, 3.9 Hz, 1H), 3.23 (dd, J = 11.4, 4.7 Hz, 1H), 2.83 (d, J = 17.0 Hz, 1H), 2.43 – 2.39 (m, 4H), 2.13 (t, J =6.7 Hz, 2H), 1.52 – 1.35 (m, 4H), 0.94 (t, J = 7.0 Hz, 3H).

13C NMR (101 MHz, CDCl3) δ 158.68, 143.58, 138.66, 133.09, 132.78, 131.21, 130.96, 129.65, 128.78, 128.54, 127.84, 127.75, 113.90, 81.27, 77.21, 55.25, 50.29, 49.41, 42.57, 31.09, 21.99, 21.60, 21.55, 18.48, 13.67.

HRMS (ESI) for C32H36NO3S[M+H]+m/z: calcd 514.2410, found 514.2338.

3-(4-methoxyphenyl)-5-phenyl-4-(3-phenylprop-2-yn-1-yl)-1-tosyl-1,2,3,6-tetrahydropyridine (37c)

graphic file with name fx58.jpg

Prepared following general Procedure C using 1a (63.4 mg, 0.2 mmol), 4-methoxystyrene (54 mg, 0.4 mmol, 2.0 eq.), and trimethoxy(phenylethynyl)silane (90 mg, 0.4 mmol, 2.0 eq.). After 12 hours, the reaction mixture was purified by column chromatography using 7% EtOAc in PE to provide the title compound 37c (81.2 mg, 76% yield) as a white solid. Rf = 0.25 (Petroleum ether: EtOAc =6:1)

1H NMR (400 MHz, CDCl3) δ 7.61 (d, J = 8.2 Hz, 2H), 7.43 – 7.26 (m, 14H), 6.89 (d, J =8.6 Hz, 2H), 4.07 (d, J = 16.1 Hz, 1H), 3.98 (s, 1H), 3.81 (s, 3H), 3.62 (d, J = 16.1 Hz, 1H), 3.46 (dd, J = 11.5, 4.3 Hz, 1H), 3.29 (dd, J =11.5, 4.8 Hz, 1H), 3.07 (d, J = 17.3 Hz, 1H), 2.68 (d, J = 17.4 Hz, 1H), 2.40 (s, 3H).

13C NMR (101 MHz, CDCl3) δ 158.80, 143.66, 138.54, 132.86, 132.79, 132.13, 131.58, 130.22, 129.71 (d, J = 1.8 Hz), 128.80, 128.67, 128.24, 127.92, 127.83, 127.80, 123.67, 114.02, 87.35, 81.42, 55.28, 50.37, 49.55, 42.90, 22.33, 21.55.

HRMS (ESI) for C34H32NO3S[M+H]+m/z: calcd 534.2097, found 534.2024.

3-(4-methoxyphenyl)-5-phenyl-1-tosyl-4-(3-(trimethylsilyl)prop-2-yn-1-yl)-1,2,3,6-tetrahydropyridine (38c)

graphic file with name fx59.jpg

Prepared following general Procedure C using 1a (63.4 mg, 0.2 mmol), 4-methoxystyrene (54 mg, 0.4 mmol, 2.0 eq.), and trimethoxy((trimethylsilyl)ethynyl)silane (88 mg, 0.4 mmol, 2.0 eq.). After 12 hours, the reaction mixture was purified by column chromatography using 6% EtOAc in PE to provide the title compound 38c (60.4 mg, 57% yield) as a white solid. Rf = 0.25 (Petroleum ether: EtOAc =5:1)

1H NMR (400 MHz, CDCl3) δ 7.60 (d, J = 8.1 Hz, 2H), 7.40 – 7.31 (m, 3H), 7.30 – 7.22 (m, 6H), 6.87 (d, J = 8.5 Hz, 2H), 4.01 (d, J =16.1 Hz, 1H), 3.91 (s, 1H), 3.81 (s, 3H), 3.59 (d, J =16.0 Hz, 1H), 3.40 (dd, J = 11.4, 4.3 Hz, 1H), 3.27 (dd, J = 11.4, 4.8 Hz, 1H), 2.88 (d, J =17.5 Hz, 1H), 2.48 (d, J = 17.6 Hz, 1H), 2.41 (s, 3H), 0.14 (s, 9H).

13C NMR (101 MHz, CDCl3) δ 158.75, 143.67, 138.47, 132.78, 132.67, 132.00, 129.92, 129.74, 129.71, 128.77, 128.61, 127.85, 113.94, 104.06, 85.64, 55.26, 50.36, 49.54, 42.76, 22.82, 21.57, 0.12.

HRMS (ESI) for C31H36NO3SSi[M+H]+m/z: calcd 530.2180, found 530.2105.

4-(3-cyclopropylprop-2-yn-1-yl)-3-(4-methoxyphenyl)-5-phenyl-1-tosyl-1,2,3,6-tetrahydropyridine (39c)

graphic file with name fx60.jpg

Prepared following general Procedure C using sing 1a (63.4 mg, 0.2 mmol), 4-methoxystyrene (54 mg, 0.4 mmol, 2.0 eq.), and (cyclopropylethynyl)trimethoxysilane (76 mg, 0.4 mmol, 2.0 eq.). After 12 hours, the reaction mixture was purified by column chromatography using 6% EtOAc in PE to provide the title compound 39c (49.8 mg, 50% yield) as a white solid. Rf = 0.3 (Petroleum ether: EtOAc =5:1)

1H NMR (400 MHz, CDCl3) δ 7.59 (d, J =8.1 Hz, 2H), 7.39 – 7.30 (m, 3H), 7.29 – 7.21 (m, 6H), 6.86 (d, J =8.5 Hz, 2H), 4.03 (d, J = 16.0 Hz, 1H), 3.88 (s, 1H), 3.80 (s, 3H), 3.55 (d, J = 16.0 Hz, 1H), 3.42 (dd, J =11.4, 4.1 Hz, 1H), 3.23 (dd, J = 11.4, 4.7 Hz, 1H), 2.78 (d, J = 17.1 Hz, 1H), 2.41 – 2.34 (m, 4H), 1.19 – 1.09 (m, 1H), 0.74 – 0.65 (m, 2H), 0.61 – 0.52 (m, 2H).

13C NMR (101 MHz, CDCl3) δ 158.69, 143.61, 138.62, 133.03, 132.75, 131.32, 130.78, 129.67, 129.65, 128.76, 128.56, 127.84, 127.76, 113.91, 84.24, 72.59, 55.26, 50.33, 49.45, 42.59, 21.60, 21.56, 8.05, 7.98.

HRMS (ESI) for C31H32NO3S[M+H]+m/z: calcd 498.2097, found 498.2026.

Characterization of products 40-43

2-(3-(4-methoxyphenyl)-5-phenyl-1-tosyl-1,2,3,6-tetrahydropyridin-4-yl)acetamide (40)

graphic file with name fx61.jpg

1H NMR (600 MHz, Chloroform-d) δ 7.58 (d, J = 6.4 Hz, 2H), 7.38 – 7.34 (m, 2H), 7.31 (t, J = 7.3 Hz, 1H), 7.28 – 7.24 (m, 4H), 7.22 (d, J = 8.6 Hz, 2H), 6.85 (d, J = 8.6 Hz, 2H), 5.53 (s, 1H), 5.25 (s, 1H), 4.07 (d, J = 16.3 Hz, 1H), 3.79 (s, 3H), 3.74 (s, 1H), 3.56 (d, J = 16.4 Hz, 1H), 3.44 (dd, J = 11.5, 4.2 Hz, 1H), 3.24 (dd, J = 11.6, 4.7 Hz, 1H), 2.88 (d, J = 15.8 Hz, 1H), 2.46 (d, J = 16.2 Hz, 1H), 2.41 (s, 3H).

13C NMR (151 MHz, Chloroform-d) δ 172.85, 158.84, 143.75, 138.54, 134.67, 132.83, 132.74, 129.70, 129.67, 129.00, 128.74, 128.69, 127.98, 127.79, 114.12, 55.26, 50.15, 49.65, 43.70, 37.90, 21.53.

HRMS (ESI) for C27H29FN2O4S[M+H]+m/z: calcd 477.1843, found 477.1833.

2-(3-(2-oxopyrrolidin-1-yl)-5-phenyl-1,2,3,6-tetrahydropyridin-4-yl)acetonitrile (41)

graphic file with name fx62.jpg

1H NMR (400 MHz, CDCl3) δ 7.40 -7 .36 (m, 2H), 7.35 – 7.29 (m, 1H), 7.21 – 7.16 (m, 2H), 4.68 (s, 1H), 3.73 – 3.63 (m, 1H), 3.59 – 3.48 (m, 3H), 3.22 – 3.09 (m, 2H), 2.97 (d, J = 16.9 Hz, 1H), 2.81 (d, J = 16.9 Hz, 1H), 2.55 – 2.36 (m, 2H), 2.19-2.02 (3H).

13C NMR (101 MHz, CDCl3) δ 176.08, 144.99, 138.21, 128.95, 128.25, 127.65, 120.40, 117.94, 50.64, 48.57, 47.79, 45.57, 31.11, 19.89, 18.06.

HRMS (ESI) for C17H20N3O [M+H]+m/z: calcd 282.1601, found 282.1584.

2-(3-(4-methoxyphenyl)-5-phenyl-1-tosyl-2,3-dihydropyridin-4(1H)-ylidene)acetonitrile (42)

graphic file with name fx63.jpg

1H NMR (400 MHz, CDCl3) δ 7.49 (d, J = 8.3 Hz, 1H), 7.43 – 7.33 (m, 2H), 7.23 (dd, J = 7.8, 1.6 Hz, 1H), 7.19 (d, J = 8.1 Hz, 1H), 7.12 (s, 1H), 7.08 (d, J = 8.7 Hz, 1H), 6.69 (d, J = 8.7 Hz, 1H), 5.09 (s, 1H), 4.31 (d, J = 1.6 Hz, 1H), 4.13 (d, J = 12.7 Hz, 1H), 3.78 (s, 3H), 3.56 (dd, J = 12.6, 4.0 Hz, 1H), 2.42 (s, 3H).

13C NMR (101 MHz, CDCl3) δ 158.92, 153.76, 144.61, 136.04, 134.46, 130.74, 130.40, 129.97, 129.53, 128.91, 128.25, 128.01, 126.97, 119.52, 117.48, 114.17, 93.11, 55.19, 48.72, 41.27, 21.57.

HRMS (ESI) for C27H25N2O3S [M+H]+m/z: calcd 457.1580, found 457.1617.

2-bromo-2-(5-(4-methoxyphenyl)-3-phenyl-1-tosyl-1,2-dihydropyridin-4-yl)acetonitrile (43)

graphic file with name fx64.jpg

1H NMR (600 MHz, Chloroform-d) δ 7.54 (d, J =8.1 Hz, 2H), 7.43 – 7.37 (m, 3H), 7.26 – 7.19 (m, 4H), 7.12 (d, J = 8.7 Hz, 2H), 7.03 (s, 1H), 6.75 (d, J = 8.7 Hz, 2H), 4.36 (s, 1H), 4.22 (d, J = 14.5 Hz, 1H), 3.80 (s, 3H), 3.48 (dd, J = 13.0, 4.1 Hz, 1H), 2.44 (s, 3H).

13C NMR (151 MHz, Chloroform-d) δ 159.07, 149.85, 144.88, 136.45, 134.10, 131.59, 130.11, 129.84, 128.76, 128.71, 128.29, 128.00, 126.99, 117.55, 114.67, 114.33, 86.48, 55.22, 47.75, 42.01, 21.61.

HRMS (ESI) for C27H24BrN2O3S [M+H]+m/z: calcd 535.0686, found 535.0621.

Acknowledgments

This work is supported by the National Natural Science Foundation of China (22101258, 21901233), the Natural Science Foundation of Zhejiang Province (LY22B020007), and the Open Research Fund (KLMEACM202106) of Key Laboratory of the Ministry of Education for Advanced Catalysis Materials and Zhejiang Key Laboratory for Reactive Chemistry on Solid Surfaces, and the Start-up Research Grant from the Department of Chemistry, Zhejiang Normal University. We thank Prof. Guoyin Yin @ Wuhan University, and Prof. Tao XU @ Tongji University for their helpful discussions.

Author contributions

Conceptualization, Z.Z.; Methodology, S.W., G.Z., and Y.W.; Investigation, S.W., G.Z., Y.W., and Y.M.; Writing – Original Draft, Z.Z.; Writing –Review and Editing, Z.Z., L.Z. and Y.W.; Funding Acquisition, Z.Z. and L.Z.; Resources, Z.Z. and L.Z.; Supervision, Z.Z., L.Z., and Y.W.

Declaration of interests

The authors declare no competing interests.

Published: February 9, 2023

Footnotes

Supplemental information can be found online at https://doi.org/10.1016/j.isci.2023.106137.

Contributor Information

Liejin Zhou, Email: ljzhou@zjnu.cn.

Zuxiao Zhang, Email: zhangzx@zjnu.edu.cn.

Supplemental information

Document S1. Data S1 and Transparent methods
mmc1.pdf (7.2MB, pdf)

Data and code availability

Crystallographic data for the structures reported in this article have been deposited at the Cambridge Crystallographic Data Centre (CCDC) under accession numbers CCDC 2192306 (3a), 2192304 (43). Copies of the data can be obtained free of charge from https://www.ccdc.cam.ac.uk/structures/. All other data are available from the lead contact upon reasonable request.

References

  • 1.Lovering F., Bikker J., Humblet C. Escape from flatland: increasing saturation as an approach to improving clinical success. J. Med. Chem. 2009;52:6752–6756. doi: 10.1021/jm901241e. [DOI] [PubMed] [Google Scholar]
  • 2.Taylor R.D., MacCoss M., Lawson A.D.G. Rings in drugs. J. Med. Chem. 2014;57:5845–5859. doi: 10.1021/jm4017625. [DOI] [PubMed] [Google Scholar]
  • 3.Vitaku E., Smith D.T., Njardarson J.T. Analysis of the structural diversity, substitution patterns, and frequency of nitrogen heterocycles among U.S. FDA approved pharmaceuticals. J. Med. Chem. 2014;57:10257–10274. doi: 10.1021/jm501100b. [DOI] [PubMed] [Google Scholar]
  • 4.Schneider N., Lowe D.M., Sayle R.A., Tarselli M.A., Landrum G.A. Big data from pharmaceutical patents: a computational analysis of medicinal chemists' bread and butter. J. Med. Chem. 2016;59:4385–4402. doi: 10.1021/acs.jmedchem.-6b00153. [DOI] [PubMed] [Google Scholar]
  • 5.Horowski R., Löschmann P.A. Classical dopamine agonists. J. Neural. Transm. 2019;126:449–454. doi: 10.1007/s00702-019-01989-y. [DOI] [PubMed] [Google Scholar]
  • 6.Daugan A., Grondin P., Ruault C., Le Monnier de Gouville A.C., Coste H., Kirilovsky J., Hyafil F., Labaudinière R. The discovery of tadalafil: a novel and highly selective PDE5 inhibitor. 1: 5,6,11,11a-tetrahydro-1H-imidazo-[1‘,5‘:1,6]pyrido[3,4-b]indole-1,3(2H)-dione analogues. J. Med. Chem. 2003;46:4525–4532. doi: 10.1021/jm030056e. [DOI] [PubMed] [Google Scholar]
  • 7.Gunasekara N.S., Noble S., Benfield P. Paroxetine. An update of its pharmacology and therapeutic use in depression and a review of its use in other disorders. Drugs. 1998;55:85–120. doi: 10.2165/00003495-199855010-00007. [DOI] [PubMed] [Google Scholar]
  • 8.Taber D.F., Lambert T. Oxford Univ. Press; 2015. Organic Synthesis. [Google Scholar]
  • 9.Wu J., Tang W., Pettman A., Xiao J. Efficient and chemoselective reduction of pyridines to tetrahydropyridines and piperidines via rhodium-catalyzed transfer hydrogenation. Adv. Synth. Catal. 2013;355:35–40. doi: 10.1002/adsc.201201034. [DOI] [Google Scholar]
  • 10.Talwar D., Li H.Y., Durham E., Xiao J. A simple iridicycle catalyst for efficient transfer hydrogenation of N-Heterocycles in water. Chemistry. 2015;21:5370–5379. doi: 10.1002/chem.201500016. [DOI] [PubMed] [Google Scholar]
  • 11.Buffat M.G. Synthesis of piperidines. Tetrahedron. 2004;60:1701–1729. doi: 10.1016/j.tet.2003.11.043. [DOI] [Google Scholar]
  • 12.Chen S., Mercado B.Q., Bergman R.G., Ellman J.A. Regio- and diastereoselective synthesis of highly substituted, oxygenated piperidines from tetrahydropyridines. J. Org. Chem. 2015;80:6660–6668. doi: 10.1021/acs.joc.5b00816. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 13.Davis R., Markham A., Balfour J.A. Ciprofloxacin. An updated review of its pharmacology, therapeutic efficacy and tolerability. Drugs. 1996;51:1019–1074. doi: 10.2165/00003495-199651060-00010. [DOI] [PubMed] [Google Scholar]
  • 14.Mateeva N.N., Winfield L.L., Redda K.K. The chemistry and pharmacology of tetrahydropyridines. Curr. Med. Chem. 2005;12:551–571. doi: 10.2174/0929867310504050551. [DOI] [PubMed] [Google Scholar]
  • 15.Aridoss G., Amirthaganesan S., Jeong Y.T. Synthesis, crystal and antibacterial studies of diversely functionalized tetrahydropyridin-4-ol. Bioorg. Med. Chem. Lett. 2010;20:2242–2249. doi: 10.1016/j.bmcl.2010.02.015. [DOI] [PubMed] [Google Scholar]
  • 16.Aeluri R., Ganji R.J., Marapaka A.K., Pillalamarri V., Alla M., Addlagatta A. Highly functionalized tetrahydropyridines are cytotoxic and selective inhibitors of human puromycin sensitive aminopeptidase. Eur. J. Med. Chem. 2015;106:26–33. doi: 10.1016/j.ejmech.2015.10.026. [DOI] [PubMed] [Google Scholar]
  • 17.Wilson T.L., Redda K.K. Synthesis and anti-inflammatory activity determinations of N-[substituted benzoyl(phenylsulfonyl)amino]-5-ethyl-1,2,3,6-tetrahydropyridines. Med. Chem. Res. 2003;12:69–86. [Google Scholar]
  • 18.Walters W.P., Green J., Weiss J.R., Murcko M.A. What do medicinal chemists actually make? A 50-year retrospective. J. Med. Chem. 2011;54:6405–6416. doi: 10.1021/jm200504p. [DOI] [PubMed] [Google Scholar]
  • 19.Ritchie T.J., Macdonald S.J.F. The impact of aromatic ring count on compound developability--are too many aromatic rings a liability in drug design? Drug Discov. Today. 2009;14:1011–1020. doi: 10.1016/j.drudis.2009.07.014. [DOI] [PubMed] [Google Scholar]
  • 20.De Vries J.G., Elsevier C.J. Wiley-VCH; 2008. Handbook of Homogeneous Hydrogenation; pp. 455–488. Ch. 16. [Google Scholar]
  • 21.Källström S., Leino R. Synthesis of pharmaceutically active compounds containing a disubstituted piperidine framework. Bioorg. Med. Chem. 2008;16:601–635. doi: 10.1016/j.bmc.2007.10.018. [DOI] [PubMed] [Google Scholar]
  • 22.Glorius F., Spielkamp N., Holle S., Goddard R., Lehmann C.W. Efficient asymmetric hydrogenation of pyridines. Angew. Chem. Int. Ed. Engl. 2004;43:2850–2852. doi: 10.1002/anie.200453942. [DOI] [PubMed] [Google Scholar]
  • 23.Renom-Carrasco M., Gajewski P., Pignataro L., de Vries J.G., Piarulli U., Gennari C., Lefort L. Asymmetric hydrogenation of 3-substituted pyridinium salts. Chemistry. 2016;22:9528–9532. doi: 10.1002/chem.201601501. [DOI] [PubMed] [Google Scholar]
  • 24.Wang X.-B., Zeng W., Zhou Y.-G. Iridium-catalyzed asymmetric hydrogenation of pyridine derivatives, 7,8-dihydro-quinolin-5(6H)-ones. Tetrahedron Lett. 2008;49:4922–4924. doi: 10.1016/j.tetlet.2008.05.138. [DOI] [Google Scholar]
  • 25.Tang W.-J., Tan J., Xu L.-J., Lam K.-H., Fan Q.-H., Chan A.S. Highly enantioselective hydrogenation of quinoline and pyridine derivatives with iridium-(P-Phos) catalyst. Adv. Synth. Catal. 2010;352:1055–1062. doi: 10.1002/adsc.200900870. [DOI] [Google Scholar]
  • 26.Ye Z.-S., Chen M.-W., Chen Q.-A., Shi L., Duan Y., Zhou Y.-G. Iridium-catalyzed asymmetric hydrogenation of pyridinium salts. Angew. Chem. Int. Ed. Engl. 2012;51:10181–10184. doi: 10.1002/anie.201205187. [DOI] [PubMed] [Google Scholar]
  • 27.Chang M., Huang Y., Liu S., Chen Y., Krska S.W., Davies I.W., Zhang X. Asymmetric hydrogenation of pyridinium salts with an iridium phosphole catalyst. Angew. Chem. Int. Ed. Engl. 2014;53:12761–12764. doi: 10.1002/anie.201406762. [DOI] [PubMed] [Google Scholar]
  • 28.Kita Y., Iimuro A., Hida S., Mashima K. Iridium-catalyzed asymmetric hydrogenation of pyridinium salts for constructing multiple stereogenic centers on piperidines. Chem. Lett. 2014;43:284–286. doi: 10.1246/cl.130943. [DOI] [Google Scholar]
  • 29.Huang W.-X., Wu B., Gao X., Chen M.-W., Wang B., Zhou Y.-G. Iridium-catalyzed selective hydrogenation of 3-hydroxypyridinium salts: a facile synthesis of piperidin-3-ones. Org. Lett. 2015;17:1640–1643. doi: 10.1021/acs.orglett.5b00276. [DOI] [PubMed] [Google Scholar]
  • 30.Rueping M., Antonchick A.P. Organocatalytic enantioselective reduction of pyridines. Angew. Chem. Int. Ed. Engl. 2007;46:4562–4565. doi: 10.1002/anie.200701158. [DOI] [PubMed] [Google Scholar]
  • 31.Dongbang S., Confair D.N., Ellman J.A. Rhodium-catalyzed C-H alkenylation/electrocyclization cascade provides dihydropyridines that serve as versatile Intermediates to diverse nitrogen heterocycles. Acc. Chem. Res. 2021;54:1766–1778. doi: 10.1021/acs.accounts.1c00027. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 32.Duttwyler S., Lu C., Rheingold A.L., Bergman R.G., Ellman J.A. Highly diastereoselective synthesis of tetrahydropyridines by a C-H activation-cyclization-reduction cascade. J. Am. Chem. Soc. 2012;134:4064–4067. doi: 10.1021/ja2119833. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 33.Martin R.M., Bergman R.G., Ellman J.A. Synthesis of isoquinuclidines from highly substituted dihydropyridines via the Diels-Alder reaction. Org. Lett. 2013;15:444–447. doi: 10.1021/ol303040r. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 34.Duttwyler S., Chen S., Takase M.K., Wiberg K.B., Bergman R.G., Ellman J.A. Proton donor acidity controls selectivity in nonaromatic nitrogen heterocycle synthesis. Science. 2013;339:678–682. doi: 10.1126/science.1230704. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 35.Grozavu A., Hepburn H.B., Smith P.J., Potukuchi H.K., Lindsay-Scott P.J., Donohoe T.J. The reductive C3 functionalization of pyridinium and quinolinium salts through iridium-catalysed interrupted transfer hydrogenation. Nat. Chem. 2019;11:242–247. doi: 10.1038/s41557-018-0178-5. [DOI] [PubMed] [Google Scholar]
  • 36.Hulme C., Gore V. "Multi-component reactions : emerging chemistry in drug discovery" 'from xylocain to crixivan'. Curr. Med. Chem. 2003;10:51–80. doi: 10.2174/0929867033368600. [DOI] [PubMed] [Google Scholar]
  • 37.Armstrong R.W., Combs A.P., Tempest P.A., Brown S.D., Keating T.A. Multiple-component condensation strategies for combinatorial library synthesis. Acc. Chem. Res. 1996;29:123–131. doi: 10.1021/ar9502083. [DOI] [Google Scholar]
  • 38.Dömling A., Ugi I. Multicomponent reactions with isocyanides. Angew. Chem. Int. Ed. Engl. 2000;39:3168–3210. doi: 10.1002/1521-3773(20000915)39:18<3168::AID-ANIE3168>3.0.CO;2-U. [DOI] [PubMed] [Google Scholar]
  • 39.Tietze L.F., Modi A. Multicomponent domino reactions for the synthesis of biologically active natural products and drugs. Med. Res. Rev. 2000;20:304–322. doi: 10.1002/1098-1128(200007)20:4<304::aid-med3>3.0.co;2-8. [DOI] [PubMed] [Google Scholar]
  • 40.Kappe C.O. Recent Advances in the biginelli dihydropyrimidine synthesis. new tricks from an old dog. Acc. Chem. Res. 2000;33:879–888. doi: 10.1021/ar000048h. [DOI] [PubMed] [Google Scholar]
  • 41.Dömling A., Wang W., Wang K. Chemistry and biology of multicomponent reactions. Chem. Rev. 2012;112:3083–3135. doi: 10.1021/cr100233r. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 42.Zhang Z., Chen P., Liu G. Copper-catalyzed radical relay in C(sp3)–H functionalization. Chem. Soc. Rev. 2022;51:1640–1658. doi: 10.1039/D1CS00727K. [DOI] [PubMed] [Google Scholar]
  • 43.Stateman L.M., Nakafuku K.M., Nagib D.A. Remote C-H functionalization via selective hydrogen atom transfer. Synthesis. 2018;50:1569–1586. doi: 10.1055/s-0036-1591930. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 44.Xiao L., Li J., Wang T. Visible-light-induced N-radical directed remote functionalization of sp 3 C-H bonds. Acta Chimi. Sin. 2019;77:841–849. doi: 10.6023/A19050183. [DOI] [Google Scholar]
  • 45.Short M.A., Blackburn J.M., Roizen J.L. Modifying positional selectivity in C-H functionalization reactions with nitrogen-centered radicals: generalizable approaches to 1,6-hydrogen-atom transfer processes. Synlett. 2020;31:102–116. doi: 10.1055/s-0039-1691501. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 46.Chen H., Yu S. Remote C-C bond formation via visible light photoredox-catalyzed intramolecular hydrogen atom transfer. Org. Biomol. Chem. 2020;18:4519–4532. doi: 10.1039/d0ob00854k. [DOI] [PubMed] [Google Scholar]
  • 47.Kumar G., Pradhan S., Chatterjee I. N-centered radical directed remote C-H bond functionalization via hydrogen atom transfer. Chem. Asian J. 2020;15:651–672. doi: 10.1002/asia.201901744. [DOI] [PubMed] [Google Scholar]
  • 48.Nobile E., Castanheiro T., Besset T. Radical-promoted distal C-H functionalization of C(sp 3 ) centers with fluorinated moieties. Angew. Chem. Int. Ed. Engl. 2021;60:12170–12191. doi: 10.1002/anie.202009995. [DOI] [PubMed] [Google Scholar]
  • 49.Muñoz-Molina J.M., Belderrain T.R., Pérez P.J. Recent advances in copper-catalyzed radical C–H bond activation using N–F reagents. Synthesis. 2021;53:51–64. doi: 10.1055/s-0040-1707234. [DOI] [Google Scholar]
  • 50.Guo W., Wang Q., Zhu J. Visible light photoredox-catalysed remote C-H functionalisation enabled by 1,5-hydrogen atom transfer (1,5-HAT) Chem. Soc. Rev. 2021;50:7359–7377. doi: 10.1039/d0cs00774a. [DOI] [PubMed] [Google Scholar]
  • 51.Hofmann A.W. Ueber die Einwirkung des Broms in alkalischer Lösung auf die Amine. Ber. Dtsch. Chem. Ges. 1883;16:558–560. doi: 10.1002/cber.188301601120. [DOI] [Google Scholar]
  • 52.Löffler K., Freytag C. Über eine neue Bildungsweise von N-alkylierten Pyrrolidinen. Ber. Dtsch. Chem. Ges. 1909;42:3427–3431. doi: 10.1002/cber.19090420377. [DOI] [Google Scholar]
  • 53.Löffler K., Kober S. Über die Bildung des i-Nicotins aus N-Methyl-p-pyridyl-butylamin (Dihydrometanicotin) Chem. Ber. 1909;42:3431–3448. doi: 10.1002/cber.19090420378. [DOI] [Google Scholar]
  • 54.Choi G.J., Zhu Q., Miller D.C., Gu C.J., Knowles R.R. Catalytic alkylation of remote C-H bonds enabled by proton-coupled electron transfer. Nature. 2016;539:268–271. doi: 10.1038/nature19811. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 55.Chu J.C.K., Rovis T. Amide-directed photoredox-catalysed C-C bond formation at unactivated sp 3 C-H bonds. Nature. 2016;539:272–275. doi: 10.1038/nature19810. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 56.Chen D.-F., Chu J.C.K., Rovis T. Directed γ-C(sp 3)-H alkylation of carboxylic acid derivatives through visible light photoredox catalysis. J. Am. Chem. Soc. 2017;139:14897–14900. doi: 10.1021/jacs.7b09306. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 57.Qin Q., Yu S. Visible-light-promoted remote C(sp(3))-H amidation and chlorination. Org. Lett. 2015;17:1894–1897. doi: 10.1021/acs.orglett.5b00582. [DOI] [PubMed] [Google Scholar]
  • 58.Shu W., Nevado C. Visible-light-mediated remote aliphatic C-H functionalizations through a 1,5-hydrogen transfer cascade. Angew. Chem. Int. Ed. Engl. 2017;56:1881–1884. doi: 10.1002/anie.201609885. [DOI] [PubMed] [Google Scholar]
  • 59.Hu X.-Q., Chen J.-R., Xiao W.-J. Controllable remote C-H bond functionalization by visible-light photocatalysis. Angew. Chem. Int. Ed. Engl. 2017;56:1960–1962. doi: 10.1002/anie.201611463. [DOI] [PubMed] [Google Scholar]
  • 60.Xia Y., Wang L., Studer A. Site-selective remote radical C-H functionalization of unactivated C-H bonds in amides using sulfone reagents. Angew. Chem. Int. Ed. Engl. 2018;57:12940–12944. doi: 10.1002/anie.201807455. [DOI] [PubMed] [Google Scholar]
  • 61.Dauncey E.M., Morcillo S.P., Douglas J.J., Sheikh N.S., Leonori D. Photoinduced remote functionalisations by iminyl radical promoted C-C and C-H bond cleavage cascades. Angew. Chem. Int. Ed. Engl. 2018;57:744–748. doi: 10.1002/anie.201710790. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 62.Jiang H., Studer A. α-Aminoxy-acid-auxiliary-enabled intermolecular radical γ-C(sp 3 )-H functionalization of ketones. Angew. Chem. Int. Ed. Engl. 2018;57:1692–1696. doi: 10.1002/anie.201712066. [DOI] [PubMed] [Google Scholar]
  • 63.Morcillo S.P., Dauncey E.M., Kim J.H., Douglas J.J., Sheikh N.S., Leonori D. Photoinduced remote functionalization of amides and amines using electrophilic nitrogen radicals. Angew. Chem. Int. Ed. Engl. 2018;57:12945–12949. doi: 10.1002/anie.201807941. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 64.Wappes E.A., Vanitcha A., Nagib D.A. β C-H di-halogenation via iterative hydrogen atom transfer. Chem. Sci. 2018;9:4500–4504. doi: 10.1039/C8SC01214H. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 65.Li Z., Wang Q., Zhu J. Copper-catalyzed arylation of remote C(sp 3 )-H bonds in carboxamides and sulfonamides. Angew. Chem. Int. Ed. Engl. 2018;57:13288–13292. doi: 10.1002/anie.201807623. [DOI] [PubMed] [Google Scholar]
  • 66.Zhang Z., Stateman L.M., Nagib D.A. δ C-H (hetero)arylation via Cu-catalyzed radical relay. Chem. Sci. 2019;10:1207–1211. doi: 10.1039/C8SC04366C. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 67.Liu Z., Xiao H., Zhang B., Shen H., Zhu L., Li C. Copper-catalyzed remote C(sp 3 )-H trifluoromethylation of carboxamides and sulfonamides. Angew. Chem. Int. Ed. Engl. 2019;58:2510–2513. doi: 10.1002/anie.201813425. [DOI] [PubMed] [Google Scholar]
  • 68.Zeng X., Yan W., Paeth M., Zacate S.B., Hong P.-H., Wang Y., Yang D., Yang K., Yan T., Song C., et al. Copper-catalyzed, chloroamide -directed benzylic C-H difluoromethylation. J. Am. Chem. Soc. 2019;141:19941–19949. doi: 10.1021/jacs.9b11549. [DOI] [PubMed] [Google Scholar]
  • 69.Chen H., Fan W., Yuan X.-A., Yu S. Site-selective remote C(sp 3)-H heteroarylation of amides via organic photoredox catalysis. Nat. Commun. 2019;10:4743. doi: 10.1038/s41467-019-12722-4. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 70.Mackiewicz P., Furstoss R. Radicaux amidyl: structure et reactivite. Tetrahedron. 1978;34:3241–3260. doi: 10.1016/0040-4020(78)80241-5. [DOI] [Google Scholar]
  • 71.Stella L. Homolytic cyclizations of N-chloroalkenylamines. Angew. Chem. Int. Ed. Engl. 1983;22:337–350. doi: 10.1002/anie.198303373. [DOI] [Google Scholar]
  • 72.Fallis A.G., Brinza I.M. Free radical cyclizations involving nitrogen. Tetrahedron. 1997;53:17543–17594. doi: 10.1016/S0040-4020(97)10060-6. [DOI] [Google Scholar]
  • 73.Zard S.Z. Recent progress in the generation and use of nitrogen-centred radicals. Chem. Soc. Rev. 2008;37:1603–1618. doi: 10.1039/B613443M. [DOI] [PubMed] [Google Scholar]
  • 74.Xiong T., Zhang Q. New amination strategies based on nitrogen-centered radical chemistry. Chem. Soc. Rev. 2016;45:3069–3087. doi: 10.1039/C5CS00852B. [DOI] [PubMed] [Google Scholar]
  • 75.Chen J.-R., Hu X.-Q., Lu L.-Q., Xiao W.-J. Visible light photoredox-controlled reactions of N-radicals and radical ions. Chem. Soc. Rev. 2016;45:2044–2056. doi: 10.1039/C5CS00655D. [DOI] [PubMed] [Google Scholar]
  • 76.Jiang H., Studer A. Chemistry with N-centered radicals generated by single-electron transfer-oxidation using photoredox catalysis. CCS Chem. 2019;1:38–49. doi: 10.31635/ccschem.019.20180026. [DOI] [Google Scholar]
  • 77.Song C., Shen X., Yu F., He Y., Yu S. Generation and Application of iminyl radicals from oxime derivatives enabled by visible light photoredox catalysis. Chin. J. Org. Chem. 2020;40:3748–3759. doi: 10.6023/cjoc202004008. [DOI] [Google Scholar]
  • 78.Wang D., Wu L., Wang F., Wan X., Chen P., Lin Z., Liu G. Asymmetric copper-catalyzed intermolecular aminoarylation of styrenes: efficient access to optical 2,2-diarylethylamines. J. Am. Chem. Soc. 2017;139:6811–6814. doi: 10.1021/jacs.7b02455. [DOI] [PubMed] [Google Scholar]
  • 79.Li Z., Song L., Li C. Silver-catalyzed radical aminofluorination of unactivated alkenes in aqueous media. J. Am. Chem. Soc. 2013;135:4640–4643. doi: 10.1021/ja400124t. [DOI] [PubMed] [Google Scholar]
  • 80.Hu X.-Q., Chen J.-R., Wei Q., Liu F.-L., Deng Q.-H., Beauchemin A.M., Xiao W.-J. Photocatalytic generation of N-centered hydrazonyl radicals: a strategy for hydroamination of β,γ-unsaturated hydrazones. Angew. Chem. Int. Ed. Engl. 2014;53:12163–12167. doi: 10.1002/anie.201406491. [DOI] [PubMed] [Google Scholar]
  • 81.Choi G.J., Knowles R.R. Catalytic alkene carboaminations enabled by oxidative proton-coupled electron transfer. J. Am. Chem. Soc. 2015;137:9226–9229. doi: 10.1021/jacs.5b05377. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 82.Davies J., Booth S.G., Essafi S., Dryfe R.A.W., Leonori D. Visible-light-mediated generation of nitrogen-centered radicals: metal-free hydroimination and iminohydroxylation cyclization reactions. Angew. Chem. Int. Ed. Engl. 2015;54:14017–14021. doi: 10.1002/anie.201507641. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 83.Hu X.-Q., Qi X., Chen J.-R., Zhao Q.-Q., Wei Q., Lan Y., Xiao W.-J. Catalytic N-radical cascade reaction of hydrazones by oxidative deprotonation electron transfer and TEMPO mediation. Nat. Commun. 2016;7:11188. doi: 10.1038/ncomms11188. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 84.Wei S., Le S., Lei Z., Zhou L., Zhang Z., Dolbier W.R., Jr. Difluoromethylarylation of α,β-unsaturated amides via a photocatalytic radical smiles rearrangement. Org. Biomol. Chem. 2022;20:2064–2068. doi: 10.1039/D2OB00186A. [DOI] [PubMed] [Google Scholar]
  • 85.Jiang H., Studer A. Iminyl-Radicals by Oxidation of α-Imino-oxy Acids: photoredox-neutral alkene carboimination for the synthesis of pyrrolines. Angew. Chem. Int. Ed. Engl. 2017;56:12273–12276. doi: 10.1002/anie.201706270. [DOI] [PubMed] [Google Scholar]
  • 86.Davies J., Sheikh N.S., Leonori D. Photoredox imino functionalizations of olefins. Angew. Chem. Int. Ed. Engl. 2017;56:13361–13365. doi: 10.1002/anie.201708497. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 87.Xiao H., Shen H., Zhu L., Li C. Copper-catalyzed radical aminotrifluoromethylation of alkenes. J. Am. Chem. Soc. 2019;141:11440–11445. doi: 10.1021/jacs.9b06141. [DOI] [PubMed] [Google Scholar]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Document S1. Data S1 and Transparent methods
mmc1.pdf (7.2MB, pdf)

Data Availability Statement

Crystallographic data for the structures reported in this article have been deposited at the Cambridge Crystallographic Data Centre (CCDC) under accession numbers CCDC 2192306 (3a), 2192304 (43). Copies of the data can be obtained free of charge from https://www.ccdc.cam.ac.uk/structures/. All other data are available from the lead contact upon reasonable request.


Articles from iScience are provided here courtesy of Elsevier

RESOURCES