Skip to main content
IUCrData logoLink to IUCrData
. 2023 Feb 17;8(Pt 2):x230125. doi: 10.1107/S2414314623001256

15,15-Diphenyl-2,3,4,5,6,8,9,11,12-octa­hydro­imidazo[2,1-h][1,4,12]trioxa[7]thia­[9]azacyclo­tetra­decin-14(15H)-one

Walid Guerrab a, Abderrazzak El Moutaouakil Ala Allah a, Abdulsalam Alsubari b,*, Joel T Mague c, Youssef Ramli a,*
Editor: W T A Harrisond
PMCID: PMC9993893  PMID: 36911084

The title mol­ecule adopts a cup-shaped conformation. In the crystal, layers lying parallel to the ab plane are formed by C—H⋯O hydrogen bonds and C—H⋯π(ring) inter­actions.

Keywords: crystal structure, thio­hydantoin, crown ether

Abstract

The title mol­ecule, C23H26N2O4S, adopts a cup-shaped conformation. In the crystal, layers lying parallel to the ab plane are formed by C—H⋯O hydrogen bonds and C—H⋯π(ring) inter­actions. The layers stack along the c-axis direction through normal van der Waals inter­actions. graphic file with name x-08-x230125-scheme1-3D1.jpg

Structure description

Compounds containing the thio­hydantoin scaffold exhibit many pharmacological activities, including anti­microbial, anti­carcinogenic, anti-inflammatory, anti­bacterial, anti-androgen and anti-diabetic effects (Meusel et al., 2004; Tomasic et al., 2009; Scholl et al. 1999; Vengurlekar et al. 2012; Jain et al. 2013; Efsta­thiou et al. 2015). As part of our ongoing work in this area (Guerrab et al. 2022a ,b , 2023), the title compound (Fig. 1) was prepared and its crystal structure is reported here.

Figure 1.

Figure 1

The title mol­ecule with 50% probability ellipsoids. Intra­molecular hydrogen bonds are depicted by dashed lines.

The mol­ecule adopts a cup-shaped conformation with the five-membered ring as the base and the C12–C17 benzene ring and the crown ether ring as the sides. This conformation is likely due to packing considerations since the three-dimensional structure is fairly compact with this arrangement (Fig. 2) but it may also be aided by the C5—H5B⋯N2 hydrogen bond (Table 1 and Fig. 1). The five-membered ring is almost planar (r.m.s. deviation = 0.009 Å) and the C12–C17 and C18–C23 benzene rings are inclined to it by 62.10 (7) and 61.35 (9)°, respectively. The conformation of the crown ether ring places S1, O2 and O3 pointing away from the center of the mol­ecule, but O4 points towards it. Intra­molecular C—H⋯O and C—H⋯N inter­actions occur (Table 1). In the crystal, zigzag chains of mol­ecules extending along the a-axis direction are linked by C14—H14⋯O2 hydrogen bonds and these are connected into layers lying parallel to the ab plane by C6—H6ACg3 inter­actions (Table 1 and Fig. 2). The layers stack along the c-axis direction with normal van der Waals contacts (Fig. 3).

Figure 2.

Figure 2

Plan view of the layer structure viewed along the c-axis direction. C—H⋯O hydrogen bonds and C—H⋯π(ring) inter­actions are shown by black and green dashed lines, respectively.

Table 1. Hydrogen-bond geometry (Å, °).

Cg3 is the centroid of the C18–C23 benzene ring.

D—H⋯A D—H H⋯A DA D—H⋯A
C5—H5B⋯N2 0.99 2.59 3.233 (3) 123
C10—H10B⋯O3 0.99 2.50 3.162 (3) 124
C14—H14⋯O2i 0.95 2.56 3.397 (3) 148
C6—H6ACg3ii 0.99 2.84 3.792 (3) 162

Symmetry codes: (i) Inline graphic ; (ii) Inline graphic .

Figure 3.

Figure 3

Elevation view of the layer structure seen along the b-axis direction with inter­molecular inter­actions depicted as in Fig. 2.

Synthesis and crystallization

To a solution of 5,5-diphenyl-2-thioxoimidazolidin-4-one (500 mg, 1.86 mmol), one equivalent of 1-chloro-2-{2-[2-(2-chloro­eth­oxy)eth­oxy]eth­oxy}ethane (365 µl, 1.86 mmol) dissolved in absolute di­methyl­formamide (DMF, 10 ml) was added and the resulting solution heated under reflux for 4 h in the presence of two equivalents of K2CO3 (513 mg, 3.72 mmol). The reaction mixture was filtered while hot, and the solvent evaporated under reduced pressure. The residue obtained was dried and recrystallized from ethanol solution to yield colourless blocks of the title compound (Guerrab et al., 2018).

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2. The crystal studied was refined as a two-component inversion twin with a refined BASF value of 0.25 (7).

Table 2. Experimental details.

Crystal data
Chemical formula C23H26N2O4S
M r 426.52
Crystal system, space group Orthorhombic, P n a21
Temperature (K) 150
a, b, c (Å) 16.6007 (17), 9.2362 (10), 13.8439 (14)
V3) 2122.6 (4)
Z 4
Radiation type Mo Kα
μ (mm−1) 0.19
Crystal size (mm) 0.28 × 0.24 × 0.17
 
Data collection
Diffractometer Bruker SMART APEX CCD
Absorption correction Multi-scan (SADABS; Krause et al., 2015)
T min, T max 0.84, 0.97
No. of measured, independent and observed [I > 2σ(I)] reflections 19152, 5219, 4568
R int 0.033
(sin θ/λ)max−1) 0.667
 
Refinement
R[F 2 > 2σ(F 2)], wR(F 2), S 0.036, 0.083, 1.03
No. of reflections 5219
No. of parameters 272
No. of restraints 1
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.42, −0.15
Absolute structure Refined as an inversion twin
Absolute structure parameter 0.25 (7)

Computer programs: APEX3 (Bruker, 2016), SAINT (Bruker, 2016), SHELXT (Sheldrick, 2015a ), SHELXL2018/1 (Sheldrick, 2015b ), DIAMOND (Brandenburg & Putz, 2012), SHELXTL (Sheldrick, 2008).

Supplementary Material

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S2414314623001256/hb4423sup1.cif

x-08-x230125-sup1.cif (603.9KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2414314623001256/hb4423Isup2.hkl

x-08-x230125-Isup2.hkl (415.4KB, hkl)

CCDC reference: 2241205

Additional supporting information: crystallographic information; 3D view; checkCIF report

Acknowledgments

JTM thanks Tulane University for support of the Tulane Crystallography Laboratory. Author contributions are as follows. Conceptualization, YR; methodology, WG and AA; investigation, WG and AEMAA; writing (original draft), JMT and YR; writing (review and editing of the manuscript), YR; formal analysis, AA and YR; supervision, YR; crystal-structure determination and validation, JTM.

full crystallographic data

Crystal data

C23H26N2O4S Dx = 1.335 Mg m3
Mr = 426.52 Mo Kα radiation, λ = 0.71073 Å
Orthorhombic, Pna21 Cell parameters from 8169 reflections
a = 16.6007 (17) Å θ = 2.5–28.1°
b = 9.2362 (10) Å µ = 0.19 mm1
c = 13.8439 (14) Å T = 150 K
V = 2122.6 (4) Å3 Block, colourless
Z = 4 0.28 × 0.24 × 0.17 mm
F(000) = 904

Data collection

Bruker Smart APEX CCD diffractometer 5219 independent reflections
Radiation source: fine-focus sealed tube 4568 reflections with I > 2σ(I)
Graphite monochromator Rint = 0.033
Detector resolution: 8.3333 pixels mm-1 θmax = 28.3°, θmin = 2.5°
ω scans h = −21→22
Absorption correction: multi-scan (SADABS; Krause et al., 2015) k = −12→11
Tmin = 0.84, Tmax = 0.97 l = −18→18
19152 measured reflections

Refinement

Refinement on F2 Secondary atom site location: difference Fourier map
Least-squares matrix: full Hydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.036 H-atom parameters constrained
wR(F2) = 0.083 w = 1/[σ2(Fo2) + (0.0489P)2] where P = (Fo2 + 2Fc2)/3
S = 1.03 (Δ/σ)max < 0.001
5219 reflections Δρmax = 0.42 e Å3
272 parameters Δρmin = −0.15 e Å3
1 restraint Absolute structure: Refined as an inversion twin.
Primary atom site location: dual Absolute structure parameter: 0.25 (7)

Special details

Experimental. The diffraction data were collected in three sets of 363 frames (0.5° width in ω) at φ = 0, 120 and 240°. A scan time of 30 sec/frame was used.
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. H-atoms attached to carbon were placed in calculated positions (C—H = 0.95 - 0.99 Å). All were included as riding contributions with isotropic displacement parameters 1.2 - 1.5 times those of the attached atoms. Refinement in Pna21 with SHELXL resulted in a Flack parameter of ca 0.25 and the message `inversion twin or centrosymmetric space group'. As the intensity statistics and PLATON ADSYMM did not support a centrosymmetric space group, the refinement was finished in Pna21 treating the model as an inversion twin with the addition of the instructions TWIN and BASF 0.25. The refined value of BASF was 0.25 (7).

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
S1 0.22326 (3) 0.46089 (6) 0.63964 (4) 0.02584 (14)
O1 0.37107 (10) 0.15624 (16) 0.40483 (11) 0.0262 (3)
O2 0.26905 (9) 0.77584 (18) 0.59446 (13) 0.0305 (4)
O3 0.29439 (10) 0.71630 (18) 0.39376 (13) 0.0332 (4)
O4 0.26344 (11) 0.41717 (17) 0.31948 (13) 0.0311 (4)
N1 0.29066 (11) 0.2903 (2) 0.50682 (14) 0.0221 (4)
N2 0.37902 (11) 0.37283 (19) 0.61953 (13) 0.0220 (4)
C1 0.30600 (13) 0.3719 (2) 0.58992 (16) 0.0212 (4)
C2 0.36224 (13) 0.2330 (2) 0.47512 (15) 0.0209 (4)
C3 0.42545 (13) 0.2866 (2) 0.54857 (15) 0.0201 (4)
C4 0.27256 (15) 0.5931 (3) 0.71517 (17) 0.0293 (5)
H4A 0.231310 0.644885 0.753541 0.035*
H4B 0.308662 0.542256 0.760888 0.035*
C5 0.32084 (14) 0.7016 (3) 0.65901 (19) 0.0310 (6)
H5A 0.346442 0.771405 0.703764 0.037*
H5B 0.363887 0.651719 0.622371 0.037*
C6 0.31097 (16) 0.8699 (3) 0.5306 (2) 0.0346 (6)
H6A 0.351600 0.924720 0.568061 0.041*
H6B 0.272262 0.940579 0.503540 0.041*
C7 0.35286 (15) 0.7933 (3) 0.4482 (2) 0.0350 (6)
H7A 0.380465 0.864852 0.406480 0.042*
H7B 0.393736 0.725386 0.473819 0.042*
C8 0.32854 (16) 0.6518 (3) 0.30959 (19) 0.0326 (6)
H8A 0.378561 0.599576 0.327050 0.039*
H8B 0.342461 0.727969 0.262161 0.039*
C9 0.26965 (16) 0.5486 (3) 0.26582 (19) 0.0341 (6)
H9A 0.216034 0.595253 0.262729 0.041*
H9B 0.286596 0.525951 0.198937 0.041*
C10 0.20222 (15) 0.4167 (3) 0.39115 (18) 0.0302 (5)
H10A 0.148380 0.414019 0.360436 0.036*
H10B 0.205884 0.505135 0.431330 0.036*
C11 0.21474 (14) 0.2835 (3) 0.45276 (18) 0.0268 (5)
H11A 0.169351 0.273990 0.498704 0.032*
H11B 0.215005 0.196608 0.410870 0.032*
C12 0.48827 (13) 0.3867 (2) 0.50146 (16) 0.0205 (4)
C13 0.53956 (14) 0.4642 (2) 0.56242 (18) 0.0263 (5)
H13 0.535967 0.451446 0.630374 0.032*
C14 0.59561 (15) 0.5596 (2) 0.52449 (19) 0.0312 (6)
H14 0.630297 0.611768 0.566506 0.037*
C15 0.60130 (15) 0.5791 (3) 0.42553 (19) 0.0330 (6)
H15 0.639361 0.645390 0.399664 0.040*
C16 0.55158 (16) 0.5020 (3) 0.36486 (19) 0.0330 (6)
H16 0.555677 0.514677 0.296938 0.040*
C17 0.49500 (14) 0.4052 (3) 0.40275 (17) 0.0272 (5)
H17 0.461081 0.351902 0.360427 0.033*
C18 0.46593 (13) 0.1555 (2) 0.59558 (16) 0.0218 (5)
C19 0.46380 (15) 0.1332 (3) 0.69500 (18) 0.0285 (5)
H19 0.438323 0.201865 0.735956 0.034*
C20 0.49917 (17) 0.0100 (3) 0.7340 (2) 0.0377 (7)
H20 0.498233 −0.004434 0.801960 0.045*
C21 0.53572 (16) −0.0920 (3) 0.6754 (2) 0.0374 (6)
H21 0.558427 −0.177220 0.702531 0.045*
C22 0.53873 (15) −0.0684 (3) 0.5777 (2) 0.0334 (6)
H22 0.563913 −0.137691 0.536929 0.040*
C23 0.50554 (15) 0.0549 (3) 0.53801 (18) 0.0262 (5)
H23 0.509812 0.071219 0.470452 0.031*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
S1 0.0209 (2) 0.0282 (3) 0.0284 (3) 0.0015 (2) 0.0053 (2) −0.0022 (3)
O1 0.0308 (9) 0.0251 (8) 0.0227 (8) 0.0017 (7) −0.0012 (7) −0.0063 (7)
O2 0.0252 (8) 0.0259 (9) 0.0403 (10) 0.0009 (7) 0.0014 (7) −0.0011 (7)
O3 0.0290 (9) 0.0309 (9) 0.0398 (10) −0.0008 (7) 0.0031 (8) −0.0067 (8)
O4 0.0376 (10) 0.0279 (9) 0.0279 (9) 0.0030 (7) 0.0015 (8) −0.0024 (7)
N1 0.0206 (9) 0.0232 (9) 0.0224 (9) −0.0002 (7) −0.0003 (7) −0.0022 (8)
N2 0.0220 (9) 0.0237 (9) 0.0203 (10) 0.0015 (7) 0.0013 (7) −0.0029 (7)
C1 0.0239 (11) 0.0186 (10) 0.0212 (11) 0.0000 (8) 0.0025 (9) 0.0006 (9)
C2 0.0230 (11) 0.0189 (10) 0.0207 (10) −0.0004 (8) −0.0002 (9) 0.0007 (8)
C3 0.0229 (11) 0.0191 (10) 0.0183 (10) 0.0010 (8) −0.0003 (8) −0.0027 (8)
C4 0.0288 (13) 0.0347 (13) 0.0243 (12) 0.0083 (10) −0.0011 (10) −0.0085 (10)
C5 0.0243 (12) 0.0293 (12) 0.0394 (15) 0.0043 (9) −0.0049 (10) −0.0108 (10)
C6 0.0313 (13) 0.0232 (12) 0.0493 (17) −0.0033 (10) 0.0038 (12) −0.0042 (11)
C7 0.0315 (13) 0.0313 (13) 0.0420 (15) −0.0067 (11) 0.0035 (11) −0.0012 (12)
C8 0.0366 (14) 0.0284 (13) 0.0328 (14) 0.0058 (11) 0.0051 (11) 0.0039 (11)
C9 0.0403 (15) 0.0377 (15) 0.0244 (13) 0.0057 (11) −0.0031 (11) 0.0031 (10)
C10 0.0265 (12) 0.0375 (14) 0.0267 (12) 0.0032 (10) −0.0035 (10) −0.0027 (11)
C11 0.0214 (11) 0.0293 (12) 0.0298 (12) −0.0037 (9) −0.0046 (9) −0.0051 (10)
C12 0.0202 (10) 0.0161 (10) 0.0251 (11) 0.0036 (8) 0.0018 (9) −0.0001 (8)
C13 0.0254 (12) 0.0234 (11) 0.0301 (12) 0.0002 (9) −0.0004 (10) −0.0049 (10)
C14 0.0252 (12) 0.0228 (11) 0.0455 (15) −0.0013 (9) 0.0007 (11) −0.0050 (11)
C15 0.0233 (12) 0.0261 (12) 0.0495 (17) 0.0021 (10) 0.0071 (11) 0.0114 (11)
C16 0.0298 (13) 0.0373 (14) 0.0318 (13) 0.0056 (11) 0.0056 (10) 0.0116 (11)
C17 0.0253 (12) 0.0302 (13) 0.0262 (12) 0.0021 (9) −0.0005 (10) 0.0024 (10)
C18 0.0182 (10) 0.0214 (10) 0.0259 (11) −0.0023 (8) −0.0016 (9) 0.0008 (9)
C19 0.0262 (13) 0.0341 (13) 0.0253 (12) −0.0017 (10) 0.0012 (9) 0.0007 (10)
C20 0.0306 (14) 0.0514 (16) 0.0312 (14) −0.0049 (12) −0.0017 (11) 0.0191 (13)
C21 0.0243 (13) 0.0309 (13) 0.0569 (17) 0.0005 (11) −0.0038 (11) 0.0162 (12)
C22 0.0246 (12) 0.0258 (12) 0.0497 (17) 0.0046 (10) −0.0031 (12) 0.0004 (12)
C23 0.0252 (12) 0.0259 (12) 0.0274 (12) 0.0015 (9) 0.0003 (9) −0.0007 (10)

Geometric parameters (Å, º)

S1—C1 1.742 (2) C9—H9A 0.9900
S1—C4 1.804 (2) C9—H9B 0.9900
O1—C2 1.213 (3) C10—C11 1.512 (3)
O2—C5 1.417 (3) C10—H10A 0.9900
O2—C6 1.421 (3) C10—H10B 0.9900
O3—C7 1.420 (3) C11—H11A 0.9900
O3—C8 1.426 (3) C11—H11B 0.9900
O4—C10 1.420 (3) C12—C17 1.382 (3)
O4—C9 1.427 (3) C12—C13 1.396 (3)
N1—C2 1.373 (3) C13—C14 1.385 (3)
N1—C1 1.399 (3) C13—H13 0.9500
N1—C11 1.467 (3) C14—C15 1.385 (4)
N2—C1 1.280 (3) C14—H14 0.9500
N2—C3 1.481 (3) C15—C16 1.376 (4)
C2—C3 1.543 (3) C15—H15 0.9500
C3—C18 1.531 (3) C16—C17 1.399 (4)
C3—C12 1.538 (3) C16—H16 0.9500
C4—C5 1.501 (4) C17—H17 0.9500
C4—H4A 0.9900 C18—C23 1.390 (3)
C4—H4B 0.9900 C18—C19 1.392 (3)
C5—H5A 0.9900 C19—C20 1.390 (4)
C5—H5B 0.9900 C19—H19 0.9500
C6—C7 1.512 (4) C20—C21 1.383 (4)
C6—H6A 0.9900 C20—H20 0.9500
C6—H6B 0.9900 C21—C22 1.371 (4)
C7—H7A 0.9900 C21—H21 0.9500
C7—H7B 0.9900 C22—C23 1.379 (3)
C8—C9 1.494 (4) C22—H22 0.9500
C8—H8A 0.9900 C23—H23 0.9500
C8—H8B 0.9900
C1—S1—C4 100.98 (11) C8—C9—H9A 109.2
C5—O2—C6 113.00 (18) O4—C9—H9B 109.2
C7—O3—C8 111.80 (19) C8—C9—H9B 109.2
C10—O4—C9 114.71 (19) H9A—C9—H9B 107.9
C2—N1—C1 108.25 (18) O4—C10—C11 107.34 (19)
C2—N1—C11 124.32 (19) O4—C10—H10A 110.2
C1—N1—C11 126.81 (19) C11—C10—H10A 110.2
C1—N2—C3 106.09 (18) O4—C10—H10B 110.2
N2—C1—N1 116.06 (19) C11—C10—H10B 110.2
N2—C1—S1 128.12 (17) H10A—C10—H10B 108.5
N1—C1—S1 115.82 (16) N1—C11—C10 111.8 (2)
O1—C2—N1 125.9 (2) N1—C11—H11A 109.3
O1—C2—C3 129.4 (2) C10—C11—H11A 109.3
N1—C2—C3 104.72 (17) N1—C11—H11B 109.3
N2—C3—C18 111.83 (18) C10—C11—H11B 109.3
N2—C3—C12 108.13 (16) H11A—C11—H11B 107.9
C18—C3—C12 110.98 (17) C17—C12—C13 119.0 (2)
N2—C3—C2 104.83 (16) C17—C12—C3 123.3 (2)
C18—C3—C2 108.94 (17) C13—C12—C3 117.72 (19)
C12—C3—C2 112.00 (17) C14—C13—C12 120.4 (2)
C5—C4—S1 113.21 (17) C14—C13—H13 119.8
C5—C4—H4A 108.9 C12—C13—H13 119.8
S1—C4—H4A 108.9 C13—C14—C15 120.3 (2)
C5—C4—H4B 108.9 C13—C14—H14 119.9
S1—C4—H4B 108.9 C15—C14—H14 119.9
H4A—C4—H4B 107.7 C16—C15—C14 119.7 (2)
O2—C5—C4 109.02 (19) C16—C15—H15 120.1
O2—C5—H5A 109.9 C14—C15—H15 120.1
C4—C5—H5A 109.9 C15—C16—C17 120.3 (2)
O2—C5—H5B 109.9 C15—C16—H16 119.8
C4—C5—H5B 109.9 C17—C16—H16 119.8
H5A—C5—H5B 108.3 C12—C17—C16 120.3 (2)
O2—C6—C7 114.1 (2) C12—C17—H17 119.9
O2—C6—H6A 108.7 C16—C17—H17 119.9
C7—C6—H6A 108.7 C23—C18—C19 118.7 (2)
O2—C6—H6B 108.7 C23—C18—C3 119.5 (2)
C7—C6—H6B 108.7 C19—C18—C3 121.7 (2)
H6A—C6—H6B 107.6 C20—C19—C18 119.6 (2)
O3—C7—C6 108.7 (2) C20—C19—H19 120.2
O3—C7—H7A 109.9 C18—C19—H19 120.2
C6—C7—H7A 109.9 C21—C20—C19 121.0 (2)
O3—C7—H7B 109.9 C21—C20—H20 119.5
C6—C7—H7B 109.9 C19—C20—H20 119.5
H7A—C7—H7B 108.3 C22—C21—C20 119.1 (3)
O3—C8—C9 109.7 (2) C22—C21—H21 120.4
O3—C8—H8A 109.7 C20—C21—H21 120.4
C9—C8—H8A 109.7 C21—C22—C23 120.6 (3)
O3—C8—H8B 109.7 C21—C22—H22 119.7
C9—C8—H8B 109.7 C23—C22—H22 119.7
H8A—C8—H8B 108.2 C22—C23—C18 120.8 (2)
O4—C9—C8 112.3 (2) C22—C23—H23 119.6
O4—C9—H9A 109.2 C18—C23—H23 119.6
C3—N2—C1—N1 2.5 (2) C2—N1—C11—C10 −93.2 (3)
C3—N2—C1—S1 −176.97 (17) C1—N1—C11—C10 76.6 (3)
C2—N1—C1—N2 −2.0 (3) O4—C10—C11—N1 65.4 (2)
C11—N1—C1—N2 −173.2 (2) N2—C3—C12—C17 −125.5 (2)
C2—N1—C1—S1 177.53 (15) C18—C3—C12—C17 111.5 (2)
C11—N1—C1—S1 6.3 (3) C2—C3—C12—C17 −10.5 (3)
C4—S1—C1—N2 17.3 (2) N2—C3—C12—C13 53.2 (2)
C4—S1—C1—N1 −162.16 (17) C18—C3—C12—C13 −69.8 (2)
C1—N1—C2—O1 179.9 (2) C2—C3—C12—C13 168.20 (18)
C11—N1—C2—O1 −8.7 (4) C17—C12—C13—C14 0.8 (3)
C1—N1—C2—C3 0.5 (2) C3—C12—C13—C14 −177.91 (19)
C11—N1—C2—C3 172.0 (2) C12—C13—C14—C15 0.1 (3)
C1—N2—C3—C18 −119.9 (2) C13—C14—C15—C16 −0.7 (4)
C1—N2—C3—C12 117.66 (19) C14—C15—C16—C17 0.5 (4)
C1—N2—C3—C2 −2.0 (2) C13—C12—C17—C16 −1.0 (3)
O1—C2—C3—N2 −178.5 (2) C3—C12—C17—C16 177.6 (2)
N1—C2—C3—N2 0.8 (2) C15—C16—C17—C12 0.4 (4)
O1—C2—C3—C18 −58.6 (3) N2—C3—C18—C23 173.82 (19)
N1—C2—C3—C18 120.68 (19) C12—C3—C18—C23 −65.3 (3)
O1—C2—C3—C12 64.5 (3) C2—C3—C18—C23 58.4 (3)
N1—C2—C3—C12 −116.16 (19) N2—C3—C18—C19 −5.8 (3)
C1—S1—C4—C5 64.68 (19) C12—C3—C18—C19 115.1 (2)
C6—O2—C5—C4 −173.52 (18) C2—C3—C18—C19 −121.2 (2)
S1—C4—C5—O2 59.4 (2) C23—C18—C19—C20 −1.7 (4)
C5—O2—C6—C7 77.0 (3) C3—C18—C19—C20 177.9 (2)
C8—O3—C7—C6 174.8 (2) C18—C19—C20—C21 −0.8 (4)
O2—C6—C7—O3 59.3 (3) C19—C20—C21—C22 1.8 (4)
C7—O3—C8—C9 168.7 (2) C20—C21—C22—C23 −0.3 (4)
C10—O4—C9—C8 91.9 (3) C21—C22—C23—C18 −2.2 (4)
O3—C8—C9—O4 −74.9 (3) C19—C18—C23—C22 3.2 (4)
C9—O4—C10—C11 −169.19 (19) C3—C18—C23—C22 −176.4 (2)

Hydrogen-bond geometry (Å, º)

Cg3 is the centroid of the C18–C23 benzene ring.

D—H···A D—H H···A D···A D—H···A
C5—H5B···N2 0.99 2.59 3.233 (3) 123
C10—H10B···O3 0.99 2.50 3.162 (3) 124
C14—H14···O2i 0.95 2.56 3.397 (3) 148
C6—H6A···Cg3ii 0.99 2.84 3.792 (3) 162

Symmetry codes: (i) x+1/2, −y+3/2, z; (ii) x, y+1, z.

Funding Statement

JTM thanks Tulane University for support of the Tulane Crystallography Laboratory.

References

  1. Brandenburg, K. & Putz, H. (2012). DIAMOND, Crystal Impact GbR, Bonn, Germany.
  2. Bruker (2016). APEX3 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.
  3. Efstathiou, E., Titus, M., Wen, S., Hoang, A., Karlou, M., Ashe, R., Tu, S. M., Aparicio, A., Troncoso, P., Mohler, J. & Logothetis, C. J. (2015). Eur. Urol. 67, 53–60. [DOI] [PMC free article] [PubMed]
  4. Guerrab, W., Akachar, J., El Jemli, M., Abudunia, A. M., Ouaabou, R., Alaoui, K., Ibrahimi, A. & Ramli, Y. (2022b). J. Biomol. Struct. Dyn. 40, https://doi.org/10.1080/07391102.2022.2069865
  5. Guerrab, W., El Jemli, M., Akachar, J., Demirtaş, G., Mague, J. T., Taoufik, J., Ibrahimi, A., Ansar, M., Alaoui, K. & Ramli, Y. (2022a). J. Biomol. Struct. Dyn. 40, 8765–8782. [DOI] [PubMed]
  6. Guerrab, W., El Moutaouakil Ala Allah, A., Alsubari, A., Mague, J. T. J. & Ramli, Y. (2023). IUCrData, 8, x230060. [DOI] [PMC free article] [PubMed]
  7. Guerrab, W., Mague, J. T., Taoufik, J. & Ramli, Y. (2018). IUCrData, 3, x180057.
  8. Jain, V. S., Vora, D. K. & Ramaa, C. (2013). Bioorg. Med. Chem. 21, 1599–1620. [DOI] [PubMed]
  9. Krause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3–10. [DOI] [PMC free article] [PubMed]
  10. Meusel, M. & Gütschow, M. (2004). Org. Prep. Proced. Int. 36, 391–443.
  11. Scholl, S., Koch, A., Henning, D., Kempter, G. & Kleinpeter, E. (1999). Struct. Chem. 10, 355–366.
  12. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  13. Sheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.
  14. Sheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.
  15. Tomasić, T. & Masic, L. P. (2009). Curr. Med. Chem. 16, 1596–1629. [DOI] [PubMed]
  16. Vengurlekar, S., Sharma, R. & Trivedi, P. (2012). Lett. Drug. Des. Discov. 9, 549–555.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S2414314623001256/hb4423sup1.cif

x-08-x230125-sup1.cif (603.9KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2414314623001256/hb4423Isup2.hkl

x-08-x230125-Isup2.hkl (415.4KB, hkl)

CCDC reference: 2241205

Additional supporting information: crystallographic information; 3D view; checkCIF report


Articles from IUCrData are provided here courtesy of International Union of Crystallography

RESOURCES