Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1999 Oct 1;343(Pt 1):53–61.

Role of Ca2+ in apoptosis evoked by human amylin in pancreatic islet beta-cells.

J Z Bai 1, E L Saafi 1, S Zhang 1, G J Cooper 1
PMCID: PMC1220523  PMID: 10493911

Abstract

The objective of these studies was to clarify the role of Ca(2+) in the mechanism of death evoked by human amylin (hA) in islet beta-cells. hA forms fibrils in vitro and islet amyloid in vivo. Here we show that pure synthetic hA aggregated in solution, formed fibrils and evoked death in cultured RINm5F islet beta-cells in a time-dependent (0-24 h) and concentration-dependent (0-20 microM) manner. Dying cells underwent shrinkage of the nucleus, with clumping and segregation of chromatin into masses that lay against the nuclear envelope, and internucleosomal DNA fragmentation. These cells therefore show many features of apoptosis, although aspects of the morphology might be characteristic of this particular cell type rather than of a general apoptotic nature. Aurintricarboxylic acid, an inhibitor of both Ca(2+)-dependent and Ca(2+)-independent nucleases, suppressed this DNA fragmentation and inhibited apoptosis at concentrations between 25 and 200 microM. Direct measurements of the cytoplasmic free Ca(2+) concentration ([Ca(2+)](i)) in fura-2 acetoxymethyl ester (AM)-loaded beta-cells showed that neither hA nor its non-cytotoxic homologue, rat amylin were effective in raising [Ca(2+)](i). Modulators of Ca(2+) regulation were tested for their effects on hA-induced beta-cell apoptosis. Ca(2+) ionophore (A23187) and thapsigargin (an inhibitor of endoplasmic reticular Ca(2+)-ATPase activity) by themselves evoked apoptosis accompanied by increased [Ca(2+)](i). Neither the Ca(2+) channel blocker verapamil, the extracellular Ca(2+) chelator EGTA nor the cytosolic Ca(2+) buffer bis-(o-aminophenoxy)ethane-N,N,N',N'-tetra-acetic acid ('BAPTA')/AM protected beta-cells from hA-evoked apoptosis. Prolonged incubation of beta-cells with a lethal dose of hA altered neither the basal [Ca(2+)](i) nor the thapsigargin-induced release of Ca(2+) from intracellular stores. Furthermore, (45)CaCl(2) uptake by RINm5F cells did not differ in the presence or absence of hA. These results suggest that, whereas alterations in cytosolic Ca(2+) homoeostasis do have a significant role in certain forms of beta-cell death, they do not contribute to the pathway of apoptosis evoked by hA in islet beta-cells.

Full Text

The Full Text of this article is available as a PDF (266.9 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Alnemri E. S., Litwack G. Activation of internucleosomal DNA cleavage in human CEM lymphocytes by glucocorticoid and novobiocin. Evidence for a non-Ca2(+)-requiring mechanism(s). J Biol Chem. 1990 Oct 5;265(28):17323–17333. [PubMed] [Google Scholar]
  2. Bortner C. D., Oldenburg N. B., Cidlowski J. A. The role of DNA fragmentation in apoptosis. Trends Cell Biol. 1995 Jan;5(1):21–26. doi: 10.1016/s0962-8924(00)88932-1. [DOI] [PubMed] [Google Scholar]
  3. Cooper G. J. Amylin compared with calcitonin gene-related peptide: structure, biology, and relevance to metabolic disease. Endocr Rev. 1994 Apr;15(2):163–201. doi: 10.1210/edrv-15-2-163. [DOI] [PubMed] [Google Scholar]
  4. Cooper G. J., Day A. J., Willis A. C., Roberts A. N., Reid K. B., Leighton B. Amylin and the amylin gene: structure, function and relationship to islet amyloid and to diabetes mellitus. Biochim Biophys Acta. 1989 Dec 14;1014(3):247–258. doi: 10.1016/0167-4889(89)90220-6. [DOI] [PubMed] [Google Scholar]
  5. Cooper G. J., Willis A. C., Clark A., Turner R. C., Sim R. B., Reid K. B. Purification and characterization of a peptide from amyloid-rich pancreases of type 2 diabetic patients. Proc Natl Acad Sci U S A. 1987 Dec;84(23):8628–8632. doi: 10.1073/pnas.84.23.8628. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Cooper G. J., Willis A. C., Leighton B. Amylin hormone. Nature. 1989 Jul 27;340(6231):272–272. doi: 10.1038/340272b0. [DOI] [PubMed] [Google Scholar]
  7. Cornish J., Callon K. E., Cooper G. J., Reid I. R. Amylin stimulates osteoblast proliferation and increases mineralized bone volume in adult mice. Biochem Biophys Res Commun. 1995 Feb 6;207(1):133–139. doi: 10.1006/bbrc.1995.1163. [DOI] [PubMed] [Google Scholar]
  8. Enari M., Sakahira H., Yokoyama H., Okawa K., Iwamatsu A., Nagata S. A caspase-activated DNase that degrades DNA during apoptosis, and its inhibitor ICAD. Nature. 1998 Jan 1;391(6662):43–50. doi: 10.1038/34112. [DOI] [PubMed] [Google Scholar]
  9. Furuya Y., Lundmo P., Short A. D., Gill D. L., Isaacs J. T. The role of calcium, pH, and cell proliferation in the programmed (apoptotic) death of androgen-independent prostatic cancer cells induced by thapsigargin. Cancer Res. 1994 Dec 1;54(23):6167–6175. [PubMed] [Google Scholar]
  10. Gavrieli Y., Sherman Y., Ben-Sasson S. A. Identification of programmed cell death in situ via specific labeling of nuclear DNA fragmentation. J Cell Biol. 1992 Nov;119(3):493–501. doi: 10.1083/jcb.119.3.493. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Gazdar A. F., Chick W. L., Oie H. K., Sims H. L., King D. L., Weir G. C., Lauris V. Continuous, clonal, insulin- and somatostatin-secreting cell lines established from a transplantable rat islet cell tumor. Proc Natl Acad Sci U S A. 1980 Jun;77(6):3519–3523. doi: 10.1073/pnas.77.6.3519. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Hallick R. B., Chelm B. K., Gray P. W., Orozco E. M., Jr Use of aurintricarboxylic acid as an inhibitor of nucleases during nucleic acid isolation. Nucleic Acids Res. 1977 Sep;4(9):3055–3064. doi: 10.1093/nar/4.9.3055. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Hansen M. B., Nielsen S. E., Berg K. Re-examination and further development of a precise and rapid dye method for measuring cell growth/cell kill. J Immunol Methods. 1989 May 12;119(2):203–210. doi: 10.1016/0022-1759(89)90397-9. [DOI] [PubMed] [Google Scholar]
  14. Iversen L. L., Mortishire-Smith R. J., Pollack S. J., Shearman M. S. The toxicity in vitro of beta-amyloid protein. Biochem J. 1995 Oct 1;311(Pt 1):1–16. doi: 10.1042/bj3110001. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Janson J., Soeller W. C., Roche P. C., Nelson R. T., Torchia A. J., Kreutter D. K., Butler P. C. Spontaneous diabetes mellitus in transgenic mice expressing human islet amyloid polypeptide. Proc Natl Acad Sci U S A. 1996 Jul 9;93(14):7283–7288. doi: 10.1073/pnas.93.14.7283. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Jiang S., Chow S. C., Nicotera P., Orrenius S. Intracellular Ca2+ signals activate apoptosis in thymocytes: studies using the Ca(2+)-ATPase inhibitor thapsigargin. Exp Cell Res. 1994 May;212(1):84–92. doi: 10.1006/excr.1994.1121. [DOI] [PubMed] [Google Scholar]
  17. Juntti-Berggren L., Larsson O., Rorsman P., Ammälä C., Bokvist K., Wåhlander K., Nicotera P., Dypbukt J., Orrenius S., Hallberg A. Increased activity of L-type Ca2+ channels exposed to serum from patients with type I diabetes. Science. 1993 Jul 2;261(5117):86–90. doi: 10.1126/science.7686306. [DOI] [PubMed] [Google Scholar]
  18. Kataoka A., Kubota M., Wakazono Y., Okuda A., Bessho R., Lin Y. W., Usami I., Akiyama Y., Furusho K. Association of high molecular weight DNA fragmentation with apoptotic or non-apoptotic cell death induced by calcium ionophore. FEBS Lett. 1995 May 15;364(3):264–267. doi: 10.1016/0014-5793(95)00405-x. [DOI] [PubMed] [Google Scholar]
  19. Lam M., Dubyak G., Chen L., Nuñez G., Miesfeld R. L., Distelhorst C. W. Evidence that BCL-2 represses apoptosis by regulating endoplasmic reticulum-associated Ca2+ fluxes. Proc Natl Acad Sci U S A. 1994 Jul 5;91(14):6569–6573. doi: 10.1073/pnas.91.14.6569. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Leighton B., Cooper G. J. Pancreatic amylin and calcitonin gene-related peptide cause resistance to insulin in skeletal muscle in vitro. Nature. 1988 Oct 13;335(6191):632–635. doi: 10.1038/335632a0. [DOI] [PubMed] [Google Scholar]
  21. Liu X., Zou H., Slaughter C., Wang X. DFF, a heterodimeric protein that functions downstream of caspase-3 to trigger DNA fragmentation during apoptosis. Cell. 1997 Apr 18;89(2):175–184. doi: 10.1016/s0092-8674(00)80197-x. [DOI] [PubMed] [Google Scholar]
  22. Loo D. T., Copani A., Pike C. J., Whittemore E. R., Walencewicz A. J., Cotman C. W. Apoptosis is induced by beta-amyloid in cultured central nervous system neurons. Proc Natl Acad Sci U S A. 1993 Sep 1;90(17):7951–7955. doi: 10.1073/pnas.90.17.7951. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Lorenzo A., Razzaboni B., Weir G. C., Yankner B. A. Pancreatic islet cell toxicity of amylin associated with type-2 diabetes mellitus. Nature. 1994 Apr 21;368(6473):756–760. doi: 10.1038/368756a0. [DOI] [PubMed] [Google Scholar]
  24. Maloy A. L., Longnecker D. S., Greenberg E. R. The relation of islet amyloid to the clinical type of diabetes. Hum Pathol. 1981 Oct;12(10):917–922. doi: 10.1016/s0046-8177(81)80197-9. [DOI] [PubMed] [Google Scholar]
  25. Marin M. C., Fernandez A., Bick R. J., Brisbay S., Buja L. M., Snuggs M., McConkey D. J., von Eschenbach A. C., Keating M. J., McDonnell T. J. Apoptosis suppression by bcl-2 is correlated with the regulation of nuclear and cytosolic Ca2+. Oncogene. 1996 Jun 6;12(11):2259–2266. [PubMed] [Google Scholar]
  26. Mark R. J., Hensley K., Butterfield D. A., Mattson M. P. Amyloid beta-peptide impairs ion-motive ATPase activities: evidence for a role in loss of neuronal Ca2+ homeostasis and cell death. J Neurosci. 1995 Sep;15(9):6239–6249. doi: 10.1523/JNEUROSCI.15-09-06239.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Martikainen P., Isaacs J. Role of calcium in the programmed death of rat prostatic glandular cells. Prostate. 1990;17(3):175–187. doi: 10.1002/pros.2990170302. [DOI] [PubMed] [Google Scholar]
  28. Martin S. J., Green D. R., Cotter T. G. Dicing with death: dissecting the components of the apoptosis machinery. Trends Biochem Sci. 1994 Jan;19(1):26–30. doi: 10.1016/0968-0004(94)90170-8. [DOI] [PubMed] [Google Scholar]
  29. Mattson M. P., Goodman Y. Different amyloidogenic peptides share a similar mechanism of neurotoxicity involving reactive oxygen species and calcium. Brain Res. 1995 Apr 3;676(1):219–224. doi: 10.1016/0006-8993(95)00148-j. [DOI] [PubMed] [Google Scholar]
  30. May P. C., Boggs L. N., Fuson K. S. Neurotoxicity of human amylin in rat primary hippocampal cultures: similarity to Alzheimer's disease amyloid-beta neurotoxicity. J Neurochem. 1993 Dec;61(6):2330–2333. doi: 10.1111/j.1471-4159.1993.tb07480.x. [DOI] [PubMed] [Google Scholar]
  31. McConkey D. J., Hartzell P., Nicotera P., Orrenius S. Calcium-activated DNA fragmentation kills immature thymocytes. FASEB J. 1989 May;3(7):1843–1849. doi: 10.1096/fasebj.3.7.2497041. [DOI] [PubMed] [Google Scholar]
  32. McConkey D. J., Orrenius S. Signal transduction pathways to apoptosis. Trends Cell Biol. 1994 Oct;4(10):370–375. doi: 10.1016/0962-8924(94)90087-6. [DOI] [PubMed] [Google Scholar]
  33. McConkey D. J., Orrenius S. The role of calcium in the regulation of apoptosis. J Leukoc Biol. 1996 Jun;59(6):775–783. [PubMed] [Google Scholar]
  34. Michel P. P., Vyas S., Anglade P., Ruberg M., Agid Y. Morphological and molecular characterization of the response of differentiated PC12 cells to calcium stress. Eur J Neurosci. 1994 Apr 1;6(4):577–586. doi: 10.1111/j.1460-9568.1994.tb00302.x. [DOI] [PubMed] [Google Scholar]
  35. Mirzabekov T. A., Lin M. C., Kagan B. L. Pore formation by the cytotoxic islet amyloid peptide amylin. J Biol Chem. 1996 Jan 26;271(4):1988–1992. doi: 10.1074/jbc.271.4.1988. [DOI] [PubMed] [Google Scholar]
  36. Montague J. W., Hughes F. M., Jr, Cidlowski J. A. Native recombinant cyclophilins A, B, and C degrade DNA independently of peptidylprolyl cis-trans-isomerase activity. Potential roles of cyclophilins in apoptosis. J Biol Chem. 1997 Mar 7;272(10):6677–6684. doi: 10.1074/jbc.272.10.6677. [DOI] [PubMed] [Google Scholar]
  37. Praz G. A., Halban P. A., Wollheim C. B., Blondel B., Strauss A. J., Renold A. E. Regulation of immunoreactive-insulin release from a rat cell line (RINm5F). Biochem J. 1983 Feb 15;210(2):345–352. doi: 10.1042/bj2100345. [DOI] [PMC free article] [PubMed] [Google Scholar]
  38. Pressman B. C. Biological applications of ionophores. Annu Rev Biochem. 1976;45:501–530. doi: 10.1146/annurev.bi.45.070176.002441. [DOI] [PubMed] [Google Scholar]
  39. Reed J. C. Bcl-2 and the regulation of programmed cell death. J Cell Biol. 1994 Jan;124(1-2):1–6. doi: 10.1083/jcb.124.1.1. [DOI] [PMC free article] [PubMed] [Google Scholar]
  40. Sakahira H., Enari M., Nagata S. Cleavage of CAD inhibitor in CAD activation and DNA degradation during apoptosis. Nature. 1998 Jan 1;391(6662):96–99. doi: 10.1038/34214. [DOI] [PubMed] [Google Scholar]
  41. Schubert D., Behl C., Lesley R., Brack A., Dargusch R., Sagara Y., Kimura H. Amyloid peptides are toxic via a common oxidative mechanism. Proc Natl Acad Sci U S A. 1995 Mar 14;92(6):1989–1993. doi: 10.1073/pnas.92.6.1989. [DOI] [PMC free article] [PubMed] [Google Scholar]
  42. Shearman M. S., Ragan C. I., Iversen L. L. Inhibition of PC12 cell redox activity is a specific, early indicator of the mechanism of beta-amyloid-mediated cell death. Proc Natl Acad Sci U S A. 1994 Feb 15;91(4):1470–1474. doi: 10.1073/pnas.91.4.1470. [DOI] [PMC free article] [PubMed] [Google Scholar]
  43. Shier W. T., DuBourdieu D. J., Wang H. H. Role of lipid metabolism in cell killing by calcium plus ionophore A23187. J Biochem Toxicol. 1991 Spring;6(1):7–17. doi: 10.1002/jbt.2570060103. [DOI] [PubMed] [Google Scholar]
  44. Shiokawa D., Iwamatsu A., Tanuma S. Purification, characterization, and amino acid sequencing of DNase gamma from rat spleen. Arch Biochem Biophys. 1997 Oct 1;346(1):15–20. doi: 10.1006/abbi.1997.0275. [DOI] [PubMed] [Google Scholar]
  45. Smith P. M., Reed H. E. Amplification of the thapsigargin-evoked increase in the cytosolic free Ca2+ concentration by acetylcholine in acutely isolated mouse submandibular acinar cells. Biochem J. 1996 Aug 1;317(Pt 3):779–783. doi: 10.1042/bj3170779. [DOI] [PMC free article] [PubMed] [Google Scholar]
  46. Takei N., Endo Y. Ca2+ ionophore-induced apoptosis on cultured embryonic rat cortical neurons. Brain Res. 1994 Jul 25;652(1):65–70. doi: 10.1016/0006-8993(94)90317-4. [DOI] [PubMed] [Google Scholar]
  47. Takenouchi T., Munekata E. beta-Amyloid peptide, substance P, and SEC receptor ligand activate cytoplasmic Ca2+ in neutrophil-like HL-60 cells: effect of chemotactic peptide antagonist BocMLF. Peptides. 1995;16(6):1019–1024. doi: 10.1016/0196-9781(95)00084-w. [DOI] [PubMed] [Google Scholar]
  48. Thastrup O., Cullen P. J., Drøbak B. K., Hanley M. R., Dawson A. P. Thapsigargin, a tumor promoter, discharges intracellular Ca2+ stores by specific inhibition of the endoplasmic reticulum Ca2(+)-ATPase. Proc Natl Acad Sci U S A. 1990 Apr;87(7):2466–2470. doi: 10.1073/pnas.87.7.2466. [DOI] [PMC free article] [PubMed] [Google Scholar]
  49. Tsien R. Y. New calcium indicators and buffers with high selectivity against magnesium and protons: design, synthesis, and properties of prototype structures. Biochemistry. 1980 May 27;19(11):2396–2404. doi: 10.1021/bi00552a018. [DOI] [PubMed] [Google Scholar]
  50. Verchere C. B., D'Alessio D. A., Palmiter R. D., Weir G. C., Bonner-Weir S., Baskin D. G., Kahn S. E. Islet amyloid formation associated with hyperglycemia in transgenic mice with pancreatic beta cell expression of human islet amyloid polypeptide. Proc Natl Acad Sci U S A. 1996 Apr 16;93(8):3492–3496. doi: 10.1073/pnas.93.8.3492. [DOI] [PMC free article] [PubMed] [Google Scholar]
  51. Villalba M., Ferrari D., Bozza A., Del Senno L., Di Virgilio F. Ionic regulation of endonuclease activity in PC12 cells. Biochem J. 1995 Nov 1;311(Pt 3):1033–1038. doi: 10.1042/bj3111033. [DOI] [PMC free article] [PubMed] [Google Scholar]
  52. Wei H., Perry D. C. Dantrolene is cytoprotective in two models of neuronal cell death. J Neurochem. 1996 Dec;67(6):2390–2398. doi: 10.1046/j.1471-4159.1996.67062390.x. [DOI] [PubMed] [Google Scholar]
  53. Westermark P., Wernstedt C., Wilander E., Hayden D. W., O'Brien T. D., Johnson K. H. Amyloid fibrils in human insulinoma and islets of Langerhans of the diabetic cat are derived from a neuropeptide-like protein also present in normal islet cells. Proc Natl Acad Sci U S A. 1987 Jun;84(11):3881–3885. doi: 10.1073/pnas.84.11.3881. [DOI] [PMC free article] [PubMed] [Google Scholar]
  54. Young A., Pittner R., Gedulin B., Vine W., Rink T. Amylin regulation of carbohydrate metabolism. Biochem Soc Trans. 1995 May;23(2):325–331. doi: 10.1042/bst0230325. [DOI] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES