Abstract
The customary route in animals and bacteria for delta-aminolevulinic acid biosynthesis is from glycine and succinyl CoA, catalyzed by the enzyme delta-aminolevulinic acid synthetase [succinyl-CoA:glycine C-succinyltransferase (decarboxylating), EC 2.3.1.37]. Attempts to demonstrate this route in plants have been unsuccessful. Evidence is given for a new enzymic route of synthesis of delta-aminolevulinic acid in plants. This route involves the incorporation of the intact five-carbon skeleton of glutamic acid into delta-aminolevulinic acid. Demonstration of the new pathway in plants has been made by feeding specifically labeled [14C]glutamic acid to etiolated barley shoots greening in the light. In the presence of levulinate, a competitive inhibitor of delta-aminolevulinic acid dehydrastase [porphobilinogen synthase; delta-aminolevulinate hydro-lyase (adding delta-aminolevulinate and cyclizing); EC 4.2.1.24], delta-aminolevulinate accumulates. The delta-aminolevulinate formed was chemically degraded by periodate to formaldehyde and succinic acid. The C5 (formaldehyde) fragment was separated, as the 5,5-dimethyl-1,3-cyclohexanedione (dimedone) derivative, from the C1-C4 (succinic acid) fragment. The C5 atom contained radioactivity predominantly derived from C1 of glutamic acid. Conversely, the labeled C3 and C4 atoms of glutamic acid were found primarily in the succinic acid (C1-C4) fragment of delta-aminolevulinate. This labeling pattern for delta-aminolevulinic acid is consistent with a biosynthetic route utilizing the intact five-carbon skeleton of alpha-ketoglutarate, glutamate, or glutamine, and is inconsistent with the delta-aminolevulinic acid synthetase pathway utilizing glycine and succinyl CoA as precursors.
Full text
PDF




Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Beale S. I., Castelfranco P. A. 14 C incorporation from exogenous compounds into -aminolevulinic acid by greening cucumber cotyledons. Biochem Biophys Res Commun. 1973 May 1;52(1):143–149. doi: 10.1016/0006-291x(73)90966-2. [DOI] [PubMed] [Google Scholar]
- Beale S. I., Castelfranco P. A. The Biosynthesis of delta-Aminolevulinic Acid in Higher Plants: I. Accumulation of delta-Aminolevulinic Acid in Greening Plant Tissues. Plant Physiol. 1974 Feb;53(2):291–296. doi: 10.1104/pp.53.2.291. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Beale S. I., Castelfranco P. A. The Biosynthesis of delta-Aminolevulinic Acid in Higher Plants: II. Formation of C-delta-Aminolevulinic Acid from Labeled Precursors in Greening Plant Tissues. Plant Physiol. 1974 Feb;53(2):297–303. doi: 10.1104/pp.53.2.297. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Beale S. I. Studies on the Biosynthesis and Metabolism of delta-Aminolevulinic Acid in Chlorella. Plant Physiol. 1971 Sep;48(3):316–319. doi: 10.1104/pp.48.3.316. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Bottomley S. S., Smithee G. A. Characterization and measurement of delta-aminolaevulinate synthetase in bone marrow cell mitochondria. Biochim Biophys Acta. 1968 Apr 24;159(1):27–37. doi: 10.1016/0005-2744(68)90241-6. [DOI] [PubMed] [Google Scholar]
- Castelfranco P. A., Jones O. T. Protoheme turnover and chlorophyll synthesis in greening barley tissue. Plant Physiol. 1975 Mar;55(3):485–490. doi: 10.1104/pp.55.3.485. [DOI] [PMC free article] [PubMed] [Google Scholar]
- DELLA ROSA R. J., ALTMAN K. I., SALOMON K. The biosynthesis of chlorophyll as studied with labeled glycine and acetic acid. J Biol Chem. 1953 Jun;202(2):771–779. [PubMed] [Google Scholar]
- GIBSON K. D., NEUBERGER A., SCOTT J. J. The purification and properties of delta-aminolaevulic acid dehydrase. Biochem J. 1955 Dec;61(4):618–629. doi: 10.1042/bj0610618. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Gassman M., Pluscec J., Bogorad L. delta-Aminolevulinic Acid Transaminase in Chlorella vulgaris. Plant Physiol. 1968 Sep;43(9):1411–1414. doi: 10.1104/pp.43.9.1411. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Huffaker R. C., Obendorf R. L., Keller C. J., Kleinkopf G. E. Effects of Light Intensity on Photosynthetic Carboxylative Phase Enzymes and Chlorophyll Synthesis in Greening Leaves of Hordeum vulgare L. Plant Physiol. 1966 Jun;41(6):913–918. doi: 10.1104/pp.41.6.913. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Jerzykowski T., Winter R., Matuszewski W. gamma,delta-Dioxovalerate as a substrate for the glyoxalase enzyme system. Biochem J. 1973 Dec;135(4):713–719. doi: 10.1042/bj1350713. [DOI] [PMC free article] [PubMed] [Google Scholar]
- KIKUCHI G., KUMAR A., TALMAGE P., SHEMIN D. The enzymatic synthesis of delta-aminolevulinic acid. J Biol Chem. 1958 Nov;233(5):1214–1219. [PubMed] [Google Scholar]
- MAUZERALL D., GRANICK S. The occurrence and determination of delta-amino-levulinic acid and porphobilinogen in urine. J Biol Chem. 1956 Mar;219(1):435–446. [PubMed] [Google Scholar]
- Marver H. S., Collins A., Tschudy D. P., Rechcigl M., Jr Delta-aminolevulinic acid synthetase. II. Induction in rat liver. J Biol Chem. 1966 Oct 10;241(19):4323–4329. [PubMed] [Google Scholar]
- NEUBERGER A., TURNER J. M. gamma,delta-Dioxovalerate aminotransferase activity in Rhodopseudomonas spheroides. Biochim Biophys Acta. 1963 Feb 12;67:342–345. doi: 10.1016/0006-3002(63)91839-0. [DOI] [PubMed] [Google Scholar]
- Nadler K., Granick S. Controls on chlorophyll synthesis in barley. Plant Physiol. 1970 Aug;46(2):240–246. doi: 10.1104/pp.46.2.240. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Porra R. J., Grimme L. H. Chlorophyll synthesis and intracellular fluctuations of 5-aminolaevulinate formation during the regreening of nitrogen-deficient Chlorella fusca. Arch Biochem Biophys. 1974 Sep;164(1):312–321. doi: 10.1016/0003-9861(74)90036-8. [DOI] [PubMed] [Google Scholar]
- Porra R. J., Irving E. A., Tennick A. M. The detection of delta-aminolaevulinic acid synthetase in anaerobically grown Torulopsis utilis. Arch Biochem Biophys. 1972 Apr;149(2):563–565. doi: 10.1016/0003-9861(72)90356-6. [DOI] [PubMed] [Google Scholar]
- Ramaswamy N. K., Nair P. M. -Aminolevulinic acid synthetase from cold-stored potatoes. Biochim Biophys Acta. 1973 Jan 12;293(1):269–277. doi: 10.1016/0005-2744(73)90399-9. [DOI] [PubMed] [Google Scholar]
- Rebeiz C. A., Castelfranco P. A. Chlorophyll biosynthesis in a cell-free system from higher plants. Plant Physiol. 1971 Jan;47(1):33–37. doi: 10.1104/pp.47.1.33. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Roberts D. W., Perkins H. J. The incorporation of the two carbons of acetate and glycine into the phorbide and phytol moieties of chlorophylls a and b. Biochim Biophys Acta. 1966 Sep 26;127(1):42–46. doi: 10.1016/0304-4165(66)90473-9. [DOI] [PubMed] [Google Scholar]
- SHEMIN D., RUSSELL C. S., ABRAMSKY T. The succinate-glycine cycle. I. The mechanism of pyrrole synthesis. J Biol Chem. 1955 Aug;215(2):613–626. [PubMed] [Google Scholar]
- Wang F. K., Koch J., Stokstad E. L. Metabolism of 5-hydroxy-4-keto-valeric acid in the rat. Biochem Biophys Res Commun. 1970 Aug 11;40(3):576–582. doi: 10.1016/0006-291x(70)90941-1. [DOI] [PubMed] [Google Scholar]