Skip to main content
The Journal of Cell Biology logoLink to The Journal of Cell Biology
. 1978 Feb 1;76(2):310–322. doi: 10.1083/jcb.76.2.310

Movement of sea urchin sperm flagella

R Rikmenspoel 1
PMCID: PMC2109988  PMID: 10605440

Abstract

The motion of the sea urchin sperm flagellum was analyzed from high-speed cinemicrographs. At all locations on the flagellum the transversal motion and the curvature were found to vary sinusoidally in time. The curvatures of the flagella increase strongly near the proximal junction. Two sperm are described in transient from rest to normal motion. The full wave motion developed in both sperm within 40 ms.

Full Text

The Full Text of this article is available as a PDF (1.1 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Brokaw C. J. Computer simulation of flagellar movement. I. Demonstration of stable bend propagation and bend initiation by the sliding filament model. Biophys J. 1972 May;12(5):564–586. doi: 10.1016/S0006-3495(72)86104-6. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Brokaw C. J. Effects of increased viscosity on the movements of some invertebrate spermatozoa. J Exp Biol. 1966 Aug;45(1):113–139. doi: 10.1242/jeb.45.1.113. [DOI] [PubMed] [Google Scholar]
  3. Brokaw C. J. Effects of viscosity and ATP concentration on the movement of reactivated sea-urchin sperm flagella. J Exp Biol. 1975 Jun;62(3):701–719. doi: 10.1242/jeb.62.3.701. [DOI] [PubMed] [Google Scholar]
  4. Brokaw C. J. Flagellar movement: a sliding filament model. Science. 1972 Nov 3;178(4060):455–462. doi: 10.1126/science.178.4060.455. [DOI] [PubMed] [Google Scholar]
  5. Brokaw C. J. Non-sinusoidal bending waves of sperm flagella. J Exp Biol. 1965 Aug;43(1):155–169. doi: 10.1242/jeb.43.1.155. [DOI] [PubMed] [Google Scholar]
  6. Gibbons B. H., Gibbons I. R. The effect of partial extraction of dynein arms on the movement of reactivated sea-urchin sperm. J Cell Sci. 1973 Sep;13(2):337–357. doi: 10.1242/jcs.13.2.337. [DOI] [PubMed] [Google Scholar]
  7. Lubliner J., Blum J. J. Analysis of form and speed of flagellar waves according to a sliding filament model. J Mechanochem Cell Motil. 1972 Aug;1(3):157–167. [PubMed] [Google Scholar]
  8. Lubliner J., Blum J. J. Model for bend propagation in flagella. J Theor Biol. 1971 Apr;31(1):1–24. doi: 10.1016/0022-5193(71)90117-2. [DOI] [PubMed] [Google Scholar]
  9. Rikmenspoel R. Contractile mechanisms in flagella. Biophys J. 1971 May;11(5):446–463. doi: 10.1016/S0006-3495(71)86227-6. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Rikmenspoel R. Elastic properties of the sea urchin sperm flagellum. Biophys J. 2008 Dec 31;6(4):471–479. doi: 10.1016/S0006-3495(66)86670-5. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Rikmenspoel R., Jacklet A. C., Orris S. E., Lindemann C. B. Control of bull sperm motility. Effects of viscosity, KCN and thiourea. J Mechanochem Cell Motil. 1973 May;2(1):7–24. [PubMed] [Google Scholar]
  12. Rikmenspoel R., Rudd W. G. The contractile mechanism in cilia. Biophys J. 1973 Sep;13(9):955–993. doi: 10.1016/S0006-3495(73)86037-0. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Satir P. Studies on cilia. 3. Further studies on the cilium tip and a "sliding filament" model of ciliary motility. J Cell Biol. 1968 Oct;39(1):77–94. doi: 10.1083/jcb.39.1.77. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Summers K. E., Gibbons I. R. Adenosine triphosphate-induced sliding of tubules in trypsin-treated flagella of sea-urchin sperm. Proc Natl Acad Sci U S A. 1971 Dec;68(12):3092–3096. doi: 10.1073/pnas.68.12.3092. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from The Journal of Cell Biology are provided here courtesy of The Rockefeller University Press

RESOURCES