Abstract
Serine transhydroxymethylase (5,10-methylenetetrahydrofolate: glycine hydroxymethyl transferase, EC 2.1.2.1) purified 200-fold from pig kidneys showed cooperative interactions with tetrahydrofolate with a Hill coefficient (n value) of 3.9 and a substrate concentration at 50% of maximum velocity, the S(0.5) value, of 0.5 mM. The enzyme in mouse liver and kidney homogenates also showed cooperative interactions with tetrahydrofolate. However, the enzyme obtained from L1210 solid tumors of mice, and from livers and kidneys of mice inoculated with L1210 cells exhibited hyperbolic saturation kinetics and gave a Michaelis constant, Km, value of 0.5 mM for tetrahydrofolate. The interaction of serine with the enzyme from pig kidney, from tissues of normal or tumor-bearing mice, or from L1210 tumors was hyperbolic with a Km of 0.9 mM. The specific activities of the enzyme in the L1210 tumor and in mouse liver were 10-fold higher than in pig or mouse kidney. There was no significant change in the levels of the enzyme in mouse liver and kidney on inoculation with L1210 cells. These results suggest that a tumor can bring about biochemical changes in tissues that are distal to the tumor.
Full text
PDF



Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- BLAKLEY R. L. The interconversion of serine and glycine: participation of pyridoxal phosphate. Biochem J. 1955 Oct;61(2):315–323. doi: 10.1042/bj0610315. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Cauthen S. E., Foster M. A., Woods D. D. Methionine synthesis by extracts of Salmonella typhimurium. Biochem J. 1966 Feb;98(2):630–635. doi: 10.1042/bj0980630. [DOI] [PMC free article] [PubMed] [Google Scholar]
- HARTMAN S. C., BUCHANAN J. M. Nucleic acids, purines, pyrimidines (nucleotide synthesis). Annu Rev Biochem. 1959;28:365–410. doi: 10.1146/annurev.bi.28.070159.002053. [DOI] [PubMed] [Google Scholar]
- HATEFI Y., HUENNEKENS F. M., KAY L. D. Manometric assay and cofactor requirements for serine hydroxymethylase. J Biol Chem. 1957 Jan;224(1):435–444. [PubMed] [Google Scholar]
- KALLEN R. G., SIMON M., MARMUR J. The new occurrence of a new pyrimidine base replacing thymine in a bacteriophage DNA:5-hydroxymethyl uracil. J Mol Biol. 1962 Aug;5:248–250. doi: 10.1016/s0022-2836(62)80087-4. [DOI] [PubMed] [Google Scholar]
- KATZEN H. M., BUCHANAN J. M. ENZYMATIC SYNTHESIS OF THE METHYL GROUP OF METHIONINE. 8. REPRESSION-DEREPRESSION, PURIFICATION, AND PROPERTIES OF 5,10-METHYLENETETRAHYDROFOLATE REDUCTASE FROM ESCHERICHIA COLI. J Biol Chem. 1965 Feb;240:825–835. [PubMed] [Google Scholar]
- Koshland D. E. Application of a Theory of Enzyme Specificity to Protein Synthesis. Proc Natl Acad Sci U S A. 1958 Feb;44(2):98–104. doi: 10.1073/pnas.44.2.98. [DOI] [PMC free article] [PubMed] [Google Scholar]
- MATHEWS C. K., BROWN F., COHEN S. S. VIRUS-INDUCED ACQUISITION OF METABOLIC FUNCTION. VII. BIOSYNTHESIS DE NOVO OF DEOXYCYTIDYLATE HYDROXYMETHYLASE. J Biol Chem. 1964 Sep;239:2957–2963. [PubMed] [Google Scholar]
- Mansouri A., Decter J. B., Silber R. Studies on the regulation of one-carbon metabolism. II. Repression-derepression of serine hydroxymethyltransferase by methionine in Escherichia coli 113-3. J Biol Chem. 1972 Jan 25;247(2):348–352. [PubMed] [Google Scholar]
- Marcker K. The formation of N-formyl-methionyl-sRNA. J Mol Biol. 1965 Nov;14(1):63–70. doi: 10.1016/s0022-2836(65)80230-3. [DOI] [PubMed] [Google Scholar]
- SCHIRCH L. G., MASON M. Serine transhydroxymethylase. A study of the properties of a homogeneous enzyme preparation and of the nature of its interaction with substrates and pyridoxal 5-phosphate. J Biol Chem. 1963 Mar;238:1032–1037. [PubMed] [Google Scholar]
- Schirch L. V., Edmiston M., Chen M. S. Serine transhydroxymethylase. Subunit structure and the involvement of sulfhydryl groups in the activity of the enzyme. J Biol Chem. 1973 Sep 25;248(18):6456–6461. [PubMed] [Google Scholar]