Skip to main content
Proceedings of the National Academy of Sciences of the United States of America logoLink to Proceedings of the National Academy of Sciences of the United States of America
. 1976 Sep;73(9):3160–3164. doi: 10.1073/pnas.73.9.3160

Affinity purification of synthetic peptides.

D E Krieger, B W Erickson, R B Merrifield
PMCID: PMC430966  PMID: 1067609

Abstract

A general strategy and a specific tactic for affinity purification of polypeptides synthesized on solid supports are desbribed and demonstrated. The desired peptide chains were distinguished from terminated peptide chains before removal from the support by attachment of an affinity reagnet (cysteinyl-methionine) bearing an affinity group (thiol) and a binding group (carboxylic acid). After cleavage from the synthetic support, the affinity-labeled peptides (Cys-Met-peptides) were bound to an affinity receptor (organomercurial-agarose) and thus separated from terminated peptides and all other peptides lacking the affinity group. The desired synthetic peptide was obtained by separation of the affinity reagent (loss of Cys-Met by cyanogen bromide cleavage). This general affinity purification strategy is independent of the length or amino acid sequence of the desired peptide. After assembly of ribonuclease-(111-124)-tetradecapeptide, using radiolabeled acetic anhudride for termination of uncoupled in termediates, essentially all (greater than 98.5%) of the acetylated delection peptides were removed by employing the organomercurial Cys-Met tactic. Similarly, the purity of crude synthetic histone H4-(1-37)-heptatriacontapeptide was increased six-fold by using this tactic to remove terminated peptides. A related dimeric Cys-Met tactic is outlined for affinity purification of peptides containing internal cysteine and methionine residues.

Full text

PDF
3160

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Anderson C. D., Hall P. L. Purification of ficin by affinity chromatography. Anal Biochem. 1974 Aug;60(2):417–423. doi: 10.1016/0003-2697(74)90250-4. [DOI] [PubMed] [Google Scholar]
  2. Boegman R. J. Affinity chromatography of creatine phosphokinase on organomercurial-sepharose. FEBS Lett. 1975 Apr 15;53(1):99–101. doi: 10.1016/0014-5793(75)80692-2. [DOI] [PubMed] [Google Scholar]
  3. Brunfeldt K., Christensen T., Roepstorff P. Acetylation an artefact in solid phase peptide synthesis. A mass spectrometrical investigation. FEBS Lett. 1972 Sep 1;25(1):184–188. doi: 10.1016/0014-5793(72)80481-2. [DOI] [PubMed] [Google Scholar]
  4. Cuatrecasas P. Protein purification by affinity chromatography. Derivatizations of agarose and polyacrylamide beads. J Biol Chem. 1970 Jun;245(12):3059–3065. [PubMed] [Google Scholar]
  5. Erickson B. W., Merrifield R. B. Acid stability of several benzylic protecting groups used in solid-phase peptide synthesis. Rearrangement of O-benzyltyrosine to 3-benzyltyrosine. J Am Chem Soc. 1973 May 30;95(11):3750–3756. doi: 10.1021/ja00792a046. [DOI] [PubMed] [Google Scholar]
  6. Erickson B. W., Merrifield R. B. Use of chlorinated benzyloxycarbonyl protecting groups to eliminate N -branching at lysine during solid-phase peptide synthesis. J Am Chem Soc. 1973 May 30;95(11):3757–3763. doi: 10.1021/ja00792a047. [DOI] [PubMed] [Google Scholar]
  7. GREEN N. M. AVIDIN. 3. THE NATURE OF THE BIOTIN-BINDING SITE. Biochem J. 1963 Dec;89:599–609. doi: 10.1042/bj0890599. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. GROSS E., WITKOP B. Nonenzymatic cleavage of peptide bonds: the methionine residues in bovine pancreatic ribonuclease. J Biol Chem. 1962 Jun;237:1856–1860. [PubMed] [Google Scholar]
  9. Green N. M., Toms E. J. The properties of subunits of avidin coupled to sepharose. Biochem J. 1973 Aug;133(4):687–700. doi: 10.1042/bj1330687. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Gutte B., Lin M. C., Caldi D. G., Merrifield R. B. Reactivation of des(119-, 120-, or 121-124) ribonuclease A by mixture with synthetic COOH-terminal peptides of varying lengths. J Biol Chem. 1972 Aug 10;247(15):4763–4767. [PubMed] [Google Scholar]
  11. Hodges R. S., Merrifield R. B. Monitoring of solid phase peptide synthesis by an automated spectrophotometric picrate method. Anal Biochem. 1975 May 12;65(1-2):241–272. doi: 10.1016/0003-2697(75)90509-6. [DOI] [PubMed] [Google Scholar]
  12. Hodges R. S., Merrifield R. B. The role of serine-123 in the activity and specificity of ribonuclease. Reactivation of ribonuclease 1-118 by the synthetic COOH-terminal tetradecapeptide, ribonuclease 111-124, and its O-methylserine and alanine analogs. J Biol Chem. 1975 Feb 25;250(4):1231–1241. [PubMed] [Google Scholar]
  13. Krieger D. E., Levine R., Merrifield R. B., Vidali G., Allfrey V. G. Chemical studies of histone acetylation. Substrate specificity of a histone deacetylase from calf thymus nuclei. J Biol Chem. 1974 Jan 10;249(1):332–334. [PubMed] [Google Scholar]
  14. Markley L. D., Dorman L. C. A comparative study of terminating agents for use in solid-phase peptide synthesis. Tetrahedron Lett. 1970 May;(21):1787–1790. doi: 10.1016/s0040-4039(01)98083-9. [DOI] [PubMed] [Google Scholar]
  15. Murayama A., Raffin J. P., Remy P., Ebel J. P. Yeast phenylalanyl-tRNA synthetase: isolation of subunits on organomercurial-sepharose columns. FEBS Lett. 1975 Apr 15;53(1):23–25. doi: 10.1016/0014-5793(75)80672-7. [DOI] [PubMed] [Google Scholar]
  16. Sluyterman L. A., Wijdenes J. An agarose mercurial column for the separation of mercaptopapain and nonmercaptopapain. Biochim Biophys Acta. 1970 Mar 31;200(3):593–595. doi: 10.1016/0005-2795(70)90122-4. [DOI] [PubMed] [Google Scholar]
  17. Spande T. F., Witkop B., Degani Y., Patchornik A. Selective cleavage and modification of peptides and proteins. Adv Protein Chem. 1970;24:97–260. doi: 10.1016/s0065-3233(08)60242-9. [DOI] [PubMed] [Google Scholar]
  18. Takashima H., Du Vigneaud V., Merrifield R. B. The synthesis of deamino-oxytocin by the solid phase method. J Am Chem Soc. 1968 Feb 28;90(5):1323–1325. doi: 10.1021/ja01007a038. [DOI] [PubMed] [Google Scholar]
  19. Terrossian E der, Pradel L. A., Kassab R., Desvages G. Separation of the two non-identical subunits of lombricine kinase from Lumbricus terrestris muscle by chromatography on sepharose-mercurial. Isolation of the tryptic peptide containing its essential thiol group. Eur J Biochem. 1974 Jun 1;45(1):243–251. doi: 10.1111/j.1432-1033.1974.tb03548.x. [DOI] [PubMed] [Google Scholar]
  20. Veber D. F., Milkowski J. D., Denkewalter R. G., Hirschmann R. The synthesis of peptides in aqueous medium. IV. A novel protecting group for cysteine. Tetrahedron Lett. 1968 May;(26):3057–3058. doi: 10.1016/s0040-4039(00)89595-7. [DOI] [PubMed] [Google Scholar]
  21. Yamashiro D., Li C. H. Synthesis of a pentekontapeptide with high lipolytic activity corresponding to the carboxyl-terminal fifty amino acids of ovine beta-lipotropin. Proc Natl Acad Sci U S A. 1974 Dec;71(12):4945–4949. doi: 10.1073/pnas.71.12.4945. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences

RESOURCES