Skip to main content
Proceedings of the National Academy of Sciences of the United States of America logoLink to Proceedings of the National Academy of Sciences of the United States of America
. 1976 Nov;73(11):3905–3909. doi: 10.1073/pnas.73.11.3905

5-bromodeoxyuridine-DNA strand symmetry and the repair of photolytic breaks in Chinese hamster cell chromosomes.

D J Roufa
PMCID: PMC431260  PMID: 1069276

Abstract

Experiments described in this report quantiate the black light sensitivities of Chinese hamster lung (CHL) cells containing BrdUrd-DNA of defined composition. Cesium chloride equilibrium gradient centrifugation provides estimates both of the percent thymidine replacement by BrdUrd and of the symmetry (unifilar versus bifilar) of BrdUrd incorporation into the chromosomal DNA duplexes. Radiation damage to BrdUrd-substituted CHL cell DNA and its repair in situ also have been assessed by alkaline sucrose gradient sedimentation. We observe that animal cell sensitivities to visible light (300-400 nm wavelength) depend markedly upon the symmetries of BrdUrd-substitution within the cells Dna. Cells that contain only unifilar BrdUrd-DNA are resistant to black light, whereas cells that contain bifilar BrdUrd-DNA are extremely photosensitive. The former cell populations repair single-stranded nicks (breaks in phosphodiester bonds) in their DNA within 24 hr of irradiation; the latter cell populations, however, are not able to repair light-induced, double-stranded breaks in their DNA.

Full text

PDF
3905

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. BURGI E., HERSHEY A. D. Sedimentation rate as a measure of molecular weight of DNA. Biophys J. 1963 Jul;3:309–321. doi: 10.1016/s0006-3495(63)86823-x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Bick M. D., Davidson R. L. Total substitution of bromodeoxyuridine for thymidine in the DNA of a bromodeoxyuridine-dependent cell line. Proc Natl Acad Sci U S A. 1974 May;71(5):2082–2086. doi: 10.1073/pnas.71.5.2082. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Chang T. Y., Vagelos P. R. Isolation and characterization of an unsaturated fatty acid-requiring mutant of cultured mammalian cells. Proc Natl Acad Sci U S A. 1976 Jan;73(1):24–28. doi: 10.1073/pnas.73.1.24. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Chu E. H., Sun N. C., Chang C. C. Induction of auxotrophic mutations by treatment of Chinese hamster cells with 5-bromodeoxyuridine and black light. Proc Natl Acad Sci U S A. 1972 Nov;69(11):3459–3463. doi: 10.1073/pnas.69.11.3459. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. DULBECCO R., VOGT M. One-step growth curve of Western equine encephalomyelitis virus on chicken embryo cells grown in vitro and analysis of virus yields from single cells. J Exp Med. 1954 Feb;99(2):183–199. doi: 10.1084/jem.99.2.183. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Gillin F. D., Roufa D. J., Beaudet A. L., Caskey C. T. 8-Azaguanine resistance in mammalian cells. I. Hypoxanthine-guanine phosphoribosyltransferase. Genetics. 1972 Oct;72(2):239–252. doi: 10.1093/genetics/72.2.239. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Haralson M. A., Roufa D. J. A temperature-sensitive mutation affecting the mammalian 60 S ribosome. J Biol Chem. 1975 Nov 25;250(22):8618–8623. [PubMed] [Google Scholar]
  8. Hutchinson F. The lesions produced by ultraviolet light in DNA containing 5-bromouracil. Q Rev Biophys. 1973 May;6(2):201–246. doi: 10.1017/s0033583500001141. [DOI] [PubMed] [Google Scholar]
  9. Kao F. T., Puck T. T. Genetics of somatic mammalian cells. IV. Properties of Chinese hamster cell mutants with respect to the requirement for proline. Genetics. 1967 Mar;55(3):513–524. doi: 10.1093/genetics/55.3.513. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Naha P. M. Initial characterization of a temperature sensitive mutant of monkey kidney cell. Nature. 1970 Oct 10;228(5267):166–168. doi: 10.1038/228166a0. [DOI] [PubMed] [Google Scholar]
  11. PUCK T. T. STUDIES OF THE LIFE CYCLE OF MAMMALIAN CELLS. Cold Spring Harb Symp Quant Biol. 1964;29:167–176. doi: 10.1101/sqb.1964.029.01.021. [DOI] [PubMed] [Google Scholar]
  12. Puck T. T., Kao F. T. Genetics of somatic mammalian cells. V. Treatment with 5-bromodeoxyuridine and visible light for isolation of nutritionally deficient mutants. Proc Natl Acad Sci U S A. 1967 Sep;58(3):1227–1234. doi: 10.1073/pnas.58.3.1227. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Roufa D. J., Reed S. J. Temperature-sensitive mutants of a Chinese hamster cell line. I. Selection of clones with defective macromolecular biosynthesis. Genetics. 1975 Jul;(3):549–566. doi: 10.1093/genetics/80.3.549. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Roufa D. J., Sadow B. N., Caskey C. T. Derivation of TK- clones from revertant TK+ mammalian cells. Genetics. 1973 Nov;75(3):515–530. doi: 10.1093/genetics/75.3.515. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Scheffler I. E., Buttin G. Conditionally lethal mutations in Chinese hamster cells. I. Isolation of a temperature-sensitive line and its investigation by cell cycle studies. J Cell Physiol. 1973 Apr;81(2):199–216. doi: 10.1002/jcp.1040810208. [DOI] [PubMed] [Google Scholar]
  16. Taylor M. W., Souhrada M., McCall J. New class of purine mutants of Chinese hamster ovary cells. Science. 1971 Apr 9;172(3979):162–163. doi: 10.1126/science.172.3979.162. [DOI] [PubMed] [Google Scholar]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences

RESOURCES