Abstract
The human endoprotease furin is involved in the proteolytic maturation of the precursor molecules of a wide variety of bioactive proteins. Despite its localization in the membranes of the trans-Golgi system by means of a transmembrane domain, it has repeatedly been reported to form a C-terminally truncated, naturally secreted form referred to as 'shed' furin. In order to identify the cleavage site, internal deletion mutants of increasing size, N-terminal to Leu(708), and subsequently individual amino acid substitutions were introduced, and Arg(683) was identified as the prime determinant for shedding. MS analysis determined Ser(682) as the C-terminus of shed furin, suggesting that monobasic cleavage may occur N-terminal to Arg(683). Alteration of Arg(683) directs the shedding mechanism to alternative cleaving sites previously unused.
Full Text
The Full Text of this article is available as a PDF (214.1 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Beldent V., Michaud A., Wei L., Chauvet M. T., Corvol P. Proteolytic release of human angiotensin-converting enzyme. Localization of the cleavage site. J Biol Chem. 1993 Dec 15;268(35):26428–26434. [PubMed] [Google Scholar]
- Devi L. Consensus sequence for processing of peptide precursors at monobasic sites. FEBS Lett. 1991 Mar 25;280(2):189–194. doi: 10.1016/0014-5793(91)80290-j. [DOI] [PubMed] [Google Scholar]
- Devi L., Goldstein A. Dynorphin converting enzyme with unusual specificity from rat brain. Proc Natl Acad Sci U S A. 1984 Mar;81(6):1892–1896. doi: 10.1073/pnas.81.6.1892. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Devi L., Gupta P., Fricker L. D. Subcellular localization, partial purification, and characterization of a dynorphin processing endopeptidase from bovine pituitary. J Neurochem. 1991 Jan;56(1):320–329. doi: 10.1111/j.1471-4159.1991.tb02598.x. [DOI] [PubMed] [Google Scholar]
- Devi L. Tissue distribution of a dynorphin-processing endopeptidase. Endocrinology. 1993 Mar;132(3):1139–1144. doi: 10.1210/endo.132.3.8095013. [DOI] [PubMed] [Google Scholar]
- Dittié A. S., Thomas L., Thomas G., Tooze S. A. Interaction of furin in immature secretory granules from neuroendocrine cells with the AP-1 adaptor complex is modulated by casein kinase II phosphorylation. EMBO J. 1997 Aug 15;16(16):4859–4870. doi: 10.1093/emboj/16.16.4859. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Fischer B. E., Schlokat U., Mitterer A., Grillberger L., Reiter M., Mundt W., Dorner F., Eibl J. Differentiation between proteolytic activation and autocatalytic conversion of human prothrombin. Activation of recombinant human prothrombin and recombinant D419N-prothrombin by snake venoms from Echis carinatus and Oxyuranus scutellatus. Protein Eng. 1996 Oct;9(10):921–926. doi: 10.1093/protein/9.10.921. [DOI] [PubMed] [Google Scholar]
- Fischer B., Mitterer A., Schlokat U., DenBouwmeester R., Dorner F. Structural analysis of recombinant von Willebrand factor: identification of hetero- and homo-dimers. FEBS Lett. 1994 Sep 12;351(3):345–348. doi: 10.1016/0014-5793(94)00861-2. [DOI] [PubMed] [Google Scholar]
- Hatsuzawa K., Hosaka M., Nakagawa T., Nagase M., Shoda A., Murakami K., Nakayama K. Structure and expression of mouse furin, a yeast Kex2-related protease. Lack of processing of coexpressed prorenin in GH4C1 cells. J Biol Chem. 1990 Dec 25;265(36):22075–22078. [PubMed] [Google Scholar]
- Hatsuzawa K., Murakami K., Nakayama K. Molecular and enzymatic properties of furin, a Kex2-like endoprotease involved in precursor cleavage at Arg-X-Lys/Arg-Arg sites. J Biochem. 1992 Mar;111(3):296–301. doi: 10.1093/oxfordjournals.jbchem.a123753. [DOI] [PubMed] [Google Scholar]
- Himmelspach M., Pfleiderer M., Fischer B. E., Plaimauer B., Antoine G., Falkner F. G., Dorner F., Schlokat U. Recombinant human factor X: high yield expression and the role of furin in proteolytic maturation in vivo and in vitro. Thromb Res. 2000 Jan 15;97(2):51–67. doi: 10.1016/s0049-3848(99)00145-0. [DOI] [PubMed] [Google Scholar]
- Jones B. G., Thomas L., Molloy S. S., Thulin C. D., Fry M. D., Walsh K. A., Thomas G. Intracellular trafficking of furin is modulated by the phosphorylation state of a casein kinase II site in its cytoplasmic tail. EMBO J. 1995 Dec 1;14(23):5869–5883. doi: 10.1002/j.1460-2075.1995.tb00275.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Liu G., Thomas L., Warren R. A., Enns C. A., Cunningham C. C., Hartwig J. H., Thomas G. Cytoskeletal protein ABP-280 directs the intracellular trafficking of furin and modulates proprotein processing in the endocytic pathway. J Cell Biol. 1997 Dec 29;139(7):1719–1733. doi: 10.1083/jcb.139.7.1719. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Medzihradszky K. F., Besman M. J., Burlingame A. L. Structural characterization of site-specific N-glycosylation of recombinant human factor VIII by reversed-phase high-performance liquid chromatography-electrospray ionization mass spectrometry. Anal Chem. 1997 Oct 1;69(19):3986–3994. doi: 10.1021/ac970372z. [DOI] [PubMed] [Google Scholar]
- Molloy S. S., Anderson E. D., Jean F., Thomas G. Bi-cycling the furin pathway: from TGN localization to pathogen activation and embryogenesis. Trends Cell Biol. 1999 Jan;9(1):28–35. doi: 10.1016/s0962-8924(98)01382-8. [DOI] [PubMed] [Google Scholar]
- Molloy S. S., Thomas L., Kamibayashi C., Mumby M. C., Thomas G. Regulation of endosome sorting by a specific PP2A isoform. J Cell Biol. 1998 Sep 21;142(6):1399–1411. doi: 10.1083/jcb.142.6.1399. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Molloy S. S., Thomas L., VanSlyke J. K., Stenberg P. E., Thomas G. Intracellular trafficking and activation of the furin proprotein convertase: localization to the TGN and recycling from the cell surface. EMBO J. 1994 Jan 1;13(1):18–33. doi: 10.1002/j.1460-2075.1994.tb06231.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Nakagawa T., Hosaka M., Torii S., Watanabe T., Murakami K., Nakayama K. Identification and functional expression of a new member of the mammalian Kex2-like processing endoprotease family: its striking structural similarity to PACE4. J Biochem. 1993 Feb;113(2):132–135. doi: 10.1093/oxfordjournals.jbchem.a124015. [DOI] [PubMed] [Google Scholar]
- Nakayama K. Furin: a mammalian subtilisin/Kex2p-like endoprotease involved in processing of a wide variety of precursor proteins. Biochem J. 1997 Nov 1;327(Pt 3):625–635. doi: 10.1042/bj3270625. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Preininger A., Schlokat U., Mohr G., Himmelspach M., Stichler V., Kyd-Rebenburg A., Plaimauer B., Turecek P. L., Schwarz H. P., Wernhart W. Strategies for recombinant Furin employment in a biotechnological process: complete target protein precursor cleavage. Cytotechnology. 1999 Jul;30(1-3):1–16. doi: 10.1023/A:1008030407679. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Rehemtulla A., Kaufman R. J. Preferred sequence requirements for cleavage of pro-von Willebrand factor by propeptide-processing enzymes. Blood. 1992 May 1;79(9):2349–2355. [PubMed] [Google Scholar]
- Schlokat U., Fischer B. E., Herlitschka S., Antoine G., Preininger A., Mohr G., Himmelspach M., Kistner O., Falkner F. G., Dorner F. Production of highly homogeneous and structurally intact recombinant von Willebrand factor multimers by furin-mediated propeptide removal in vitro. Biotechnol Appl Biochem. 1996 Dec;24(Pt 3):257–267. [PubMed] [Google Scholar]
- Schäfer W., Stroh A., Berghöfer S., Seiler J., Vey M., Kruse M. L., Kern H. F., Klenk H. D., Garten W. Two independent targeting signals in the cytoplasmic domain determine trans-Golgi network localization and endosomal trafficking of the proprotein convertase furin. EMBO J. 1995 Jun 1;14(11):2424–2435. doi: 10.1002/j.1460-2075.1995.tb07240.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Seidah N. G., Chrétien M., Day R. The family of subtilisin/kexin like pro-protein and pro-hormone convertases: divergent or shared functions. Biochimie. 1994;76(3-4):197–209. doi: 10.1016/0300-9084(94)90147-3. [DOI] [PubMed] [Google Scholar]
- Seidah N. G., Chrétien M. Eukaryotic protein processing: endoproteolysis of precursor proteins. Curr Opin Biotechnol. 1997 Oct;8(5):602–607. doi: 10.1016/s0958-1669(97)80036-5. [DOI] [PubMed] [Google Scholar]
- Seidah N. G., Chrétien M. Proprotein and prohormone convertases: a family of subtilases generating diverse bioactive polypeptides. Brain Res. 1999 Nov 27;848(1-2):45–62. doi: 10.1016/s0006-8993(99)01909-5. [DOI] [PubMed] [Google Scholar]
- Seidah N. G., Hamelin J., Mamarbachi M., Dong W., Tardos H., Mbikay M., Chretien M., Day R. cDNA structure, tissue distribution, and chromosomal localization of rat PC7, a novel mammalian proprotein convertase closest to yeast kexin-like proteinases. Proc Natl Acad Sci U S A. 1996 Apr 16;93(8):3388–3393. doi: 10.1073/pnas.93.8.3388. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Stroh A., Schäfer W., Berghöfer S., Eickmann M., Teuchert M., Bürger I., Klenk H. D., Garten W. A mono phenylalanine-based motif (F790) and a leucine-dependent motif (LI760) mediate internalization of furin. Eur J Cell Biol. 1999 Mar;78(3):151–160. doi: 10.1016/S0171-9335(99)80094-6. [DOI] [PubMed] [Google Scholar]
- Takahashi S., Nakagawa T., Banno T., Watanabe T., Murakami K., Nakayama K. Localization of furin to the trans-Golgi network and recycling from the cell surface involves Ser and Tyr residues within the cytoplasmic domain. J Biol Chem. 1995 Nov 24;270(47):28397–28401. doi: 10.1074/jbc.270.47.28397. [DOI] [PubMed] [Google Scholar]
- Teuchert M., Schäfer W., Berghöfer S., Hoflack B., Klenk H. D., Garten W. Sorting of furin at the trans-Golgi network. Interaction of the cytoplasmic tail sorting signals with AP-1 Golgi-specific assembly proteins. J Biol Chem. 1999 Mar 19;274(12):8199–8207. doi: 10.1074/jbc.274.12.8199. [DOI] [PubMed] [Google Scholar]
- Vey M., Schäfer W., Berghöfer S., Klenk H. D., Garten W. Maturation of the trans-Golgi network protease furin: compartmentalization of propeptide removal, substrate cleavage, and COOH-terminal truncation. J Cell Biol. 1994 Dec;127(6 Pt 2):1829–1842. doi: 10.1083/jcb.127.6.1829. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Vidricaire G., Denault J. B., Leduc R. Characterization of a secreted form of human furin endoprotease. Biochem Biophys Res Commun. 1993 Sep 15;195(2):1011–1018. doi: 10.1006/bbrc.1993.2145. [DOI] [PubMed] [Google Scholar]
- Voorhees P., Deignan E., van Donselaar E., Humphrey J., Marks M. S., Peters P. J., Bonifacino J. S. An acidic sequence within the cytoplasmic domain of furin functions as a determinant of trans-Golgi network localization and internalization from the cell surface. EMBO J. 1995 Oct 16;14(20):4961–4975. doi: 10.1002/j.1460-2075.1995.tb00179.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Wan L., Molloy S. S., Thomas L., Liu G., Xiang Y., Rybak S. L., Thomas G. PACS-1 defines a novel gene family of cytosolic sorting proteins required for trans-Golgi network localization. Cell. 1998 Jul 24;94(2):205–216. doi: 10.1016/s0092-8674(00)81420-8. [DOI] [PubMed] [Google Scholar]
- Wise R. J., Barr P. J., Wong P. A., Kiefer M. C., Brake A. J., Kaufman R. J. Expression of a human proprotein processing enzyme: correct cleavage of the von Willebrand factor precursor at a paired basic amino acid site. Proc Natl Acad Sci U S A. 1990 Dec;87(23):9378–9382. doi: 10.1073/pnas.87.23.9378. [DOI] [PMC free article] [PubMed] [Google Scholar]