Abstract
The gypsy retrovirus invades the germ line of Drosophila females, inserting with a high frequency into the ovo locus. Gypsy insertion sites in ovo are clustered within a region in the promoter of the ovo gene that contains multiple binding sites for the OvoA and OvoB proteins. We found that a 1.3-kb DNA fragment containing this region is able to confer gypsy insertional specificity independent of its genomic location. The frequency of gypsy insertions into the ovo gene is significantly lower in wild-type females than in ovoD1 females. In addition, gypsy insertions in ovoD1 females occur during most stages of germ-line development whereas insertions in wild-type females occur only in late stages. This pattern of temporally specific insertions, as well as the higher frequency of insertion in ovoD1 females, correlates with the presence of the OvoA or OvoD1 proteins. The results suggest that gypsy insertional specificity might be determined by the binding of the OvoA repressor isoform to the promoter region of the gene.
Full Text
The Full Text of this article is available as a PDF (329.9 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Andrews J., Garcia-Estefania D., Delon I., Lü J., Mével-Ninio M., Spierer A., Payre F., Pauli D., Oliver B. OVO transcription factors function antagonistically in the Drosophila female germline. Development. 2000 Feb;127(4):881–892. doi: 10.1242/dev.127.4.881. [DOI] [PubMed] [Google Scholar]
- Bushman F. D., Miller M. D. Tethering human immunodeficiency virus type 1 preintegration complexes to target DNA promotes integration at nearby sites. J Virol. 1997 Jan;71(1):458–464. doi: 10.1128/jvi.71.1.458-464.1997. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Bushman F. D. Tethering human immunodeficiency virus 1 integrase to a DNA site directs integration to nearby sequences. Proc Natl Acad Sci U S A. 1994 Sep 27;91(20):9233–9237. doi: 10.1073/pnas.91.20.9233. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Chalvet F., Teysset L., Terzian C., Prud'homme N., Santamaria P., Bucheton A., Pélisson A. Proviral amplification of the Gypsy endogenous retrovirus of Drosophila melanogaster involves env-independent invasion of the female germline. EMBO J. 1999 May 4;18(9):2659–2669. doi: 10.1093/emboj/18.9.2659. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Dej K. J., Gerasimova T., Corces V. G., Boeke J. D. A hotspot for the Drosophila gypsy retroelement in the ovo locus. Nucleic Acids Res. 1998 Sep 1;26(17):4019–4025. doi: 10.1093/nar/26.17.4019. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Garfinkel M. D., Lohe A. R., Mahowald A. P. Molecular genetics of the Drosophila melanogaster ovo locus, a gene required for sex determination of germline cells. Genetics. 1992 Apr;130(4):791–803. doi: 10.1093/genetics/130.4.791. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Garfinkel M. D., Wang J., Liang Y., Mahowald A. P. Multiple products from the shavenbaby-ovo gene region of Drosophila melanogaster: relationship to genetic complexity. Mol Cell Biol. 1994 Oct;14(10):6809–6818. doi: 10.1128/mcb.14.10.6809. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Gerasimova T. I., Corces V. G. Polycomb and trithorax group proteins mediate the function of a chromatin insulator. Cell. 1998 Feb 20;92(4):511–521. doi: 10.1016/s0092-8674(00)80944-7. [DOI] [PubMed] [Google Scholar]
- Geyer P. K., Spana C., Corces V. G. On the molecular mechanism of gypsy-induced mutations at the yellow locus of Drosophila melanogaster. EMBO J. 1986 Oct;5(10):2657–2662. doi: 10.1002/j.1460-2075.1986.tb04548.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kim A., Terzian C., Santamaria P., Pélisson A., Purd'homme N., Bucheton A. Retroviruses in invertebrates: the gypsy retrotransposon is apparently an infectious retrovirus of Drosophila melanogaster. Proc Natl Acad Sci U S A. 1994 Feb 15;91(4):1285–1289. doi: 10.1073/pnas.91.4.1285. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Lü J., Andrews J., Pauli D., Oliver B. Drosophila OVO zinc-finger protein regulates ovo and ovarian tumor target promoters. Dev Genes Evol. 1998 Jun;208(4):213–222. doi: 10.1007/s004270050175. [DOI] [PubMed] [Google Scholar]
- Mével-Ninio M., Fouilloux E., Guénal I., Vincent A. The three dominant female-sterile mutations of the Drosophila ovo gene are point mutations that create new translation-initiator AUG codons. Development. 1996 Dec;122(12):4131–4138. doi: 10.1242/dev.122.12.4131. [DOI] [PubMed] [Google Scholar]
- Mével-Ninio M., Mariol M. C., Gans M. Mobilization of the gypsy and copia retrotransposons in Drosophila melanogaster induces reversion of the ovo dominant female-sterile mutations: molecular analysis of revertant alleles. EMBO J. 1989 May;8(5):1549–1558. doi: 10.1002/j.1460-2075.1989.tb03539.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Oliver B., Perrimon N., Mahowald A. P. The ovo locus is required for sex-specific germ line maintenance in Drosophila. Genes Dev. 1987 Nov;1(9):913–923. doi: 10.1101/gad.1.9.913. [DOI] [PubMed] [Google Scholar]
- Prud'homme N., Gans M., Masson M., Terzian C., Bucheton A. Flamenco, a gene controlling the gypsy retrovirus of Drosophila melanogaster. Genetics. 1995 Feb;139(2):697–711. doi: 10.1093/genetics/139.2.697. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Pélisson A., Song S. U., Prud'homme N., Smith P. A., Bucheton A., Corces V. G. Gypsy transposition correlates with the production of a retroviral envelope-like protein under the tissue-specific control of the Drosophila flamenco gene. EMBO J. 1994 Sep 15;13(18):4401–4411. doi: 10.1002/j.1460-2075.1994.tb06760.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Robertson H. M., Preston C. R., Phillis R. W., Johnson-Schlitz D. M., Benz W. K., Engels W. R. A stable genomic source of P element transposase in Drosophila melanogaster. Genetics. 1988 Mar;118(3):461–470. doi: 10.1093/genetics/118.3.461. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Rubin G. M., Spradling A. C. Genetic transformation of Drosophila with transposable element vectors. Science. 1982 Oct 22;218(4570):348–353. doi: 10.1126/science.6289436. [DOI] [PubMed] [Google Scholar]
- Song S. U., Gerasimova T., Kurkulos M., Boeke J. D., Corces V. G. An env-like protein encoded by a Drosophila retroelement: evidence that gypsy is an infectious retrovirus. Genes Dev. 1994 Sep 1;8(17):2046–2057. doi: 10.1101/gad.8.17.2046. [DOI] [PubMed] [Google Scholar]
- Song S. U., Kurkulos M., Boeke J. D., Corces V. G. Infection of the germ line by retroviral particles produced in the follicle cells: a possible mechanism for the mobilization of the gypsy retroelement of Drosophila. Development. 1997 Jul;124(14):2789–2798. doi: 10.1242/dev.124.14.2789. [DOI] [PubMed] [Google Scholar]
- Wieschaus E., Szabad J. The development and function of the female germ line in Drosophila melanogaster: a cell lineage study. Dev Biol. 1979 Jan;68(1):29–46. doi: 10.1016/0012-1606(79)90241-0. [DOI] [PubMed] [Google Scholar]
- Zennou V., Petit C., Guetard D., Nerhbass U., Montagnier L., Charneau P. HIV-1 genome nuclear import is mediated by a central DNA flap. Cell. 2000 Apr 14;101(2):173–185. doi: 10.1016/S0092-8674(00)80828-4. [DOI] [PubMed] [Google Scholar]
- Zhu Y., Zou S., Wright D. A., Voytas D. F. Tagging chromatin with retrotransposons: target specificity of the Saccharomyces Ty5 retrotransposon changes with the chromosomal localization of Sir3p and Sir4p. Genes Dev. 1999 Oct 15;13(20):2738–2749. doi: 10.1101/gad.13.20.2738. [DOI] [PMC free article] [PubMed] [Google Scholar]
