Skip to main content
Biophysical Journal logoLink to Biophysical Journal
. 2002 Jan;82(1 Pt 1):437–446. doi: 10.1016/s0006-3495(02)75408-8

Structural significance of the plasma membrane calcium pump oligomerization.

Valeria Levi 1, Juan P F C Rossi 1, Pablo R Castello 1, F Luis González Flecha 1
PMCID: PMC1302483  PMID: 11751330

Abstract

The oligomerization of the plasma membrane calcium pump (PMCA) in phospholipid/detergent micelles was evaluated using a combined spectroscopic and kinetic approach and related to the enzyme stability. Energy transfer between fluorescein-5'-isothiocyanate and eosin-5'-isothiocyanate attached to different PMCA molecules was used to determine the dissociation constant of dimeric PMCA (140 +/- 50 nM at 25 degrees C) and characterize the time course of dimerization. The enzyme thermal stability at different dimer/monomer ratios was evaluated, quantifying the kinetic coefficient of thermal inactivation. This coefficient decreases with PMCA concentration, becoming approximately constant beyond 300 nM. Thermal treatment leads to the formation of inactive monomers that associate only with native monomers. These mixed dimers are formed with a kinetic coefficient that is half that determined for the native dimers. We proposed a model for PMCA thermal inactivation that considers the equilibria among dimers, monomers, and mixed dimers, and the inactivation of the last two species through irreversible steps. The numerical resolution of the differential equations describing this model fitted to the experimental data allowed the determination of the model coefficients. This analysis shows that thermal inactivation occurs through the denaturation of the monomer, which lifetime is 25 min at 44 degrees C. The obtained results suggest that PMCA dimerization constitutes a mechanism of self protection against spontaneous denaturation.

Full Text

The Full Text of this article is available as a PDF (164.6 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Andersen J. P. Monomer-oligomer equilibrium of sarcoplasmic reticulum Ca-ATPase and the role of subunit interaction in the Ca2+ pump mechanism. Biochim Biophys Acta. 1989 Jan 18;988(1):47–72. doi: 10.1016/0304-4157(89)90003-8. [DOI] [PubMed] [Google Scholar]
  2. Blanco G., Koster J. C., Mercer R. W. The alpha subunit of the Na,K-ATPase specifically and stably associates into oligomers. Proc Natl Acad Sci U S A. 1994 Aug 30;91(18):8542–8546. doi: 10.1073/pnas.91.18.8542. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Bredeston L. M., Rega A. F. Phosphatidylcholine makes specific activity of the purified Ca(2+)-ATPase from plasma membranes independent of enzyme concentration. Biochim Biophys Acta. 1999 Aug 20;1420(1-2):57–62. doi: 10.1016/s0005-2736(99)00084-x. [DOI] [PubMed] [Google Scholar]
  4. Castello P. R., Caride A. J., González Flecha F. L., Fernández H. N., Rossi J. P., Delfino J. M. Identification of transmembrane domains of the red cell calcium pump with a new photoactivatable phospholipidic probe. Biochem Biophys Res Commun. 1994 May 30;201(1):194–200. doi: 10.1006/bbrc.1994.1688. [DOI] [PubMed] [Google Scholar]
  5. Cavieres J. D. Calmodulin and the target size of the (Ca2+ + Mg2+)-ATPase of human red-cell ghosts. Biochim Biophys Acta. 1984 Apr 11;771(2):241–244. doi: 10.1016/0005-2736(84)90539-x. [DOI] [PubMed] [Google Scholar]
  6. Coelho-Sampaio T., Ferreira S. T., Benaim G., Vieyra A. Dissociation of purified erythrocyte Ca(2+)-ATPase by hydrostatic pressure. J Biol Chem. 1991 Nov 25;266(33):22266–22272. [PubMed] [Google Scholar]
  7. Donnet C., Caride A. J., Talgham S., Rossi J. P. Chemical modification reveals involvement of different sites for nucleotide analogues in the phosphatase activity of the red cell calcium pump. J Membr Biol. 1998 Jun 1;163(3):217–224. doi: 10.1007/s002329900385. [DOI] [PubMed] [Google Scholar]
  8. Filoteo A. G., Gorski J. P., Penniston J. T. The ATP-binding site of the erythrocyte membrane Ca2+ pump. Amino acid sequence of the fluorescein isothiocyanate-reactive region. J Biol Chem. 1987 May 15;262(14):6526–6530. [PubMed] [Google Scholar]
  9. Gatto C., Milanick M. A. Inhibition of the red blood cell calcium pump by eosin and other fluorescein analogues. Am J Physiol. 1993 Jun;264(6 Pt 1):C1577–C1586. doi: 10.1152/ajpcell.1993.264.6.C1577. [DOI] [PubMed] [Google Scholar]
  10. González Flecha F. L., Castello P. R., Caride A. J., Gagliardino J. J., Rossi J. P. The erythrocyte calcium pump is inhibited by non-enzymic glycation: studies in situ and with the purified enzyme. Biochem J. 1993 Jul 15;293(Pt 2):369–375. doi: 10.1042/bj2930369. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Kosk-Kosicka D., Bzdega T. Activation of the erythrocyte Ca2+-ATPase by either self-association or interaction with calmodulin. J Biol Chem. 1988 Dec 5;263(34):18184–18189. [PubMed] [Google Scholar]
  12. Kosk-Kosicka D., Bzdega T. Effects of calmodulin on erythrocyte Ca2(+)-ATPase activation and oligomerization. Biochemistry. 1990 Apr 17;29(15):3772–3777. doi: 10.1021/bi00467a025. [DOI] [PubMed] [Google Scholar]
  13. Kosk-Kosicka D., Bzdega T., Wawrzynow A. Fluorescence energy transfer studies of purified erythrocyte Ca2+-ATPase. Ca2+-regulated activation by oligomerization. J Biol Chem. 1989 Nov 25;264(33):19495–19499. [PubMed] [Google Scholar]
  14. Kosk-Kosicka D., Lopez M. M., Fomitcheva I., Lew V. L. Self-association of plasma membrane Ca(2+)-ATPase by volume exclusion. FEBS Lett. 1995 Aug 28;371(1):57–60. doi: 10.1016/0014-5793(95)00870-f. [DOI] [PubMed] [Google Scholar]
  15. Levi V., Rossi J. P., Castello P. R., González Flecha F. L. Oligomerization of the plasma membrane calcium pump involves two regions with different thermal stability. FEBS Lett. 2000 Oct 20;483(2-3):99–103. doi: 10.1016/s0014-5793(00)02093-7. [DOI] [PubMed] [Google Scholar]
  16. Levi V., Rossi J. P., Echarte M. M., Castello P. R., González Flecha F. L. Thermal stability of the plasma membrane calcium pump. Quantitative analysis of its dependence on lipid-protein interactions. J Membr Biol. 2000 Feb 1;173(3):215–225. doi: 10.1007/s002320001021. [DOI] [PubMed] [Google Scholar]
  17. Minocherhomjee A. M., Beauregard G., Potier M., Roufogalis B. D. The molecular weight of the calcium-transport-ATPase of the human red blood cell determined by radiation inactivation. Biochem Biophys Res Commun. 1983 Nov 15;116(3):895–900. doi: 10.1016/s0006-291x(83)80226-5. [DOI] [PubMed] [Google Scholar]
  18. Munkonge F., Michelangeli F., Rooney E. K., East J. M., Lee A. G. Effect of phospholipid:protein ratio on the state of aggregation of the (Ca2+-Mg2+)-ATPase. Biochemistry. 1988 Sep 6;27(18):6800–6805. doi: 10.1021/bi00418a023. [DOI] [PubMed] [Google Scholar]
  19. Møller J. V., Juul B., le Maire M. Structural organization, ion transport, and energy transduction of P-type ATPases. Biochim Biophys Acta. 1996 May 6;1286(1):1–51. doi: 10.1016/0304-4157(95)00017-8. [DOI] [PubMed] [Google Scholar]
  20. Papp S., Pikula S., Martonosi A. Fluorescence energy transfer as an indicator of Ca2+-ATPase interactions in sarcoplasmic reticulum. Biophys J. 1987 Feb;51(2):205–220. doi: 10.1016/S0006-3495(87)83326-X. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Pikuła S., Wrzosek A., Famulski K. S. Long-term stabilization and crystallization of (Ca2+ + Mg2+)-ATPase of detergent-solubilized erythrocyte plasma membrane. Biochim Biophys Acta. 1991 Jan 30;1061(2):206–214. doi: 10.1016/0005-2736(91)90286-h. [DOI] [PubMed] [Google Scholar]
  22. Sackett D. L., Kosk-Kosicka D. The active species of plasma membrane Ca2+-ATPase are a dimer and a monomer-calmodulin complex. J Biol Chem. 1996 Apr 26;271(17):9987–9991. doi: 10.1074/jbc.271.17.9987. [DOI] [PubMed] [Google Scholar]
  23. Silva J. L., Miles E. W., Weber G. Pressure dissociation and conformational drift of the beta dimer of tryptophan synthase. Biochemistry. 1986 Sep 23;25(19):5780–5786. doi: 10.1021/bi00367a065. [DOI] [PubMed] [Google Scholar]
  24. Veatch W., Stryer L. The dimeric nature of the gramicidin A transmembrane channel: conductance and fluorescence energy transfer studies of hybrid channels. J Mol Biol. 1977 Jun 15;113(1):89–102. doi: 10.1016/0022-2836(77)90042-0. [DOI] [PubMed] [Google Scholar]
  25. Vilsen B., Andersen J. P., Petersen J., Jørgensen P. L. Occlusion of 22Na+ and 86Rb+ in membrane-bound and soluble protomeric alpha beta-units of Na,K-ATPase. J Biol Chem. 1987 Aug 5;262(22):10511–10517. [PubMed] [Google Scholar]

Articles from Biophysical Journal are provided here courtesy of The Biophysical Society

RESOURCES