Skip to main content
The Journal of Physiology logoLink to The Journal of Physiology
. 1975 Aug;249(3):519–548. doi: 10.1113/jphysiol.1975.sp011028

Pattern and flicker detection analysed by subthreshold summation.

P E King-Smith, J J Kulikowski
PMCID: PMC1309590  PMID: 1177103

Abstract

1. We confirm Keesey's (1972) observation that, when a flickering line is viewed, there are distinct thresholds for detecting flicker (or movement) and for detecting a well localized line (pattern detection). Our measurements of the temporal sensitivity of these two mechanisms are similar to Keesey's. 2. The flicker and pattern detection mechanism have been analysed using subthreshold summation, i.e. by observing the effect of subthreshold flickering stimuli (lines and gratings) on the contrast threshold for a flickering test line. 3. The pattern detector shows linear spatial summation of contrast while the flicker detector is non-linear in this respect. 4. The receptive field of the (most sensitive) flicker detector is about two to four times broader than that of the pattern detector. 5. The flicker detector has relatively weak surround inhibition and so, unlike the pattern detector, it is sensitive to a uniform flickering field. 6. The spatial arrangement of the pattern detector is the same at all temporal frequencies (including steady presentation); for flicker detection, the width of the receptive field increases with temporal frequency and the strength of lateral inhibition decreases at high frequencies. 7. Flicker detectors of various widths were demonstrated by using different test stimuli (for 12 Hz modulation); surround ingibition was relatively weak for the broadest detector. 8. There is a delay of surround inhibition of about 3 ms for both flicker and pattern detection. 9. By using a broad test stimulus modulated at a high frequency, a detector can be found with no significant surround inhibition. At threshold, this stimulus produces a sensation of flicker without the appearance of lateral motion observed for finer test lines at lower frequencies. 10. The characteristics of pattern and flicker (movement) detection are compared to electrophysiological studies on X (sustained) and Y (transient) neurones respectively, and correlations are described for studies of temporal frequency response, non-linearity, width of receptive field, strength of the inhibitory surround and motion sensitivity.

Full text

PDF
519

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Barlow H. B., Levick W. R. The mechanism of directionally selective units in rabbit's retina. J Physiol. 1965 Jun;178(3):477–504. doi: 10.1113/jphysiol.1965.sp007638. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Bishop P. O., Coombs J. S., Henry G. H. Receptive fields of simple cells in the cat striate cortex. J Physiol. 1973 May;231(1):31–60. doi: 10.1113/jphysiol.1973.sp010218. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Campbell F. W., Green D. G. Optical and retinal factors affecting visual resolution. J Physiol. 1965 Dec;181(3):576–593. doi: 10.1113/jphysiol.1965.sp007784. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Cleland B. G., Dubin M. W., Levick W. R. Sustained and transient neurones in the cat's retina and lateral geniculate nucleus. J Physiol. 1971 Sep;217(2):473–496. doi: 10.1113/jphysiol.1971.sp009581. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Cleland B. G., Levick W. R. Brisk and sluggish concentrically organized ganglion cells in the cat's retina. J Physiol. 1974 Jul;240(2):421–456. doi: 10.1113/jphysiol.1974.sp010617. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Cleland B. G., Levick W. R., Sanderson K. J. Properties of sustained and transient ganglion cells in the cat retina. J Physiol. 1973 Feb;228(3):649–680. doi: 10.1113/jphysiol.1973.sp010105. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Dreher B., Sanderson K. J. Receptive field analysis: responses to moving visual contours by single lateral geniculate neurones in the cat. J Physiol. 1973 Oct;234(1):95–118. doi: 10.1113/jphysiol.1973.sp010336. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Enroth-Cugell C., Pinto L. H. Properties of the surround response mechanism of cat retinal ganglion cells and centre-surround interaction. J Physiol. 1972 Jan;220(2):403–439. doi: 10.1113/jphysiol.1972.sp009714. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Enroth-Cugell C., Robson J. G. The contrast sensitivity of retinal ganglion cells of the cat. J Physiol. 1966 Dec;187(3):517–552. doi: 10.1113/jphysiol.1966.sp008107. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Fiorentini A., Maffei L. Contrast in night vision. Vision Res. 1973 Jan;13(1):73–80. doi: 10.1016/0042-6989(73)90165-x. [DOI] [PubMed] [Google Scholar]
  11. Fiorentini A., Maffei L. Transfer characteristics of excitation and inhibition in the human visual system. J Neurophysiol. 1970 Mar;33(2):285–292. doi: 10.1152/jn.1970.33.2.285. [DOI] [PubMed] [Google Scholar]
  12. Foster D. H. A model of the human visual system in its response to certain classes of moving stimuli. Kybernetik. 1971 Feb;8(2):69–84. doi: 10.1007/BF00288735. [DOI] [PubMed] [Google Scholar]
  13. Fukada Y. Receptive field organization of cat optic nerve fibers with special reference to conduction velocity. Vision Res. 1971 Mar;11(3):209–226. doi: 10.1016/0042-6989(71)90186-6. [DOI] [PubMed] [Google Scholar]
  14. Fukada Y., Saito H. The relationship between response characteristics to flicker stimulation and receptive field organization in the cat's optic nerve fibers. Vision Res. 1971 Mar;11(3):227–240. doi: 10.1016/0042-6989(71)90187-8. [DOI] [PubMed] [Google Scholar]
  15. Gouras P. Antidromic responses of orthodromically identified ganglion cells in monkey retina. J Physiol. 1969 Oct;204(2):407–419. doi: 10.1113/jphysiol.1969.sp008920. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Gouras P. Identification of cone mechanisms in monkey ganglion cells. J Physiol. 1968 Dec;199(3):533–547. doi: 10.1113/jphysiol.1968.sp008667. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Gouras P. The function of the midget cell system in primate color vision. Vision Res. 1971;Suppl 3:397–410. doi: 10.1016/0042-6989(71)90053-8. [DOI] [PubMed] [Google Scholar]
  18. Hamasaki D. I., Campbell R., Zengel J., Hazelton L. R., Jr Response of cat retinal ganglion cell to moving stimuli. Vision Res. 1973 Aug;13(8):1421–1432. doi: 10.1016/0042-6989(73)90003-5. [DOI] [PubMed] [Google Scholar]
  19. Hammond P. Cat retinal ganglion cells: size and shape of receptive field centres. J Physiol. 1974 Oct;242(1):99–118. doi: 10.1113/jphysiol.1974.sp010696. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Hammond P. Contrasts in spatial organization of receptive fields at geniculate and retinal levels: centre, surround and outer surround. J Physiol. 1973 Jan;228(1):115–137. doi: 10.1113/jphysiol.1973.sp010076. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Hickey T. L., Winters R. W., Pollack J. G. Center-surround interactions in two types of on-center retinal ganglion cells in the cat. Vision Res. 1973 Aug;13(8):1511–1526. doi: 10.1016/0042-6989(73)90010-2. [DOI] [PubMed] [Google Scholar]
  22. Hilz R., Cavonius C. R. Wavelength discrimination measured with square-wave gratings. J Opt Soc Am. 1970 Feb;60(2):273–277. doi: 10.1364/josa.60.000273. [DOI] [PubMed] [Google Scholar]
  23. Hoffman K. P., Stone J. Conduction velocity of afferents to cat visual cortex: a correlation with cortical receptive field properties. Brain Res. 1971 Sep 24;32(2):460–466. doi: 10.1016/0006-8993(71)90340-4. [DOI] [PubMed] [Google Scholar]
  24. Hubel D. H., Wiesel T. N. Receptive fields and functional architecture of monkey striate cortex. J Physiol. 1968 Mar;195(1):215–243. doi: 10.1113/jphysiol.1968.sp008455. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Ikeda H., Wright M. J. Evidence for "sustained" and "transient" neurones in the cat's visual cortex. Vision Res. 1974 Jan;14(1):133–136. doi: 10.1016/0042-6989(74)90128-x. [DOI] [PubMed] [Google Scholar]
  26. Ikeda H., Wright M. J. Receptive field organization of 'sustained' and 'transient' retinal ganglion cells which subserve different function roles. J Physiol. 1972 Dec;227(3):769–800. doi: 10.1113/jphysiol.1972.sp010058. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Ikeda H., Wright M. J. The outer disinhibitory surround of the retinal ganglion cell receptive field. J Physiol. 1972 Oct;226(2):511–544. doi: 10.1113/jphysiol.1972.sp009996. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Keesey U. T. Flicker and pattern detection: a comparison of thresholds. J Opt Soc Am. 1972 Mar;62(3):446–448. doi: 10.1364/josa.62.000446. [DOI] [PubMed] [Google Scholar]
  29. Kelly D. H. Adaptation effects on spatio-temporal sine-wave thresholds. Vision Res. 1972 Jan;12(1):89–101. doi: 10.1016/0042-6989(72)90139-3. [DOI] [PubMed] [Google Scholar]
  30. King-Smith P. E., Kulikowski J. J. The detection of gratings by independent activation of line detectors. J Physiol. 1975 May;247(2):237–271. doi: 10.1113/jphysiol.1975.sp010930. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Kulikowski J. J. Effect of eye movements on the contrast sensitivity of spatio-temporal patterns. Vision Res. 1971 Mar;11(3):261–273. doi: 10.1016/0042-6989(71)90190-8. [DOI] [PubMed] [Google Scholar]
  32. Kulikowski J. J., King-Smith P. E. Spatial arrangement of line, edge and grating detectors revealed by subthreshold summation. Vision Res. 1973 Aug;13(8):1455–1478. doi: 10.1016/0042-6989(73)90006-0. [DOI] [PubMed] [Google Scholar]
  33. Kulikowski J. J., Tolhurst D. J. Psychophysical evidence for sustained and transient detectors in human vision. J Physiol. 1973 Jul;232(1):149–162. doi: 10.1113/jphysiol.1973.sp010261. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Maffei L., Cervetto L., Fiorentini A. Transfer characteristics of excitation and inhibition in cat retinal ganglion cells. J Neurophysiol. 1970 Mar;33(2):276–284. doi: 10.1152/jn.1970.33.2.276. [DOI] [PubMed] [Google Scholar]
  35. Maffei L., Fiorentini A. Retinogeniculate convergence and analysis of contrast. J Neurophysiol. 1972 Jan;35(1):65–72. doi: 10.1152/jn.1972.35.1.65. [DOI] [PubMed] [Google Scholar]
  36. Maffei L., Fiorentini A. The visual cortex as a spatial frequency analyser. Vision Res. 1973 Jul;13(7):1255–1267. doi: 10.1016/0042-6989(73)90201-0. [DOI] [PubMed] [Google Scholar]
  37. Pantle A., Sekuler R. Contrast response of human visual mechanismsensitive to orientation and direction of motion. Vision Res. 1969 Mar;9(3):397–406. doi: 10.1016/0042-6989(69)90087-x. [DOI] [PubMed] [Google Scholar]
  38. Rashbass C. Spatio-temporal interaction in visual resolution. J Physiol. 1968 May;196(2):102P–103P. [PubMed] [Google Scholar]
  39. Rashbass C. The visibility of transient changes of luminance. J Physiol. 1970 Sep;210(1):165–186. doi: 10.1113/jphysiol.1970.sp009202. [DOI] [PMC free article] [PubMed] [Google Scholar]
  40. SCHADE O. H., Sr Optical and photoelectric analog of the eye. J Opt Soc Am. 1956 Sep;46(9):721–739. doi: 10.1364/josa.46.000721. [DOI] [PubMed] [Google Scholar]
  41. Stone J., Fukuda Y. Properties of cat retinal ganglion cells: a comparison of W-cells with X- and Y-cells. J Neurophysiol. 1974 Jul;37(4):722–748. doi: 10.1152/jn.1974.37.4.722. [DOI] [PubMed] [Google Scholar]
  42. Tolhurst D. J. Separate channels for the analysis of the shape and the movement of moving visual stimulus. J Physiol. 1973 Jun;231(3):385–402. doi: 10.1113/jphysiol.1973.sp010239. [DOI] [PMC free article] [PubMed] [Google Scholar]
  43. Wiesel T. N., Hubel D. H. Spatial and chromatic interactions in the lateral geniculate body of the rhesus monkey. J Neurophysiol. 1966 Nov;29(6):1115–1156. doi: 10.1152/jn.1966.29.6.1115. [DOI] [PubMed] [Google Scholar]
  44. Winters R. W., Hickey T. L., Pollack J. G. Effect of variations of target location upon the peripheral responses of on-center retinal ganglion cells in the cat. Vision Res. 1973 Aug;13(8):1487–1498. doi: 10.1016/0042-6989(73)90008-4. [DOI] [PubMed] [Google Scholar]
  45. Winters R. W., Hickey T. L., Skaer D. H. Spatial summation in the receptive field periphery of two types of on-center neurons in cat retina. Vision Res. 1973 Aug;13(8):1499–1509. doi: 10.1016/0042-6989(73)90009-6. [DOI] [PubMed] [Google Scholar]
  46. Zeki S. M. Functional organization of a visual area in the posterior bank of the superior temporal sulcus of the rhesus monkey. J Physiol. 1974 Feb;236(3):549–573. doi: 10.1113/jphysiol.1974.sp010452. [DOI] [PMC free article] [PubMed] [Google Scholar]
  47. van Nes F. L., Koenderink J. J., Nas H., Bouman M. A. Spatiotemporal modulation transfer in the human eye. J Opt Soc Am. 1967 Sep;57(9):1082–1088. doi: 10.1364/josa.57.001082. [DOI] [PubMed] [Google Scholar]
  48. van der Horst G. J., de Weert C. M., Bouman M. A. Transfer of spatial chromaticity-contrast at threshold in the human eye. J Opt Soc Am. 1967 Oct;57(10):1260–1266. doi: 10.1364/josa.57.001260. [DOI] [PubMed] [Google Scholar]

Articles from The Journal of Physiology are provided here courtesy of The Physiological Society

RESOURCES