Skip to main content
The Journal of Physiology logoLink to The Journal of Physiology
. 1975 Sep;250(3):579–595. doi: 10.1113/jphysiol.1975.sp011071

Discharges of relay cells in lateral geniculate nucleus of the cat during spontaneous eye movements in light and darkness.

H Noda
PMCID: PMC1348394  PMID: 1177151

Abstract

1. Discharges of 315 relay cells of the lateral geniculate nucleus (LGN) during spontaneous eye movements were studied in alert cats. 2. When tested in a stationary patterned field, 114 cells showed sustained discharges related to the direction of gaze (S cells) and to local differences in luminance; 109 cells showed transient response to quick shifts of retinal image during saccades (T cells); ninety-two cells showed mixed responses (M cells), i.e. transient responses to rapid shifts of retinal image and sustained firing related to local differences in luminance. 3. Following saccades occurring in the light, T and M cells showed a burst discharge, while spontaneous discharges of S cells were completely suppressed for 150-200 msec. 4. When tested in total darkness, modifications in activity which were apparent in light disappeared completely. This was true for all 315 relay cells. 5. T cells responded to optic chiasm stimulation at shorter latencies (X = 1.15 msec) than S cells (X = 1.77 msec). M cells showed a latency distribution in between those for S and T cells with a mean latency 1.40 msec. 6. When tested with moving grating stimulation, S cells responded in only one manner; with discharges to each stripe of the grating (primary response), while T and M cells showed two different responses: a primary response to a slower motion and a non-specific burst in response to a faster motion. The burst did not reflect the stimulus pattern (secondary response). 7. When tested with diffuse light switched on and off over the tangent screen, S cells showed a sustained response either to light or darkness, whereas T and M cells responded transiently either to the onset or offset of the light, or to both. M cells occasionally showed a mixture of transient and sustained responses either to light or darkness. 8. In over-all response properties, most S cells correspond to X (sustained) cells and most T cells to Y (transient) cells previously known from acute experiments. M cells had intermediate response properties between X and Y cells. 9. Functional roles of these classes of cells in relation to previously proposed functions are discussed.

Full text

PDF
579

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Adey W. R., Noda H. Influence of eye movements on geniculo-striate excitability in the cat. J Physiol. 1973 Dec;235(3):805–821. doi: 10.1113/jphysiol.1973.sp010418. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Atinsky D. Reticular influences on lateral geniculate neuron activity. Electroencephalogr Clin Neurophysiol. 1968 Dec;25(6):543–549. doi: 10.1016/0013-4694(68)90233-2. [DOI] [PubMed] [Google Scholar]
  3. BISHOP P. O., BURKE W., DAVIS R. The identification of single units in central visual pathways. J Physiol. 1962 Aug;162:409–431. doi: 10.1113/jphysiol.1962.sp006942. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. BISHOP P. O., BURKE W., DAVIS R. The interpretation of the extracellular response of single lateral geniculate cells. J Physiol. 1962 Aug;162:451–472. doi: 10.1113/jphysiol.1962.sp006944. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. BIZZI E., BROOKS D. C. FUNCTIONAL CONNECTIONS BETWEEN PONTINE RETICULAR FORMATION AND LATERAL GENICULATE NUCLEUS DURING DEEP SLEEP. Arch Ital Biol. 1963 Oct 5;101:666–680. [PubMed] [Google Scholar]
  6. Bizzi E. Discharge patterns of single geniculate neurons during the rapid eye movements of sleep. J Neurophysiol. 1966 Nov;29(6):1087–1095. doi: 10.1152/jn.1966.29.6.1087. [DOI] [PubMed] [Google Scholar]
  7. Büttner U., Fuchs A. F. Influence of saccadic eye movements on unit activity in simian lateral geniculate and pregeniculate nuclei. J Neurophysiol. 1973 Jan;36(1):127–141. doi: 10.1152/jn.1973.36.1.127. [DOI] [PubMed] [Google Scholar]
  8. Cleland B. G., Dubin M. W., Levick W. R. Sustained and transient neurones in the cat's retina and lateral geniculate nucleus. J Physiol. 1971 Sep;217(2):473–496. doi: 10.1113/jphysiol.1971.sp009581. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Cleland B. G., Levick W. R., Sanderson K. J. Properties of sustained and transient ganglion cells in the cat retina. J Physiol. 1973 Feb;228(3):649–680. doi: 10.1113/jphysiol.1973.sp010105. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Dreher B., Sanderson K. J. Receptive field analysis: responses to moving visual contours by single lateral geniculate neurones in the cat. J Physiol. 1973 Oct;234(1):95–118. doi: 10.1113/jphysiol.1973.sp010336. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Enroth-Cugell C., Robson J. G. The contrast sensitivity of retinal ganglion cells of the cat. J Physiol. 1966 Dec;187(3):517–552. doi: 10.1113/jphysiol.1966.sp008107. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Fukada Y. Receptive field organization of cat optic nerve fibers with special reference to conduction velocity. Vision Res. 1971 Mar;11(3):209–226. doi: 10.1016/0042-6989(71)90186-6. [DOI] [PubMed] [Google Scholar]
  13. Fukada Y., Saito H. Phasic and tonic cells in the cat's lateral geniculate nucleus. Tohoku J Exp Med. 1972 Feb;106(2):209–210. doi: 10.1620/tjem.106.209. [DOI] [PubMed] [Google Scholar]
  14. Fukada Y., Saito H. The relationship between response characteristics to flicker stimulation and receptive field organization in the cat's optic nerve fibers. Vision Res. 1971 Mar;11(3):227–240. doi: 10.1016/0042-6989(71)90187-8. [DOI] [PubMed] [Google Scholar]
  15. Fukuda Y., Stone J. Retinal distribution and central projections of Y-, X-, and W-cells of the cat's retina. J Neurophysiol. 1974 Jul;37(4):749–772. doi: 10.1152/jn.1974.37.4.749. [DOI] [PubMed] [Google Scholar]
  16. Hoffmann K. P., Stone J., Sherman S. M. Relay of receptive-field properties in dorsal lateral geniculate nucleus of the cat. J Neurophysiol. 1972 Jul;35(4):518–531. doi: 10.1152/jn.1972.35.4.518. [DOI] [PubMed] [Google Scholar]
  17. Ikeda H., Wright M. J. Functional organization of the periphery effect in retinal ganglion cells. Vision Res. 1972 Nov;12(11):1857–1879. doi: 10.1016/0042-6989(72)90076-4. [DOI] [PubMed] [Google Scholar]
  18. Ikeda H., Wright M. J. Receptive field organization of 'sustained' and 'transient' retinal ganglion cells which subserve different function roles. J Physiol. 1972 Dec;227(3):769–800. doi: 10.1113/jphysiol.1972.sp010058. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Ikeda H., Wright M. J. The outer disinhibitory surround of the retinal ganglion cell receptive field. J Physiol. 1972 Oct;226(2):511–544. doi: 10.1113/jphysiol.1972.sp009996. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Jeannerod M., Putkonen P. T. Lateral geniculate unit activity and eye movements: saccade-locked changes in dark and in light. Exp Brain Res. 1971 Nov 30;13(5):533–546. doi: 10.1007/BF00234284. [DOI] [PubMed] [Google Scholar]
  21. MCILWAIN J. T. RECEPTIVE FIELDS OF OPTIC TRACT AXONS AND LATERAL GENICULATE CELLS: PERIPHERAL EXTENT AND BARBITURATE SENSITIVITY. J Neurophysiol. 1964 Nov;27:1154–1173. doi: 10.1152/jn.1964.27.6.1154. [DOI] [PubMed] [Google Scholar]
  22. Noda H., Adey W. R. Excitability changes in cat lateral geniculate cells during saccadic eye movements. Science. 1974 Feb 8;183(4124):543–545. doi: 10.1126/science.183.4124.543. [DOI] [PubMed] [Google Scholar]
  23. Noda H., Adey W. R. Retinal ganglion cells of the cat transfer information on saccadic eye movement and quick target motion. Brain Res. 1974 Apr 19;70(2):340–345. doi: 10.1016/0006-8993(74)90323-0. [DOI] [PubMed] [Google Scholar]
  24. Noda H., Iwama K. Unitary analysis of retino-geniculate response time in rats. Vision Res. 1967 Mar;7(3):205–213. doi: 10.1016/0042-6989(67)90085-5. [DOI] [PubMed] [Google Scholar]
  25. Noda H. Sustained and transient discharges of retinal ganglion cells during spontaneous eye movements of cat. Brain Res. 1975 Feb 14;84(3):515–529. doi: 10.1016/0006-8993(75)90769-6. [DOI] [PubMed] [Google Scholar]
  26. Sakakura H. Spontaneous and evoked unitary activities of cat lateral geniculate neurons in sleep and wakefulness. Jpn J Physiol. 1968 Feb 15;18(1):23–42. doi: 10.2170/jjphysiol.18.23. [DOI] [PubMed] [Google Scholar]
  27. Schiller P. H., Stryker M. Single-unit recording and stimulation in superior colliculus of the alert rhesus monkey. J Neurophysiol. 1972 Nov;35(6):915–924. doi: 10.1152/jn.1972.35.6.915. [DOI] [PubMed] [Google Scholar]
  28. Singer W., Bedworth N. Correlation between the effects of brain stem stimulation and saccadic eye movements on transmission in the cat lateral geniculate nucleus. Brain Res. 1974 Jun 7;72(2):185–202. doi: 10.1016/0006-8993(74)90858-0. [DOI] [PubMed] [Google Scholar]
  29. Singer W., Bedworth N. Inhibitory interaction between X and Y units in the cat lateral geniculate nucleus. Brain Res. 1973 Jan 30;49(2):291–307. doi: 10.1016/0006-8993(73)90424-1. [DOI] [PubMed] [Google Scholar]
  30. Stone J., Dreher B. Projection of X- and Y-cells of the cat's lateral geniculate nucleus to areas 17 and 18 of visual cortex. J Neurophysiol. 1973 May;36(3):551–567. doi: 10.1152/jn.1973.36.3.551. [DOI] [PubMed] [Google Scholar]
  31. Stone J., Fukuda Y. Properties of cat retinal ganglion cells: a comparison of W-cells with X- and Y-cells. J Neurophysiol. 1974 Jul;37(4):722–748. doi: 10.1152/jn.1974.37.4.722. [DOI] [PubMed] [Google Scholar]
  32. Stone J., Hoffman K. P. Conduction velocity as a parameter in the organisation of the afferent relay in the cat's lateral geniculate nucleus. Brain Res. 1971 Sep 24;32(2):454–459. doi: 10.1016/0006-8993(71)90339-8. [DOI] [PubMed] [Google Scholar]
  33. Stone J., Hoffmann K. P. Very slow-conducting ganglion cells in the cat's retina: a major, new functional type? Brain Res. 1972 Aug 25;43(2):610–616. doi: 10.1016/0006-8993(72)90416-7. [DOI] [PubMed] [Google Scholar]

Articles from The Journal of Physiology are provided here courtesy of The Physiological Society

RESOURCES