Skip to main content
The Journal of Cell Biology logoLink to The Journal of Cell Biology
. 1975 Dec 1;67(3):587–605. doi: 10.1083/jcb.67.3.587

Gametic differentiation in Chlamydomonas reinhardtii. I. Production of gametes and their fine structure

PMCID: PMC2111648  PMID: 1202015

Abstract

Gametogenesis in Chlamydomonas reinhardtii has been studied in mating- type plus cells utilizing several different culture conditions, all of which are shown to depend on the depletion of nitrogen from the medium, and the fine structure of gametes prepared under these conditions has been compared by using thin sections of fixed materials. We document alterations in ribosome levels, in chromatin morphology, in starch levels, in the organization of chloroplast membranes, and in the appearance of nuclear envelope and endoplasmic reticulum membranes during gametogenesis. We also noted the acquisition of two new organelles: a mating structure (Friedman, L., A. L. Colwin, and L. H. Colwin. 1968. j. cell Sci. 3:115-128; goodenough, U. W., and R. L. Weiss. 1975. J. Cell Biol. 67:623-637), and Golgi-derived vesicles containing a homogeneous material. We chart the time course of these morphological changes during synchronous gametogenesis. We note that many of these changes may represent adjustments to nitrogen starvation rather than direct features of gametic differentiation, and we also document that cells can differentiate so that they survive conditions of nitrogen starvation for many weeks after they become gametes. We conclude that metabolic alterations, the acquisition of mating ability, and the preparation for long-term survival are all elicited in this organism by nitrogen withdrawal, and we discuss how the various structural alterations observed in this study may relate to these three interrelated avenues of cellular differentiation.

Full Text

The Full Text of this article is available as a PDF (6.9 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Chiang K. S., Kates J. R., Jones R. F., Sueoka N. On the formation of a homogeneous zygotic population in Chlamydomonas reinhardtii. Dev Biol. 1970 Aug;22(4):655–669. doi: 10.1016/0012-1606(70)90174-0. [DOI] [PubMed] [Google Scholar]
  2. Claes H. Autolyse der Zellwand bei den Gemeten von Chlamydomonas reinhardii. Arch Mikrobiol. 1971;78(2):180–188. [PubMed] [Google Scholar]
  3. EBERSOLD W. T., LEVINE R. P. A genetic analysis of linkage group I of Chlamydomonas reinhardi. Z Vererbungsl. 1959;90(1):74–82. doi: 10.1007/BF00888575. [DOI] [PubMed] [Google Scholar]
  4. Friedmann I., Colwin A. L., Colwin L. H. Fine-structural aspects of fertilization in Chlamydomonas reinhardi. J Cell Sci. 1968 Mar;3(1):115–128. doi: 10.1242/jcs.3.1.115. [DOI] [PubMed] [Google Scholar]
  5. Goodenough U. W., Armstrong J. J., Levine R. P. Photosynthetic Properties of ac-31, a Mutant Strain of Chlamydomonas reinhardi Devoid of Chloroplast Membrane Stacking. Plant Physiol. 1969 Jul;44(7):1001–1012. doi: 10.1104/pp.44.7.1001. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Goodenough U. W., Levine R. P. Chloroplast structure and function in ac-20, a mutant strain of Chlamydomonas reinhardi. 3. Chloroplast ribosomes and membrane organization. J Cell Biol. 1970 Mar;44(3):547–562. doi: 10.1083/jcb.44.3.547. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Goodenough U. W., Weiss R. L. Gametic differentiation in Chlamydomonas reinhardtii. III. Cell wall lysis and microfilament-associated mating structure activation in wild-type and mutant strains. J Cell Biol. 1975 Dec;67(3):623–637. doi: 10.1083/jcb.67.3.623. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Gorman D. S., Levine R. P. Cytochrome f and plastocyanin: their sequence in the photosynthetic electron transport chain of Chlamydomonas reinhardi. Proc Natl Acad Sci U S A. 1965 Dec;54(6):1665–1669. doi: 10.1073/pnas.54.6.1665. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Johnson U. G., Porter K. R. Fine structure of cell division in Chlamydomonas reinhardi. Basal bodies and microtubules. J Cell Biol. 1968 Aug;38(2):403–425. doi: 10.1083/jcb.38.2.403. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. KATES J. R., JONES R. F. THE CONTROL OF GAMETIC DIFFERENTIATION IN LIQUID CULTURES OF CHLAMYDOMONAS. J Cell Physiol. 1964 Apr;63:157–164. doi: 10.1002/jcp.1030630204. [DOI] [PubMed] [Google Scholar]
  11. KATES J. R., JONES R. F. VARIATION IN ALANINE DEHYDROGENASE AND GLUTAMATE DEHYDROGENASE DURING THE SYNCHRONOUS DEVELOPMENT OF CHLAMYDOMONAS. Biochim Biophys Acta. 1964 Jun 8;86:438–447. doi: 10.1016/0304-4165(64)90083-2. [DOI] [PubMed] [Google Scholar]
  12. SAGER R., GRANICK S. Nutritional control of sexuality in Chlamydomonas reinhardi. J Gen Physiol. 1954 Jul 20;37(6):729–742. doi: 10.1085/jgp.37.6.729. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Schmeisser E. T., Baumgartel D. M., Howell S. H. Gametic differentiation in Chlamydomonas reinhardi: cell cycle dependency and rates in attainment of mating competency. Dev Biol. 1973 Mar;31(1):31–37. doi: 10.1016/0012-1606(73)90318-7. [DOI] [PubMed] [Google Scholar]
  14. Sueoka N., Chiang K. S., Kates J. R. Deoxyribonucleic acid replication in meiosis of Chlamydomonas reinhardi. I. Isotopic transfer experiments with a strain producing eight zoospores. J Mol Biol. 1967 Apr 14;25(1):47–66. doi: 10.1016/0022-2836(67)90278-1. [DOI] [PubMed] [Google Scholar]

Articles from The Journal of Cell Biology are provided here courtesy of The Rockefeller University Press

RESOURCES