Skip to main content
Environmental Health Perspectives logoLink to Environmental Health Perspectives
. 2002 Jul;110(7):679–687. doi: 10.1289/ehp.02110679

Trichloroacetic acid as a biomarker of exposure to disinfection by-products in drinking water: a human exposure trial in Adelaide, Australia.

Kenneth L Froese 1, Martha I Sinclair 1, Steve E Hrudey 1
PMCID: PMC1240914  PMID: 12117645

Abstract

We addressed the need for a biomarker of ingestion exposure to drinking water disinfection by-products by performing a human exposure trial. We evaluated urinary excretion of trichloroacetic acid (TCAA) as an exposure biomarker using 10 volunteers who normally consume their domestic tap water. We recruited the volunteers at a water quality research laboratory in Adelaide, Australia. Participants maintained a detailed consumption and exposure diary over the 5-week study. We also analyzed tap water and first morning urine (FMU) samples for TCAA, and tap water for chloral hydrate (CH). We documented both interindividual and intraindividual variability in TCAA ingestion and urinary excretion, and both were substantial. With a TCAA-free bottled water intervention, we used creatinine-adjusted urinary TCAA levels to estimate urinary TCAA excretion half-lives for three of the participants. We observed correspondence over time between estimated TCAA excretion, calculated from TCAA + CH ingestion levels, and measured TCAA urinary excretion. This study demonstrates the merits and feasibility of using TCAA in FMU as an exposure biomarker, and reveals remaining concerns about possible alternate sources of TCAA exposure for individuals with low drinking water ingestion exposure.

Full Text

The Full Text of this article is available as a PDF (559.0 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Arbuckle Tye E., Hrudey Steve E., Krasner Stuart W., Nuckols Jay R., Richardson Susan D., Singer Philip, Mendola Pauline, Dodds Linda, Weisel Clifford, Ashley David L. Assessing exposure in epidemiologic studies to disinfection by-products in drinking water: report from an international workshop. Environ Health Perspect. 2002 Feb;110 (Suppl 1):53–60. doi: 10.1289/ehp.02110s153. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Ashley D. L., Bonin M. A., Cardinali F. L., McCraw J. M., Wooten J. V. Blood concentrations of volatile organic compounds in a nonoccupationally exposed US population and in groups with suspected exposure. Clin Chem. 1994 Jul;40(7 Pt 2):1401–1404. [PubMed] [Google Scholar]
  3. Bove F. J., Fulcomer M. C., Klotz J. B., Esmart J., Dufficy E. M., Savrin J. E. Public drinking water contamination and birth outcomes. Am J Epidemiol. 1995 May 1;141(9):850–862. doi: 10.1093/oxfordjournals.aje.a117521. [DOI] [PubMed] [Google Scholar]
  4. Brüning T., Vamvakas S., Makropoulos V., Birner G. Acute intoxication with trichloroethene: clinical symptoms, toxicokinetics, metabolism, and development of biochemical parameters for renal damage. Toxicol Sci. 1998 Feb;41(2):157–165. doi: 10.1006/toxs.1997.2401. [DOI] [PubMed] [Google Scholar]
  5. Dodds L., King W. D. Relation between trihalomethane compounds and birth defects. Occup Environ Med. 2001 Jul;58(7):443–446. doi: 10.1136/oem.58.7.443. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Dodds L., King W., Woolcott C., Pole J. Trihalomethanes in public water supplies and adverse birth outcomes. Epidemiology. 1999 May;10(3):233–237. [PubMed] [Google Scholar]
  7. Gallagher M. D., Nuckols J. R., Stallones L., Savitz D. A. Exposure to trihalomethanes and adverse pregnancy outcomes. Epidemiology. 1998 Sep;9(5):484–489. [PubMed] [Google Scholar]
  8. Humbert L., Jacquemont M. C., Leroy E., Leclerc F., Houdret N., Lhermitte M. Determination of chloral hydrate and its metabolites (trichloroethanol and trichloracetic acid) in human plasma and urine using electron capture gas chromatography. Biomed Chromatogr. 1994 Nov-Dec;8(6):273–277. doi: 10.1002/bmc.1130080604. [DOI] [PubMed] [Google Scholar]
  9. Kim H., Haltmeier P., Klotz J. B., Weisel C. P. Evaluation of biomarkers of environmental exposures: urinary haloacetic acids associated with ingestion of chlorinated drinking water. Environ Res. 1999 Feb;80(2 Pt 1):187–195. doi: 10.1006/enrs.1998.3896. [DOI] [PubMed] [Google Scholar]
  10. King W. D., Dodds L., Allen A. C. Relation between stillbirth and specific chlorination by-products in public water supplies. Environ Health Perspect. 2000 Sep;108(9):883–886. doi: 10.1289/ehp.00108883. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Klotz J. B., Pyrch L. A. Neural tube defects and drinking water disinfection by-products. Epidemiology. 1999 Jul;10(4):383–390. doi: 10.1097/00001648-199907000-00005. [DOI] [PubMed] [Google Scholar]
  12. Kramer M. D., Lynch C. F., Isacson P., Hanson J. W. The association of waterborne chloroform with intrauterine growth retardation. Epidemiology. 1992 Sep;3(5):407–413. doi: 10.1097/00001648-199209000-00005. [DOI] [PubMed] [Google Scholar]
  13. Magnus P., Jaakkola J. J., Skrondal A., Alexander J., Becher G., Krogh T., Dybing E. Water chlorination and birth defects. Epidemiology. 1999 Sep;10(5):513–517. [PubMed] [Google Scholar]
  14. Müller G., Spassovski M., Henschler D. Metabolism of trichloroethylene in man. II. Pharmacokinetics of metabolites. Arch Toxicol. 1974;32(4):283–295. doi: 10.1007/BF00330110. [DOI] [PubMed] [Google Scholar]
  15. Müller G., Spassovski M., Henschler D. Trichloroethylene exposure and trichloroethylene metabolites in urine and blood. Arch Toxikol. 1972;29(4):335–340. doi: 10.1007/BF00326650. [DOI] [PubMed] [Google Scholar]
  16. Nieuwenhuijsen M. J., Toledano M. B., Eaton N. E., Fawell J., Elliott P. Chlorination disinfection byproducts in water and their association with adverse reproductive outcomes: a review. Occup Environ Med. 2000 Feb;57(2):73–85. doi: 10.1136/oem.57.2.73. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Savitz D. A., Andrews K. W., Pastore L. M. Drinking water and pregnancy outcome in central North Carolina: source, amount, and trihalomethane levels. Environ Health Perspect. 1995 Jun;103(6):592–596. doi: 10.1289/ehp.95103592. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Swan S. H., Waller K. Disinfection by-products and adverse pregnancy outcomes: what is the agent and how should it be measured? Epidemiology. 1998 Sep;9(5):479–481. doi: 10.1097/00001648-199809000-00001. [DOI] [PubMed] [Google Scholar]
  19. Waller K., Swan S. H., DeLorenze G., Hopkins B. Trihalomethanes in drinking water and spontaneous abortion. Epidemiology. 1998 Mar;9(2):134–140. [PubMed] [Google Scholar]
  20. Weisel C. P., Kim H., Haltmeier P., Klotz J. B. Exposure estimates to disinfection by-products of chlorinated drinking water. Environ Health Perspect. 1999 Feb;107(2):103–110. doi: 10.1289/ehp.99107103. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Yang C. Y., Cheng B. H., Tsai S. S., Wu T. N., Lin M. C., Lin K. C. Association between chlorination of drinking water and adverse pregnancy outcome in Taiwan. Environ Health Perspect. 2000 Aug;108(8):765–768. doi: 10.1289/ehp.00108765. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Environmental Health Perspectives are provided here courtesy of National Institute of Environmental Health Sciences

RESOURCES