Abstract
Enhanced synthesis of a specific matrix metalloproteinase, MMP-2, has been demonstrated in experimental models of ventricular failure and in cardiac extracts from patients with ischaemic cardiomyopathy. Cultured neonatal rat cardiac fibroblasts and myocytes were used to analyse the determinants of MMP-2 synthesis, including the effects of hypoxia. Culture of rat cardiac fibroblasts for 24 h in 1% oxygen enhanced MMP-2 synthesis by more than 5-fold and augmented the MMP-2 synthetic responses of these cells to endothelin-1, angiotensin II and interleukin 1beta. A series of MMP-2 promoter-luciferase constructs were used to map the specific enhancer element(s) that drive MMP-2 transcription in cardiac cells. Deletion studies mapped a region of potent transactivating function within the 91 bp region from -1433 to -1342 bp, the activity of which was increased by hypoxia. Oligonucleotides from this region were cloned in front of a heterologous simian-virus-40 (SV40) promoter and mapped the enhancer activity to a region between -1410 and -1362 bp that included a potential activating protein 1 (AP-1)-binding sequence, C(-1394)CTGACCTCC. Site-specific mutagenesis of the core TGAC sequence (indicated in bold) eliminated the transactivating activity within the -1410 to -1362 bp sequence. Electrophoretic mobility shift assays (EMSAs) using the -1410 to -1362 bp oligonucleotide and rat cardiac fibroblast nuclear extracts demonstrated specific nuclear-protein binding that was eliminated by cold competitor oligonucleotide, but not by the AP-1-mutated oligonucleotide. Antibody-supershift EMSAs of nuclear extracts from normoxic rat cardiac fibroblasts demonstrated Fra1 and JunB binding to the -1410 to -1362 bp oligonucleotide. Nuclear extracts isolated from hypoxic rat cardiac fibroblasts contained Fra1, JunB and also included FosB. Co-transfection of cardiac fibroblasts with Fra1-JunB and FosB-JunB expression plasmids led to significant increases in transcriptional activity. These studies demonstrate that a functional AP-1 site mediates MMP-2 transcription in cardiac cells through the binding of distinctive Fra1-JunB and FosB-JunB heterodimers. The synthesis of MMP-2 is widely considered, in contrast with many members of the MMP gene family, to be independent of the AP-1 transcriptional complex. This report is the first demonstration that defined members of the Fos and Jun transcription-factor families specifically regulate this gene under conditions relevant to critical pathophysiological processes.
Full Text
The Full Text of this article is available as a PDF (391.5 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Angel P., Baumann I., Stein B., Delius H., Rahmsdorf H. J., Herrlich P. 12-O-tetradecanoyl-phorbol-13-acetate induction of the human collagenase gene is mediated by an inducible enhancer element located in the 5'-flanking region. Mol Cell Biol. 1987 Jun;7(6):2256–2266. doi: 10.1128/mcb.7.6.2256. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Ausserer W. A., Bourrat-Floeck B., Green C. J., Laderoute K. R., Sutherland R. M. Regulation of c-jun expression during hypoxic and low-glucose stress. Mol Cell Biol. 1994 Aug;14(8):5032–5042. doi: 10.1128/mcb.14.8.5032. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Brand T., Sharma H. S., Fleischmann K. E., Duncker D. J., McFalls E. O., Verdouw P. D., Schaper W. Proto-oncogene expression in porcine myocardium subjected to ischemia and reperfusion. Circ Res. 1992 Dec;71(6):1351–1360. doi: 10.1161/01.res.71.6.1351. [DOI] [PubMed] [Google Scholar]
- Brasier A. R., Tate J. E., Habener J. F. Optimized use of the firefly luciferase assay as a reporter gene in mammalian cell lines. Biotechniques. 1989 Nov-Dec;7(10):1116–1122. [PubMed] [Google Scholar]
- Brown P. D., Levy A. T., Margulies I. M., Liotta L. A., Stetler-Stevenson W. G. Independent expression and cellular processing of Mr 72,000 type IV collagenase and interstitial collagenase in human tumorigenic cell lines. Cancer Res. 1990 Oct 1;50(19):6184–6191. [PubMed] [Google Scholar]
- Carthew R. W., Chodosh L. A., Sharp P. A. An RNA polymerase II transcription factor binds to an upstream element in the adenovirus major late promoter. Cell. 1985 Dec;43(2 Pt 1):439–448. doi: 10.1016/0092-8674(85)90174-6. [DOI] [PubMed] [Google Scholar]
- Cheung P. Y., Sawicki G., Wozniak M., Wang W., Radomski M. W., Schulz R. Matrix metalloproteinase-2 contributes to ischemia-reperfusion injury in the heart. Circulation. 2000 Apr 18;101(15):1833–1839. doi: 10.1161/01.cir.101.15.1833. [DOI] [PubMed] [Google Scholar]
- Coker M. L., Thomas C. V., Clair M. J., Hendrick J. W., Krombach R. S., Galis Z. S., Spinale F. G. Myocardial matrix metalloproteinase activity and abundance with congestive heart failure. Am J Physiol. 1998 May;274(5 Pt 2):H1516–H1523. doi: 10.1152/ajpheart.1998.274.5.H1516. [DOI] [PubMed] [Google Scholar]
- Collier I. E., Wilhelm S. M., Eisen A. Z., Marmer B. L., Grant G. A., Seltzer J. L., Kronberger A., He C. S., Bauer E. A., Goldberg G. I. H-ras oncogene-transformed human bronchial epithelial cells (TBE-1) secrete a single metalloprotease capable of degrading basement membrane collagen. J Biol Chem. 1988 May 15;263(14):6579–6587. [PubMed] [Google Scholar]
- Danielsen C. C., Wiggers H., Andersen H. R. Increased amounts of collagenase and gelatinase in porcine myocardium following ischemia and reperfusion. J Mol Cell Cardiol. 1998 Jul;30(7):1431–1442. doi: 10.1006/jmcc.1998.0711. [DOI] [PubMed] [Google Scholar]
- Deryugina E. I., Bourdon M. A., Reisfeld R. A., Strongin A. Remodeling of collagen matrix by human tumor cells requires activation and cell surface association of matrix metalloproteinase-2. Cancer Res. 1998 Aug 15;58(16):3743–3750. [PubMed] [Google Scholar]
- Dignam J. D., Lebovitz R. M., Roeder R. G. Accurate transcription initiation by RNA polymerase II in a soluble extract from isolated mammalian nuclei. Nucleic Acids Res. 1983 Mar 11;11(5):1475–1489. doi: 10.1093/nar/11.5.1475. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Franklin C. C., Sanchez V., Wagner F., Woodgett J. R., Kraft A. S. Phorbol ester-induced amino-terminal phosphorylation of human JUN but not JUNB regulates transcriptional activation. Proc Natl Acad Sci U S A. 1992 Aug 1;89(15):7247–7251. doi: 10.1073/pnas.89.15.7247. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Goldberg M. A., Schneider T. J. Similarities between the oxygen-sensing mechanisms regulating the expression of vascular endothelial growth factor and erythropoietin. J Biol Chem. 1994 Feb 11;269(6):4355–4359. [PubMed] [Google Scholar]
- Harendza S., Pollock A. S., Mertens P. R., Lovett D. H. Tissue-specific enhancer-promoter interactions regulate high level constitutive expression of matrix metalloproteinase 2 by glomerular mesangial cells. J Biol Chem. 1995 Aug 11;270(32):18786–18796. doi: 10.1074/jbc.270.32.18786. [DOI] [PubMed] [Google Scholar]
- Herdegen T., Leah J. D. Inducible and constitutive transcription factors in the mammalian nervous system: control of gene expression by Jun, Fos and Krox, and CREB/ATF proteins. Brain Res Brain Res Rev. 1998 Dec;28(3):370–490. doi: 10.1016/s0165-0173(98)00018-6. [DOI] [PubMed] [Google Scholar]
- Huo L., Rothstein T. L. Receptor-specific induction of individual AP-1 components in B lymphocytes. J Immunol. 1995 Apr 1;154(7):3300–3309. [PubMed] [Google Scholar]
- Kirstein M., Sanz L., Quiñones S., Moscat J., Diaz-Meco M. T., Saus J. Cross-talk between different enhancer elements during mitogenic induction of the human stromelysin-1 gene. J Biol Chem. 1996 Jul 26;271(30):18231–18236. doi: 10.1074/jbc.271.30.18231. [DOI] [PubMed] [Google Scholar]
- Li H. T., Long C. S., Rokosh D. G., Honbo N. Y., Karliner J. S. Chronic hypoxia differentially regulates alpha 1-adrenergic receptor subtype mRNAs and inhibits alpha 1-adrenergic receptor-stimulated cardiac hypertrophy and signaling. Circulation. 1995 Aug 15;92(4):918–925. doi: 10.1161/01.cir.92.4.918. [DOI] [PubMed] [Google Scholar]
- Li Y. Y., Feldman A. M., Sun Y., McTiernan C. F. Differential expression of tissue inhibitors of metalloproteinases in the failing human heart. Circulation. 1998 Oct 27;98(17):1728–1734. doi: 10.1161/01.cir.98.17.1728. [DOI] [PubMed] [Google Scholar]
- Long C. S., Henrich C. J., Simpson P. C. A growth factor for cardiac myocytes is produced by cardiac nonmyocytes. Cell Regul. 1991 Dec;2(12):1081–1095. doi: 10.1091/mbc.2.12.1081. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Matrisian L. M. Matrix metalloproteinase gene expression. Ann N Y Acad Sci. 1994 Sep 6;732:42–50. doi: 10.1111/j.1749-6632.1994.tb24723.x. [DOI] [PubMed] [Google Scholar]
- Matrisian L. M. Quick guide. Matrix metalloproteinases. Curr Biol. 2000 Oct 5;10(19):R692–R692. doi: 10.1016/s0960-9822(00)00720-x. [DOI] [PubMed] [Google Scholar]
- Mertens P. R., Alfonso-Jaume M. A., Steinmann K., Lovett D. H. A synergistic interaction of transcription factors AP2 and YB-1 regulates gelatinase A enhancer-dependent transcription. J Biol Chem. 1998 Dec 4;273(49):32957–32965. doi: 10.1074/jbc.273.49.32957. [DOI] [PubMed] [Google Scholar]
- Mertens P. R., Harendza S., Pollock A. S., Lovett D. H. Glomerular mesangial cell-specific transactivation of matrix metalloproteinase 2 transcription is mediated by YB-1. J Biol Chem. 1997 Sep 5;272(36):22905–22912. doi: 10.1074/jbc.272.36.22905. [DOI] [PubMed] [Google Scholar]
- Müller J. M., Krauss B., Kaltschmidt C., Baeuerle P. A., Rupec R. A. Hypoxia induces c-fos transcription via a mitogen-activated protein kinase-dependent pathway. J Biol Chem. 1997 Sep 12;272(37):23435–23439. doi: 10.1074/jbc.272.37.23435. [DOI] [PubMed] [Google Scholar]
- Nelson A. R., Fingleton B., Rothenberg M. L., Matrisian L. M. Matrix metalloproteinases: biologic activity and clinical implications. J Clin Oncol. 2000 Mar;18(5):1135–1149. doi: 10.1200/JCO.2000.18.5.1135. [DOI] [PubMed] [Google Scholar]
- Peterson J. T., Li H., Dillon L., Bryant J. W. Evolution of matrix metalloprotease and tissue inhibitor expression during heart failure progression in the infarcted rat. Cardiovasc Res. 2000 May;46(2):307–315. doi: 10.1016/s0008-6363(00)00029-8. [DOI] [PubMed] [Google Scholar]
- Piacentini L., Gray M., Honbo N. Y., Chentoufi J., Bergman M., Karliner J. S. Endothelin-1 stimulates cardiac fibroblast proliferation through activation of protein kinase C. J Mol Cell Cardiol. 2000 Apr;32(4):565–576. doi: 10.1006/jmcc.2000.1109. [DOI] [PubMed] [Google Scholar]
- Piacentini L., Karliner J. S. Altered gene expression during hypoxia and reoxygenation of the heart. Pharmacol Ther. 1999 Jul;83(1):21–37. doi: 10.1016/s0163-7258(99)00010-8. [DOI] [PubMed] [Google Scholar]
- Qin H., Sun Y., Benveniste E. N. The transcription factors Sp1, Sp3, and AP-2 are required for constitutive matrix metalloproteinase-2 gene expression in astroglioma cells. J Biol Chem. 1999 Oct 8;274(41):29130–29137. doi: 10.1074/jbc.274.41.29130. [DOI] [PubMed] [Google Scholar]
- Robert V., Besse S., Sabri A., Silvestre J. S., Assayag P., Nguyen V. T., Swynghedauw B., Delcayre C. Differential regulation of matrix metalloproteinases associated with aging and hypertension in the rat heart. Lab Invest. 1997 May;76(5):729–738. [PubMed] [Google Scholar]
- Rupec R. A., Baeuerle P. A. The genomic response of tumor cells to hypoxia and reoxygenation. Differential activation of transcription factors AP-1 and NF-kappa B. Eur J Biochem. 1995 Dec 1;234(2):632–640. doi: 10.1111/j.1432-1033.1995.632_b.x. [DOI] [PubMed] [Google Scholar]
- Spinale F. G., Coker M. L., Bond B. R., Zellner J. L. Myocardial matrix degradation and metalloproteinase activation in the failing heart: a potential therapeutic target. Cardiovasc Res. 2000 May;46(2):225–238. doi: 10.1016/s0008-6363(99)00431-9. [DOI] [PubMed] [Google Scholar]
- Spinale F. G., Coker M. L., Krombach S. R., Mukherjee R., Hallak H., Houck W. V., Clair M. J., Kribbs S. B., Johnson L. L., Peterson J. T. Matrix metalloproteinase inhibition during the development of congestive heart failure : effects on left ventricular dimensions and function. Circ Res. 1999 Aug 20;85(4):364–376. doi: 10.1161/01.res.85.4.364. [DOI] [PubMed] [Google Scholar]
- Stetler-Stevenson W. G. Matrix metalloproteinases in angiogenesis: a moving target for therapeutic intervention. J Clin Invest. 1999 May;103(9):1237–1241. doi: 10.1172/JCI6870. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Sun Y., Weber K. T. Infarct scar: a dynamic tissue. Cardiovasc Res. 2000 May;46(2):250–256. doi: 10.1016/s0008-6363(00)00032-8. [DOI] [PubMed] [Google Scholar]
- Thomas C. V., Coker M. L., Zellner J. L., Handy J. R., Crumbley A. J., 3rd, Spinale F. G. Increased matrix metalloproteinase activity and selective upregulation in LV myocardium from patients with end-stage dilated cardiomyopathy. Circulation. 1998 May 5;97(17):1708–1715. doi: 10.1161/01.cir.97.17.1708. [DOI] [PubMed] [Google Scholar]
- Tryggvason K., Huhtala P., Tuuttila A., Chow L., Keski-Oja J., Lohi J. Structure and expression of type IV collagenase genes. Cell Differ Dev. 1990 Dec 2;32(3):307–312. doi: 10.1016/0922-3371(90)90044-w. [DOI] [PubMed] [Google Scholar]
- Tulchinsky E. Fos family members: regulation, structure and role in oncogenic transformation. Histol Histopathol. 2000 Jul;15(3):921–928. doi: 10.14670/HH-15.921. [DOI] [PubMed] [Google Scholar]
- Tyagi S. C., Kumar S., Katwa L. Differential regulation of extracellular matrix metalloproteinase and tissue inhibitor by heparin and cholesterol in fibroblast cells. J Mol Cell Cardiol. 1997 Jan;29(1):391–404. doi: 10.1006/jmcc.1996.0283. [DOI] [PubMed] [Google Scholar]
- Tyagi S. C., Lewis K., Pikes D., Marcello A., Mujumdar V. S., Smiley L. M., Moore C. K. Stretch-induced membrane type matrix metalloproteinase and tissue plasminogen activator in cardiac fibroblast cells. J Cell Physiol. 1998 Aug;176(2):374–382. doi: 10.1002/(SICI)1097-4652(199808)176:2<374::AID-JCP16>3.0.CO;2-3. [DOI] [PubMed] [Google Scholar]
- Tyagi S. C., Smiley L. M., Mujumdar V. S., Clonts B., Parker J. L. Reduction-oxidation (Redox) and vascular tissue level of homocyst(e)ine in human coronary atherosclerotic lesions and role in extracellular matrix remodeling and vascular tone. Mol Cell Biochem. 1998 Apr;181(1-2):107–116. doi: 10.1023/a:1006882014593. [DOI] [PubMed] [Google Scholar]
- Vincenti M. P. The matrix metalloproteinase (MMP) and tissue inhibitor of metalloproteinase (TIMP) genes. Transcriptional and posttranscriptional regulation, signal transduction and cell-type-specific expression. Methods Mol Biol. 2001;151:121–148. doi: 10.1385/1-59259-046-2:121. [DOI] [PubMed] [Google Scholar]
- Walker L. J., Craig R. B., Harris A. L., Hickson I. D. A role for the human DNA repair enzyme HAP1 in cellular protection against DNA damaging agents and hypoxic stress. Nucleic Acids Res. 1994 Nov 25;22(23):4884–4889. doi: 10.1093/nar/22.23.4884. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Webster K. A., Discher D. J., Bishopric N. H. Induction and nuclear accumulation of fos and jun proto-oncogenes in hypoxic cardiac myocytes. J Biol Chem. 1993 Aug 5;268(22):16852–16858. [PubMed] [Google Scholar]
- Webster K. A., Discher D. J., Bishopric N. H. Regulation of fos and jun immediate-early genes by redox or metabolic stress in cardiac myocytes. Circ Res. 1994 Apr;74(4):679–686. doi: 10.1161/01.res.74.4.679. [DOI] [PubMed] [Google Scholar]
- Westermarck J., Kähäri V. M. Regulation of matrix metalloproteinase expression in tumor invasion. FASEB J. 1999 May;13(8):781–792. [PubMed] [Google Scholar]
- Woessner J. F., Jr Matrix metalloproteinase inhibition. From the Jurassic to the third millennium. Ann N Y Acad Sci. 1999 Jun 30;878:388–403. doi: 10.1111/j.1749-6632.1999.tb07697.x. [DOI] [PubMed] [Google Scholar]
