Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 2003 Feb 15;370(Pt 1):69–79. doi: 10.1042/BJ20020968

Age-related changes in the composition, the molecular stoichiometry and the stability of proteoglycan aggregates extracted from human articular cartilage.

Terri Wells 1, Catherine Davidson 1, Matthias Mörgelin 1, Joseph L E Bird 1, Michael T Bayliss 1, Jayesh Dudhia 1
PMCID: PMC1223159  PMID: 12431185

Abstract

The heterogeneity of the components of proteoglycan aggregates, their stoichiometry within the aggregate and the aggregates' stability was investigated in normal human articular cartilage specimens (age-range newborn to 63 years). Proteoglycans were extracted from tissue by sequentially extracting them with PBS alone, PBS containing oligosaccharides of hyaluronan, and PBS containing solutions of increasing guanidinium chloride concentration (1 M, 2 M, 3 M and 4 M). A high proportion of each of the components of the proteoglycan aggregate, i.e. uronic acid, sulphated glycosaminoglycan, hyaluronan binding domain of aggrecan (G1-domain), link protein (LP) and hyaluronan, was extracted from immature cartilage by PBS alone and PBS containing oligosaccharides of hyaluronan. This was in marked contrast to adult cartilage, which required high concentrations of guanidinium chloride for the efficient extraction of these components. The molar ratios of total G1-domain:LP and the G1-domain associated with aggrecan:LP also differed markedly between immature and mature cartilage and between each of the sequential extracts. The concentration of LP was less than that of the G1-domain in all extracts of cartilage from individuals over 13 years, but this was particularly noticeable in the 1 M guanidinium chloride extracts, and it was surmised that a deficiency in LP produces unstable aggregates in situ. The fragmentation of LP, which is known to occur with advancing age, did not influence the extractability of LP, and fragments were present in each of the sequential extracts. Therefore the generally accepted model of proteoglycan aggregation presented in the literature, which is mostly derived from analysis of immature animal cartilage, cannot be used to describe the structure and organization of aggregates in adult human articular cartilage, where a heterogeneous population of complexes exist that have varying degrees of stability.

Full Text

The Full Text of this article is available as a PDF (351.4 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Aspberg A., Adam S., Kostka G., Timpl R., Heinegård D. Fibulin-1 is a ligand for the C-type lectin domains of aggrecan and versican. J Biol Chem. 1999 Jul 16;274(29):20444–20449. doi: 10.1074/jbc.274.29.20444. [DOI] [PubMed] [Google Scholar]
  2. Aspberg A., Miura R., Bourdoulous S., Shimonaka M., Heinegârd D., Schachner M., Ruoslahti E., Yamaguchi Y. The C-type lectin domains of lecticans, a family of aggregating chondroitin sulfate proteoglycans, bind tenascin-R by protein-protein interactions independent of carbohydrate moiety. Proc Natl Acad Sci U S A. 1997 Sep 16;94(19):10116–10121. doi: 10.1073/pnas.94.19.10116. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. BITTER T., MUIR H. M. A modified uronic acid carbazole reaction. Anal Biochem. 1962 Oct;4:330–334. doi: 10.1016/0003-2697(62)90095-7. [DOI] [PubMed] [Google Scholar]
  4. Baldwin C. T., Reginato A. M., Prockop D. J. A new epidermal growth factor-like domain in the human core protein for the large cartilage-specific proteoglycan. Evidence for alternative splicing of the domain. J Biol Chem. 1989 Sep 25;264(27):15747–15750. [PubMed] [Google Scholar]
  5. Barry F. P., Gaw J. U., Young C. N., Neame P. J. Hyaluronan-binding region of aggrecan from pig laryngeal cartilage. Amino acid sequence, analysis of N-linked oligosaccharides and location of the keratan sulphate. Biochem J. 1992 Sep 15;286(Pt 3):761–769. doi: 10.1042/bj2860761. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Barry F. P., Neame P. J., Sasse J., Pearson D. Length variation in the keratan sulfate domain of mammalian aggrecan. Matrix Biol. 1994 Aug;14(4):323–328. doi: 10.1016/0945-053x(94)90198-8. [DOI] [PubMed] [Google Scholar]
  7. Bayliss M. T., Howat S., Davidson C., Dudhia J. The organization of aggrecan in human articular cartilage. Evidence for age-related changes in the rate of aggregation of newly synthesized molecules. J Biol Chem. 2000 Mar 3;275(9):6321–6327. doi: 10.1074/jbc.275.9.6321. [DOI] [PubMed] [Google Scholar]
  8. Bayliss M. T., Osborne D., Woodhouse S., Davidson C. Sulfation of chondroitin sulfate in human articular cartilage. The effect of age, topographical position, and zone of cartilage on tissue composition. J Biol Chem. 1999 May 28;274(22):15892–15900. doi: 10.1074/jbc.274.22.15892. [DOI] [PubMed] [Google Scholar]
  9. Bayliss M. T. Proteoglycan structure and metabolism during maturation and ageing of human articular cartilage. Biochem Soc Trans. 1990 Oct;18(5):799–802. doi: 10.1042/bst0180799. [DOI] [PubMed] [Google Scholar]
  10. Bayliss M. T., Ridgway G. D., Ali S. Y. Differences in the rates of aggregation of proteoglycans from human articular cartilage and chondrosarcoma. Biochem J. 1983 Dec 1;215(3):705–708. doi: 10.1042/bj2150705. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Binette F., Cravens J., Kahoussi B., Haudenschild D. R., Goetinck P. F. Link protein is ubiquitously expressed in non-cartilaginous tissues where it enhances and stabilizes the interaction of proteoglycans with hyaluronic acid. J Biol Chem. 1994 Jul 22;269(29):19116–19122. [PubMed] [Google Scholar]
  12. Bonnet F., Dunham D. G., Hardingham T. E. Structure and interactions of cartilage proteoglycan binding region and link protein. Biochem J. 1985 May 15;228(1):77–85. doi: 10.1042/bj2280077. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Doege K., Sasaki M., Horigan E., Hassell J. R., Yamada Y. Complete primary structure of the rat cartilage proteoglycan core protein deduced from cDNA clones. J Biol Chem. 1987 Dec 25;262(36):17757–17767. [PubMed] [Google Scholar]
  14. Dudhia J., Davidson C. M., Wells T. M., Vynios D. H., Hardingham T. E., Bayliss M. T. Age-related changes in the content of the C-terminal region of aggrecan in human articular cartilage. Biochem J. 1996 Feb 1;313(Pt 3):933–940. doi: 10.1042/bj3130933. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Fosang A. J., Hey N. J., Carney S. L., Hardingham T. E. An ELISA plate-based assay for hyaluronan using biotinylated proteoglycan G1 domain (HA-binding region). Matrix. 1990 Oct;10(5):306–313. doi: 10.1016/s0934-8832(11)80186-1. [DOI] [PubMed] [Google Scholar]
  16. Hardingham T., Bayliss M. Proteoglycans of articular cartilage: changes in aging and in joint disease. Semin Arthritis Rheum. 1990 Dec;20(3 Suppl 1):12–33. doi: 10.1016/0049-0172(90)90044-g. [DOI] [PubMed] [Google Scholar]
  17. Hascall V. C., Heinegård D. Aggregation of cartilage proteoglycans. I. The role of hyaluronic acid. J Biol Chem. 1974 Jul 10;249(13):4232–4241. [PubMed] [Google Scholar]
  18. Holmes M. W., Bayliss M. T., Muir H. Hyaluronic acid in human articular cartilage. Age-related changes in content and size. Biochem J. 1988 Mar 1;250(2):435–441. doi: 10.1042/bj2500435. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Kiani C., Lee V., Cao L., Chen L., Wu Y., Zhang Y., Adams M. E., Yang B. B. Roles of aggrecan domains in biosynthesis, modification by glycosaminoglycans and product secretion. Biochem J. 2001 Feb 15;354(Pt 1):199–207. doi: 10.1042/0264-6021:3540199. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. King J., Laemmli U. K. Polypeptides of the tail fibres of bacteriophage T4. J Mol Biol. 1971 Dec 28;62(3):465–477. doi: 10.1016/0022-2836(71)90148-3. [DOI] [PubMed] [Google Scholar]
  21. Luo W., Kuwada T. S., Chandrasekaran L., Zheng J., Tanzer M. L. Divergent secretory behavior of the opposite ends of aggrecan. J Biol Chem. 1996 Jul 12;271(28):16447–16450. doi: 10.1074/jbc.271.28.16447. [DOI] [PubMed] [Google Scholar]
  22. Maroudas A., Bayliss M. T., Uchitel-Kaushansky N., Schneiderman R., Gilav E. Aggrecan turnover in human articular cartilage: use of aspartic acid racemization as a marker of molecular age. Arch Biochem Biophys. 1998 Feb 1;350(1):61–71. doi: 10.1006/abbi.1997.0492. [DOI] [PubMed] [Google Scholar]
  23. Mok S. S., Masuda K., Häuselmann H. J., Aydelotte M. B., Thonar E. J. Aggrecan synthesized by mature bovine chondrocytes suspended in alginate. Identification of two distinct metabolic matrix pools. J Biol Chem. 1994 Dec 30;269(52):33021–33027. [PubMed] [Google Scholar]
  24. Mort J. S., Poole A. R., Roughley P. J. Age-related changes in the structure of proteoglycan link proteins present in normal human articular cartilage. Biochem J. 1983 Jul 15;214(1):269–272. doi: 10.1042/bj2140269. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Mörgelin M., Paulsson M., Heinegård D., Aebi U., Engel J. Evidence of a defined spatial arrangement of hyaluronate in the central filament of cartilage proteoglycan aggregates. Biochem J. 1995 Apr 15;307(Pt 2):595–601. doi: 10.1042/bj3070595. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Neame P. J., Barry F. P. The link proteins. Experientia. 1993 May 15;49(5):393–402. doi: 10.1007/BF01923584. [DOI] [PubMed] [Google Scholar]
  27. Neame P. J., Christner J. E., Baker J. R. Cartilage proteoglycan aggregates. The link protein and proteoglycan amino-terminal globular domains have similar structures. J Biol Chem. 1987 Dec 25;262(36):17768–17778. [PubMed] [Google Scholar]
  28. Nguyen Q., Liu J., Roughley P. J., Mort J. S. Link protein as a monitor in situ of endogenous proteolysis in adult human articular cartilage. Biochem J. 1991 Aug 15;278(Pt 1):143–147. doi: 10.1042/bj2780143. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Nguyen Q., Murphy G., Hughes C. E., Mort J. S., Roughley P. J. Matrix metalloproteinases cleave at two distinct sites on human cartilage link protein. Biochem J. 1993 Oct 15;295(Pt 2):595–598. doi: 10.1042/bj2950595. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Oegema T. R., Jr Delayed formation of proteoglycan aggregate structures in human articular cartilage disease states. Nature. 1980 Dec 11;288(5791):583–585. doi: 10.1038/288583a0. [DOI] [PubMed] [Google Scholar]
  31. Olin A. I., Mörgelin M., Sasaki T., Timpl R., Heinegård D., Aspberg A. The proteoglycans aggrecan and Versican form networks with fibulin-2 through their lectin domain binding. J Biol Chem. 2001 Jan 12;276(2):1253–1261. doi: 10.1074/jbc.M006783200. [DOI] [PubMed] [Google Scholar]
  32. Parkar A. A., Day A. J. Overlapping sites on the Link module of human TSG-6 mediate binding to hyaluronan and chrondroitin-4-sulphate. FEBS Lett. 1997 Jun 30;410(2-3):413–417. doi: 10.1016/s0014-5793(97)00621-2. [DOI] [PubMed] [Google Scholar]
  33. Paulsson M., Mörgelin M., Wiedemann H., Beardmore-Gray M., Dunham D., Hardingham T., Heinegård D., Timpl R., Engel J. Extended and globular protein domains in cartilage proteoglycans. Biochem J. 1987 Aug 1;245(3):763–772. doi: 10.1042/bj2450763. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Plaas A. H., Sandy J. D., Kimura J. H. Biosynthesis of cartilage proteoglycan and link protein by articular chondrocytes from immature and mature rabbits. J Biol Chem. 1988 Jun 5;263(16):7560–7566. [PubMed] [Google Scholar]
  35. Pokharna H. K., Pottenger L. A. Glycation induced crosslinking of link proteins, in vivo and in vitro. J Surg Res. 2000 Nov;94(1):35–42. doi: 10.1006/jsre.2000.6000. [DOI] [PubMed] [Google Scholar]
  36. Périn J. P., Bonnet F., Thurieau C., Jollès P. Link protein interactions with hyaluronate and proteoglycans. Characterization of two distinct domains in bovine cartilage link proteins. J Biol Chem. 1987 Sep 25;262(27):13269–13272. [PubMed] [Google Scholar]
  37. Ratcliffe A., Doherty M., Maini R. N., Hardingham T. E. Increased concentrations of proteoglycan components in the synovial fluids of patients with acute but not chronic joint disease. Ann Rheum Dis. 1988 Oct;47(10):826–832. doi: 10.1136/ard.47.10.826. [DOI] [PMC free article] [PubMed] [Google Scholar]
  38. Ratcliffe A., Fryer P. R., Hardingham T. E. The distribution of aggregating proteoglycans in articular cartilage: comparison of quantitative immunoelectron microscopy with radioimmunoassay and biochemical analysis. J Histochem Cytochem. 1984 Feb;32(2):193–201. doi: 10.1177/32.2.6363519. [DOI] [PubMed] [Google Scholar]
  39. Sandy J. D., O'Neill J. R., Ratzlaff L. C. Acquisition of hyaluronate-binding affinity in vivo by newly synthesized cartilage proteoglycans. Biochem J. 1989 Mar 15;258(3):875–880. doi: 10.1042/bj2580875. [DOI] [PMC free article] [PubMed] [Google Scholar]
  40. Sztrolovics R., Alini M., Roughley P. J., Mort J. S. Aggrecan degradation in human intervertebral disc and articular cartilage. Biochem J. 1997 Aug 15;326(Pt 1):235–241. doi: 10.1042/bj3260235. [DOI] [PMC free article] [PubMed] [Google Scholar]
  41. Sztrolovics R., White R. J., Poole A. R., Mort J. S., Roughley P. J. Resistance of small leucine-rich repeat proteoglycans to proteolytic degradation during interleukin-1-stimulated cartilage catabolism. Biochem J. 1999 May 1;339(Pt 3):571–577. [PMC free article] [PubMed] [Google Scholar]
  42. Tang L. H., Rosenberg L., Reiner A., Poole A. R. Proteoglycans from bovine nasal cartilage. Properties of a soluble form of link protein. J Biol Chem. 1979 Oct 25;254(20):10523–10531. [PubMed] [Google Scholar]
  43. Towbin H., Staehelin T., Gordon J. Electrophoretic transfer of proteins from polyacrylamide gels to nitrocellulose sheets: procedure and some applications. Proc Natl Acad Sci U S A. 1979 Sep;76(9):4350–4354. doi: 10.1073/pnas.76.9.4350. [DOI] [PMC free article] [PubMed] [Google Scholar]
  44. Watanabe H., Cheung S. C., Itano N., Kimata K., Yamada Y. Identification of hyaluronan-binding domains of aggrecan. J Biol Chem. 1997 Oct 31;272(44):28057–28065. doi: 10.1074/jbc.272.44.28057. [DOI] [PubMed] [Google Scholar]
  45. Yang B. L., Cao L., Kiani C., Lee V., Zhang Y., Adams M. E., Yang B. B. Tandem repeats are involved in G1 domain inhibition of versican expression and secretion and the G3 domain enhances glycosaminoglycan modification and product secretion via the complement-binding protein-like motif. J Biol Chem. 2000 Jul 14;275(28):21255–21261. doi: 10.1074/jbc.M001443200. [DOI] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES