Abstract
BACKGROUND: Histamine is released from mast cells by immunologic and non-immunologic stimuli during salivary gland inflammation, regulating salivary secretion. The receptor-secretory mechanism has not been studied in detail. AIMS: The studies reported were directed toward elucidating signal transduction/second messenger pathways within the rat submandibular gland associated with 2-thiazolylethylamine (ThEA)-induced H(1)-receptor responses. MATERIALS AND METHODS: To assess the H(1) receptor subtype expression in the rat submandibular gland, a radioligand binding assay was performed. The study also included inositolphosphates and cyclic GMP accumulation, protein kinase C and nitric oxide synthase activities, and amylase release. RESULTS: The histamine H(1) receptor subtype is expressed on the rat submandibular gland with high-affinity binding sites. The ThEA effect was associated with activation of phosphoinositide-specific phospholipase C, translocation of protein kinase C, stimulation of nitric oxide synthase activity and increased production of cyclic GMP. ThEA stimulation of nitric oxide synthase and cyclic GMP was blunted by agents able to interfere with calcium movilization, while a protein kinase C inhibitor was able to stimulate ThEA action. On the other hand, ThEA stimulation evoked amylase release via the H1 receptor but was not followed by the L-arginine/nitric oxide pathway activation. CONCLUSIONS: These results suggest that, apart from the effect of ThEA on amylase release, it also appears to be a vasoactive chemical mediator that triggers vasodilatation, modulating the course of inflammation.
Full Text
The Full Text of this article is available as a PDF (371.3 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- BERNFELD P. Enzymes of starch degradation and synthesis. Adv Enzymol Relat Subj Biochem. 1951;12:379–428. doi: 10.1002/9780470122570.ch7. [DOI] [PubMed] [Google Scholar]
- Bacman S. R., Berra A., Sterin-Borda L., Borda E. S. Human primary Sjögren's syndrome autoantibodies as mediators of nitric oxide release coupled to lacrimal gland muscarinic acetylcholine receptors. Curr Eye Res. 1998 Dec;17(12):1135–1142. doi: 10.1076/ceyr.17.12.1135.5124. [DOI] [PubMed] [Google Scholar]
- Berridge M. J., Downes C. P., Hanley M. R. Lithium amplifies agonist-dependent phosphatidylinositol responses in brain and salivary glands. Biochem J. 1982 Sep 15;206(3):587–595. doi: 10.1042/bj2060587. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Bredt D. S., Ferris C. D., Snyder S. H. Nitric oxide synthase regulatory sites. Phosphorylation by cyclic AMP-dependent protein kinase, protein kinase C, and calcium/calmodulin protein kinase; identification of flavin and calmodulin binding sites. J Biol Chem. 1992 Jun 5;267(16):10976–10981. [PubMed] [Google Scholar]
- Claro E., García A., Picatoste F. Histamine-stimulated phosphoinositide hydrolysis in developing rat brain. Mol Pharmacol. 1987 Sep;32(3):384–390. [PubMed] [Google Scholar]
- Cockcroft S., Thomas G. M. Inositol-lipid-specific phospholipase C isoenzymes and their differential regulation by receptors. Biochem J. 1992 Nov 15;288(Pt 1):1–14. doi: 10.1042/bj2880001. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Dobigny C., Saffar J. L. H1 and H2 histamine receptors modulate osteoclastic resorption by different pathways: evidence obtained by using receptor antagonists in a rat synchronized resorption model. J Cell Physiol. 1997 Oct;173(1):10–18. doi: 10.1002/(SICI)1097-4652(199710)173:1<10::AID-JCP2>3.0.CO;2-M. [DOI] [PubMed] [Google Scholar]
- Edwards A. V., Garrett J. R. Endothelium-derived vasodilator responses to sympathetic stimulation of the submandibular gland in the cat. J Physiol. 1992 Oct;456:491–501. doi: 10.1113/jphysiol.1992.sp019348. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Eguchi T., Ishikawa Y., Ishida H. Mechanism underlying histamine-induced desensitization of amylase secretion in rat parotid glands. Br J Pharmacol. 1998 Aug;124(7):1523–1533. doi: 10.1038/sj.bjp.0701981. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Fu T., Okano Y., Hagiwara M., Hidaka H., Nozawa Y. Bradykinin-induced translocation of protein kinases C in neuroblastoma NCB-20 cell: dependence on 1,2-diacylglycerol content and free calcium. Biochem Biophys Res Commun. 1989 Aug 15;162(3):1279–1286. doi: 10.1016/0006-291x(89)90812-7. [DOI] [PubMed] [Google Scholar]
- Garthwaite J., Southam E., Boulton C. L., Nielsen E. B., Schmidt K., Mayer B. Potent and selective inhibition of nitric oxide-sensitive guanylyl cyclase by 1H-[1,2,4]oxadiazolo[4,3-a]quinoxalin-1-one. Mol Pharmacol. 1995 Aug;48(2):184–188. [PubMed] [Google Scholar]
- Genaro A. M., Stranieri G. M., Borda E. Involvement of the endogenous nitric oxide signalling system in bradykinin receptor activation in rat submandibular salivary gland. Arch Oral Biol. 2000 Sep;45(9):723–729. doi: 10.1016/s0003-9969(00)00048-0. [DOI] [PubMed] [Google Scholar]
- Harper J. F., Brooker G. Amylase secretion from the rat parotid: refractoriness to muscarinic and adrenergic agonists. Mol Pharmacol. 1978 Nov;14(6):1031–1045. [PubMed] [Google Scholar]
- Hashioka T. Recepto-secretory mechanism in histamine-stimulated amylase release from rat parotid gland. Inflamm Res. 1995 Jun;44(6):245–247. doi: 10.1007/BF01782976. [DOI] [PubMed] [Google Scholar]
- Hattori Y., Endou M., Shirota M., Kanno M. Dissociation of phosphoinositide hydrolysis and positive inotropic effect of histamine mediated by H1-receptors in guinea-pig left atria. Naunyn Schmiedebergs Arch Pharmacol. 1989 Aug;340(2):196–203. doi: 10.1007/BF00168969. [DOI] [PubMed] [Google Scholar]
- Hokin-Neaverson M., Sadeghian K. Separation of [3H] inositol monophosphates and [3H] inositol on silica gel glass-fiber sheets. J Chromatogr. 1976 May 26;120(2):502–505. doi: 10.1016/s0021-9673(76)80031-3. [DOI] [PubMed] [Google Scholar]
- Hough L. B. Genomics meets histamine receptors: new subtypes, new receptors. Mol Pharmacol. 2001 Mar;59(3):415–419. [PubMed] [Google Scholar]
- Kerezoudis N. P., Olgart L., Edwall L. Differential effects of nitric oxide synthesis inhibition on basal blood flow and antidromic vasodilation in rat oral tissues. Eur J Pharmacol. 1993 Sep 14;241(2-3):209–219. doi: 10.1016/0014-2999(93)90205-v. [DOI] [PubMed] [Google Scholar]
- Laight D. W., Woodward B., Waterfall J. F. Renal vasodilation to histamine in vitro: roles of nitric oxide, cyclo-oxygenase products and H2 receptors. Inflamm Res. 1995 Mar;44(3):116–120. doi: 10.1007/BF01782021. [DOI] [PubMed] [Google Scholar]
- Leirós C. P., Rosignoli F., Genaro A. M., Sales M. E., Sterin-Borda L., Santiago BordaE Differential activation of nitric oxide synthase through muscarinic acetylcholine receptors in rat salivary glands. J Auton Nerv Syst. 2000 Mar 15;79(2-3):99–107. doi: 10.1016/s0165-1838(99)00102-2. [DOI] [PubMed] [Google Scholar]
- Leurs R., Smit M. J., Timmerman H. Molecular pharmacological aspects of histamine receptors. Pharmacol Ther. 1995 Jun;66(3):413–463. doi: 10.1016/0163-7258(95)00006-3. [DOI] [PubMed] [Google Scholar]
- Lohinai Z., Balla I., Marczis J., Vass Z., Kovách A. G. The effect of a nitric oxide donor and an inhibitor of nitric oxide synthase on blood flow and vascular resistance in feline submandibular, parotid and pancreatic glands. Arch Oral Biol. 1996 Jul;41(7):699–704. doi: 10.1016/s0003-9969(96)00030-1. [DOI] [PubMed] [Google Scholar]
- Mak J. C., Roffel A. F., Katsunuma T., Elzinga C. R., Zaagsma J., Barnes P. J. Up-regulation of airway smooth muscle histamine H(1) receptor mRNA, protein, and function by beta(2)-adrenoceptor activation. Mol Pharmacol. 2000 May;57(5):857–864. [PubMed] [Google Scholar]
- Munson P. J., Rodbard D. Ligand: a versatile computerized approach for characterization of ligand-binding systems. Anal Biochem. 1980 Sep 1;107(1):220–239. doi: 10.1016/0003-2697(80)90515-1. [DOI] [PubMed] [Google Scholar]
- Mülsch A., Busse R. NG-nitro-L-arginine (N5-[imino(nitroamino)methyl]-L-ornithine) impairs endothelium-dependent dilations by inhibiting cytosolic nitric oxide synthesis from L-arginine. Naunyn Schmiedebergs Arch Pharmacol. 1990 Jan-Feb;341(1-2):143–147. doi: 10.1007/BF00195071. [DOI] [PubMed] [Google Scholar]
- Prast H., Lamberti C., Fischer H., Philippu A. Modulation of histamine release in the hypothalamus by nitric oxide. Inflamm Res. 1997 Mar;46 (Suppl 1):S41–S42. [PubMed] [Google Scholar]
- Putney J. W., Jr Identification of cellular activation mechanisms associated with salivary secretion. Annu Rev Physiol. 1986;48:75–88. doi: 10.1146/annurev.ph.48.030186.000451. [DOI] [PubMed] [Google Scholar]
- Saeki K., Ikeda S., Seo S., Murakami M., Nishibori M. Amylase secretion induced by histamine from guinea-pig parotid gland. Arch Int Pharmacodyn Ther. 1982 Jan;255(1):4–15. [PubMed] [Google Scholar]
- Shasby D. M., Winter M., Shasby S. S. Oxidants and conductance of cultured epithelial cell monolayers: inositol phospholipid hydrolysis. Am J Physiol. 1988 Dec;255(6 Pt 1):C781–C788. doi: 10.1152/ajpcell.1988.255.6.C781. [DOI] [PubMed] [Google Scholar]
- Soinila S., Vanhatalo S., Lumme A., Băck N., Soinila J. Nitric oxide synthase in the autonomic and sensory ganglia innervating the submandibular salivary gland. Microsc Res Tech. 1996 Sep 1;35(1):32–43. doi: 10.1002/(SICI)1097-0029(19960901)35:1<32::AID-JEMT4>3.0.CO;2-U. [DOI] [PubMed] [Google Scholar]
- Sterin-Borda L., Echagüe A. V., Leiros C. P., Genaro A., Borda E. Endogenous nitric oxide signalling system and the cardiac muscarinic acetylcholine receptor-inotropic response. Br J Pharmacol. 1995 Aug;115(8):1525–1531. doi: 10.1111/j.1476-5381.1995.tb16646.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Sterin-Borda L., Genaro A., Perez Leiros C., Cremaschi G., Vila Echagüe A., Borda E. Role of nitric oxide in cardiac beta-adrenoceptor-inotropic response. Cell Signal. 1998 Apr;10(4):253–257. doi: 10.1016/s0898-6568(97)00125-3. [DOI] [PubMed] [Google Scholar]
- Takai N., Uchihashi K., Higuchi K., Yoshida Y., Yamaguchi M. Localization of neuronal-constitutive nitric oxide synthase and secretory regulation by nitric oxide in the rat submandibular and sublingual glands. Arch Oral Biol. 1999 Sep;44(9):745–750. doi: 10.1016/s0003-9969(99)00064-3. [DOI] [PubMed] [Google Scholar]
- Tilly B. C., Tertoolen L. G., Lambrechts A. C., Remorie R., de Laat S. W., Moolenaar W. H. Histamine-H1-receptor-mediated phosphoinositide hydrolysis, Ca2+ signalling and membrane-potential oscillations in human HeLa carcinoma cells. Biochem J. 1990 Feb 15;266(1):235–243. doi: 10.1042/bj2660235. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Watson E. L., Singh J. C., McPhee C., Beavo J., Jacobson K. L. Regulation of cAMP metabolism in mouse parotid gland by cGMP and calcium. Mol Pharmacol. 1990 Oct;38(4):547–553. [PubMed] [Google Scholar]
- Yuan Y., Granger H. J., Zawieja D. C., DeFily D. V., Chilian W. M. Histamine increases venular permeability via a phospholipase C-NO synthase-guanylate cyclase cascade. Am J Physiol. 1993 May;264(5 Pt 2):H1734–H1739. doi: 10.1152/ajpheart.1993.264.5.H1734. [DOI] [PubMed] [Google Scholar]