Abstract
The Louisiana iris species Iris brevicaulis and I. fulva are morphologically and karyotypically distinct yet frequently hybridize in nature. A group of high-copy-number TY3/gypsy-like retrotransposons was characterized from these species and used to develop molecular markers that take advantage of the abundance and distribution of these elements in the large iris genome. The copy number of these IRRE elements (for iris retroelement), is approximately 1 x 10(5), accounting for approximately 6-10% of the approximately 10,000-Mb haploid Louisiana iris genome. IRRE elements are transcriptionally active in I. brevicaulis and I. fulva and their F(1) and backcross hybrids. The LTRs of the elements are more variable than the coding domains and can be used to define several distinct IRRE subfamilies. Transposon display or S-SAP markers specific to two of these subfamilies have been developed and are highly polymorphic among wild-collected individuals of each species. As IRRE elements are present in each of 11 iris species tested, the marker system has the potential to provide valuable comparative data on the dynamics of retrotransposition in large plant genomes.
Full Text
The Full Text of this article is available as a PDF (419.4 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Araujo P. G., Casacuberta J. M., Costa A. P., Hashimoto R. Y., Grandbastien M. A., Van Sluys M. A. Retrolyc1 subfamilies defined by different U3 LTR regulatory regions in the Lycopersicon genus. Mol Genet Genomics. 2001 Sep;266(1):35–41. doi: 10.1007/s004380100514. [DOI] [PubMed] [Google Scholar]
- Arnold M. L. Anderson's paradigm: Louisiana irises and the study of evolutionary phenomena. Mol Ecol. 2000 Nov;9(11):1687–1698. doi: 10.1046/j.1365-294x.2000.01090.x. [DOI] [PubMed] [Google Scholar]
- Bartolomé Carolina, Maside Xulio, Charlesworth Brian. On the abundance and distribution of transposable elements in the genome of Drosophila melanogaster. Mol Biol Evol. 2002 Jun;19(6):926–937. doi: 10.1093/oxfordjournals.molbev.a004150. [DOI] [PubMed] [Google Scholar]
- Bennetzen Jeffrey L. Mechanisms and rates of genome expansion and contraction in flowering plants. Genetica. 2002 May;115(1):29–36. doi: 10.1023/a:1016015913350. [DOI] [PubMed] [Google Scholar]
- Bowen N. J., McDonald J. F. Genomic analysis of Caenorhabditis elegans reveals ancient families of retroviral-like elements. Genome Res. 1999 Oct;9(10):924–935. doi: 10.1101/gr.9.10.924. [DOI] [PubMed] [Google Scholar]
- Carr Martin, Soloway Judith R., Robinson Thelma E., Brookfield John F. Y. Mechanisms regulating the copy numbers of six LTR retrotransposons in the genome of Drosophila melanogaster. Chromosoma. 2002 Feb;110(8):511–518. doi: 10.1007/s00412-001-0174-0. [DOI] [PubMed] [Google Scholar]
- Casacuberta J. M., Vernhettes S., Audeon C., Grandbastien M. A. Quasispecies in retrotransposons: a role for sequence variability in Tnt1 evolution. Genetica. 1997;100(1-3):109–117. [PubMed] [Google Scholar]
- Casacuberta J. M., Vernhettes S., Grandbastien M. A. Sequence variability within the tobacco retrotransposon Tnt1 population. EMBO J. 1995 Jun 1;14(11):2670–2678. doi: 10.1002/j.1460-2075.1995.tb07265.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Charlesworth B., Langley C. H. The population genetics of Drosophila transposable elements. Annu Rev Genet. 1989;23:251–287. doi: 10.1146/annurev.ge.23.120189.001343. [DOI] [PubMed] [Google Scholar]
- Charlesworth D., Wright S. I. Breeding systems and genome evolution. Curr Opin Genet Dev. 2001 Dec;11(6):685–690. doi: 10.1016/s0959-437x(00)00254-9. [DOI] [PubMed] [Google Scholar]
- Feschotte Cédric, Jiang Ning, Wessler Susan R. Plant transposable elements: where genetics meets genomics. Nat Rev Genet. 2002 May;3(5):329–341. doi: 10.1038/nrg793. [DOI] [PubMed] [Google Scholar]
- Flavell A. J., Dunbar E., Anderson R., Pearce S. R., Hartley R., Kumar A. Ty1-copia group retrotransposons are ubiquitous and heterogeneous in higher plants. Nucleic Acids Res. 1992 Jul 25;20(14):3639–3644. doi: 10.1093/nar/20.14.3639. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Flavell R. B., Bennett M. D., Smith J. B., Smith D. B. Genome size and the proportion of repeated nucleotide sequence DNA in plants. Biochem Genet. 1974 Oct;12(4):257–269. doi: 10.1007/BF00485947. [DOI] [PubMed] [Google Scholar]
- Fu Huihua, Dooner Hugo K. Intraspecific violation of genetic colinearity and its implications in maize. Proc Natl Acad Sci U S A. 2002 Jun 11;99(14):9573–9578. doi: 10.1073/pnas.132259199. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hull R. Classification of reverse transcribing elements: a discussion document. Arch Virol. 1999;144(1):209–214. doi: 10.1007/s007050050498. [DOI] [PubMed] [Google Scholar]
- Johnston J. S., Bennett M. D., Rayburn A. L., Galbraith D. W., Price H. J. Reference standards for determination of DNA content of plant nuclei. Am J Bot. 1999 May;86(5):609–613. [PubMed] [Google Scholar]
- Kalendar R., Tanskanen J., Immonen S., Nevo E., Schulman A. H. Genome evolution of wild barley (Hordeum spontaneum) by BARE-1 retrotransposon dynamics in response to sharp microclimatic divergence. Proc Natl Acad Sci U S A. 2000 Jun 6;97(12):6603–6607. doi: 10.1073/pnas.110587497. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kimura Y., Tosa Y., Shimada S., Sogo R., Kusaba M., Sunaga T., Betsuyaku S., Eto Y., Nakayashiki H., Mayama S. OARE-1, a Ty1-copia retrotransposon in oat activated by abiotic and biotic stresses. Plant Cell Physiol. 2001 Dec;42(12):1345–1354. doi: 10.1093/pcp/pce171. [DOI] [PubMed] [Google Scholar]
- Kumar A., Bennetzen J. L. Plant retrotransposons. Annu Rev Genet. 1999;33:479–532. doi: 10.1146/annurev.genet.33.1.479. [DOI] [PubMed] [Google Scholar]
- Labrador M., Farré M., Utzet F., Fontdevila A. Interspecific hybridization increases transposition rates of Osvaldo. Mol Biol Evol. 1999 Jul;16(7):931–937. doi: 10.1093/oxfordjournals.molbev.a026182. [DOI] [PubMed] [Google Scholar]
- Leeton P. R., Smyth D. R. An abundant LINE-like element amplified in the genome of Lilium speciosum. Mol Gen Genet. 1993 Feb;237(1-2):97–104. doi: 10.1007/BF00282789. [DOI] [PubMed] [Google Scholar]
- Malik H. S., Eickbush T. H. Modular evolution of the integrase domain in the Ty3/Gypsy class of LTR retrotransposons. J Virol. 1999 Jun;73(6):5186–5190. doi: 10.1128/jvi.73.6.5186-5190.1999. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Malik H. S., Henikoff S., Eickbush T. H. Poised for contagion: evolutionary origins of the infectious abilities of invertebrate retroviruses. Genome Res. 2000 Sep;10(9):1307–1318. doi: 10.1101/gr.145000. [DOI] [PubMed] [Google Scholar]
- Manninen I., Schulman A. H. BARE-1, a copia-like retroelement in barley (Hordeum vulgare L.). Plant Mol Biol. 1993 Aug;22(5):829–846. doi: 10.1007/BF00027369. [DOI] [PubMed] [Google Scholar]
- Marín I., Lloréns C. Ty3/Gypsy retrotransposons: description of new Arabidopsis thaliana elements and evolutionary perspectives derived from comparative genomic data. Mol Biol Evol. 2000 Jul;17(7):1040–1049. doi: 10.1093/oxfordjournals.molbev.a026385. [DOI] [PubMed] [Google Scholar]
- Meyers B. C., Tingey S. V., Morgante M. Abundance, distribution, and transcriptional activity of repetitive elements in the maize genome. Genome Res. 2001 Oct;11(10):1660–1676. doi: 10.1101/gr.188201. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Nakajima R., Noma K., Ohtsubo H., Ohtsubo E. Identification and characterization of two tandem repeat sequences (TrsB and TrsC) and a retrotransposon (RIRE1) as genome-general sequences in rice. Genes Genet Syst. 1996 Dec;71(6):373–382. doi: 10.1266/ggs.71.373. [DOI] [PubMed] [Google Scholar]
- O'Neill R. J., O'Neill M. J., Graves J. A. Undermethylation associated with retroelement activation and chromosome remodelling in an interspecific mammalian hybrid. Nature. 1998 May 7;393(6680):68–72. doi: 10.1038/29985. [DOI] [PubMed] [Google Scholar]
- Preston B. D. Error-prone retrotransposition: rime of the ancient mutators. Proc Natl Acad Sci U S A. 1996 Jul 23;93(15):7427–7431. doi: 10.1073/pnas.93.15.7427. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Rozas J., Rozas R. DnaSP version 3: an integrated program for molecular population genetics and molecular evolution analysis. Bioinformatics. 1999 Feb;15(2):174–175. doi: 10.1093/bioinformatics/15.2.174. [DOI] [PubMed] [Google Scholar]
- SanMiguel P., Gaut B. S., Tikhonov A., Nakajima Y., Bennetzen J. L. The paleontology of intergene retrotransposons of maize. Nat Genet. 1998 Sep;20(1):43–45. doi: 10.1038/1695. [DOI] [PubMed] [Google Scholar]
- SanMiguel P., Tikhonov A., Jin Y. K., Motchoulskaia N., Zakharov D., Melake-Berhan A., Springer P. S., Edwards K. J., Lee M., Avramova Z. Nested retrotransposons in the intergenic regions of the maize genome. Science. 1996 Nov 1;274(5288):765–768. doi: 10.1126/science.274.5288.765. [DOI] [PubMed] [Google Scholar]
- Suoniemi A., Narvanto A., Schulman A. H. The BARE-1 retrotransposon is transcribed in barley from an LTR promoter active in transient assays. Plant Mol Biol. 1996 May;31(2):295–306. doi: 10.1007/BF00021791. [DOI] [PubMed] [Google Scholar]
- Van den Broeck D., Maes T., Sauer M., Zethof J., De Keukeleire P., D'hauw M., Van Montagu M., Gerats T. Transposon Display identifies individual transposable elements in high copy number lines. Plant J. 1998 Jan;13(1):121–129. doi: 10.1046/j.1365-313X.1998.00004.x. [DOI] [PubMed] [Google Scholar]
- Vernhettes S., Grandbastien M. A., Casacuberta J. M. The evolutionary analysis of the Tnt1 retrotransposon in Nicotiana species reveals the high variability of its regulatory sequences. Mol Biol Evol. 1998 Jul;15(7):827–836. doi: 10.1093/oxfordjournals.molbev.a025988. [DOI] [PubMed] [Google Scholar]
- Vicient CM, Suoniemi A, Anamthawat-Jónsson K, Tanskanen J, Beharav A, Nevo E, Schulman AH. Retrotransposon BARE-1 and Its Role in Genome Evolution in the Genus Hordeum. Plant Cell. 1999 Sep;11(9):1769–1784. doi: 10.1105/tpc.11.9.1769. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Vos P., Hogers R., Bleeker M., Reijans M., van de Lee T., Hornes M., Frijters A., Pot J., Peleman J., Kuiper M. AFLP: a new technique for DNA fingerprinting. Nucleic Acids Res. 1995 Nov 11;23(21):4407–4414. doi: 10.1093/nar/23.21.4407. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Waugh R., McLean K., Flavell A. J., Pearce S. R., Kumar A., Thomas B. B., Powell W. Genetic distribution of Bare-1-like retrotransposable elements in the barley genome revealed by sequence-specific amplification polymorphisms (S-SAP). Mol Gen Genet. 1997 Feb 27;253(6):687–694. doi: 10.1007/s004380050372. [DOI] [PubMed] [Google Scholar]
- Wright D. A., Voytas D. F. Potential retroviruses in plants: Tat1 is related to a group of Arabidopsis thaliana Ty3/gypsy retrotransposons that encode envelope-like proteins. Genetics. 1998 Jun;149(2):703–715. doi: 10.1093/genetics/149.2.703. [DOI] [PMC free article] [PubMed] [Google Scholar]