Skip to main content
Philosophical Transactions of the Royal Society B: Biological Sciences logoLink to Philosophical Transactions of the Royal Society B: Biological Sciences
. 2003 Jun 29;358(1434):1095–1103. doi: 10.1098/rstb.2003.1298

Genetic mechanisms of apomixis.

Melissa Spielman 1, Rinke Vinkenoog 1, Rod J Scott 1
PMCID: PMC1693203  PMID: 12831475

Abstract

The introduction of apomixis to crops would allow desirable genotypes to be propagated while preventing undesirable gene flow, but so far there has been little success in transferring this trait from a natural apomict to another species. One explanation is the sensitivity of endosperm to changes in relative maternal and paternal contribution owing to parental imprinting, an epigenetic system of transcriptional regulation by which some genes are expressed from only the maternally or paternally contributed allele. In sexual species, endosperm typically requires a ratio of two maternal genomes to one paternal genome for normal development, but this ratio is often altered in apomicts, suggesting that the imprinting system is altered as well. We present evidence that modification of DNA methylation is one mechanism by which the imprinting system could be altered to allow endosperm development in apomicts. Another feature of natural apomixis is the modification of the normal fertilization programme. Sexual reproduction uses both sperm from each pollen grain, but pseudogamous apomicts, which require a sexual endosperm to support the asexual embryo, often use just one. We present evidence that multiple fertilization of the central cell is possible in Arabidopsis thaliana, suggesting that pseudogamous apomicts may also need to acquire a mechanism for preventing more than one sperm from contributing to the endosperm. We conclude that strategies to transfer apomixis to crop species should take account of endosperm development and particularly its sensitivity to parental imprinting, as well as the mechanism of fertilization.

Full Text

The Full Text of this article is available as a PDF (528.2 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Adams S., Vinkenoog R., Spielman M., Dickinson H. G., Scott R. J. Parent-of-origin effects on seed development in Arabidopsis thaliana require DNA methylation. Development. 2000 Jun;127(11):2493–2502. doi: 10.1242/dev.127.11.2493. [DOI] [PubMed] [Google Scholar]
  2. Alleman M., Doctor J. Genomic imprinting in plants: observations and evolutionary implications. Plant Mol Biol. 2000 Jun;43(2-3):147–161. doi: 10.1023/a:1006419025155. [DOI] [PubMed] [Google Scholar]
  3. Boutilier Kim, Offringa Remko, Sharma Vijay K., Kieft Henk, Ouellet Thérèse, Zhang Lemin, Hattori Jiro, Liu Chun-Ming, van Lammeren André A. M., Miki Brian L. A. Ectopic expression of BABY BOOM triggers a conversion from vegetative to embryonic growth. Plant Cell. 2002 Aug;14(8):1737–1749. doi: 10.1105/tpc.001941. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Chaudhury A. M., Ming L., Miller C., Craig S., Dennis E. S., Peacock W. J. Fertilization-independent seed development in Arabidopsis thaliana. Proc Natl Acad Sci U S A. 1997 Apr 15;94(8):4223–4228. doi: 10.1073/pnas.94.8.4223. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Faure J. E., Digonnet C., Dumas C. An in vitro system for adhesion and fusion of maize gametes. Science. 1994 Mar 18;263(5153):1598–1600. doi: 10.1126/science.263.5153.1598. [DOI] [PubMed] [Google Scholar]
  6. Finnegan E. J., Peacock W. J., Dennis E. S. Reduced DNA methylation in Arabidopsis thaliana results in abnormal plant development. Proc Natl Acad Sci U S A. 1996 Aug 6;93(16):8449–8454. doi: 10.1073/pnas.93.16.8449. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Grimanelli D., Leblanc O., Perotti E., Grossniklaus U. Developmental genetics of gametophytic apomixis. Trends Genet. 2001 Oct;17(10):597–604. doi: 10.1016/s0168-9525(01)02454-4. [DOI] [PubMed] [Google Scholar]
  8. Grossniklaus U., Nogler G. A., van Dijk P. J. How to avoid sex: the genetic control of gametophytic apomixis. Plant Cell. 2001 Jul;13(7):1491–1498. doi: 10.1105/tpc.13.7.1491. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Grossniklaus U., Vielle-Calzada J. P., Hoeppner M. A., Gagliano W. B. Maternal control of embryogenesis by MEDEA, a polycomb group gene in Arabidopsis. Science. 1998 Apr 17;280(5362):446–450. doi: 10.1126/science.280.5362.446. [DOI] [PubMed] [Google Scholar]
  10. Hecht V., Vielle-Calzada J. P., Hartog M. V., Schmidt E. D., Boutilier K., Grossniklaus U., de Vries S. C. The Arabidopsis SOMATIC EMBRYOGENESIS RECEPTOR KINASE 1 gene is expressed in developing ovules and embryos and enhances embryogenic competence in culture. Plant Physiol. 2001 Nov;127(3):803–816. [PMC free article] [PubMed] [Google Scholar]
  11. Koltunow A. M. Apomixis: Embryo Sacs and Embryos Formed without Meiosis or Fertilization in Ovules. Plant Cell. 1993 Oct;5(10):1425–1437. doi: 10.1105/tpc.5.10.1425. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Kranz E, von Wiegen P, Quader H, Lorz H. Endosperm development after fusion of isolated, single maize sperm and central cells in vitro . Plant Cell. 1998 Apr;10(4):511–524. doi: 10.1105/tpc.10.4.511. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Lin B. Y. Ploidy barrier to endosperm development in maize. Genetics. 1984 May;107(1):103–115. doi: 10.1093/genetics/107.1.103. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Luo M., Bilodeau P., Koltunow A., Dennis E. S., Peacock W. J., Chaudhury A. M. Genes controlling fertilization-independent seed development in Arabidopsis thaliana. Proc Natl Acad Sci U S A. 1999 Jan 5;96(1):296–301. doi: 10.1073/pnas.96.1.296. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Moore T., Haig D. Genomic imprinting in mammalian development: a parental tug-of-war. Trends Genet. 1991 Feb;7(2):45–49. doi: 10.1016/0168-9525(91)90230-N. [DOI] [PubMed] [Google Scholar]
  16. Ohad N., Margossian L., Hsu Y. C., Williams C., Repetti P., Fischer R. L. A mutation that allows endosperm development without fertilization. Proc Natl Acad Sci U S A. 1996 May 28;93(11):5319–5324. doi: 10.1073/pnas.93.11.5319. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Ohad N., Yadegari R., Margossian L., Hannon M., Michaeli D., Harada J. J., Goldberg R. B., Fischer R. L. Mutations in FIE, a WD polycomb group gene, allow endosperm development without fertilization. Plant Cell. 1999 Mar;11(3):407–416. doi: 10.1105/tpc.11.3.407. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Pessino S. C., Espinoza F., Martínez E. J., Ortiz J. P., Valle E. M., Quarín C. L. Isolation of cDNA clones differentially expressed in flowers of apomictic and sexual Paspalum notatum. Hereditas. 2001;134(1):35–42. doi: 10.1111/j.1601-5223.2001.00035.x. [DOI] [PubMed] [Google Scholar]
  19. Scott R. J., Spielman M., Bailey J., Dickinson H. G. Parent-of-origin effects on seed development in Arabidopsis thaliana. Development. 1998 Sep;125(17):3329–3341. doi: 10.1242/dev.125.17.3329. [DOI] [PubMed] [Google Scholar]
  20. Spielman M., Preuss D., Li F. L., Browne W. E., Scott R. J., Dickinson H. G. TETRASPORE is required for male meiotic cytokinesis in Arabidopsis thaliana. Development. 1997 Jul;124(13):2645–2657. doi: 10.1242/dev.124.13.2645. [DOI] [PubMed] [Google Scholar]
  21. Spielman M., Vinkenoog R., Dickinson H. G., Scott R. J. The epigenetic basis of gender in flowering plants and mammals. Trends Genet. 2001 Dec;17(12):705–711. doi: 10.1016/s0168-9525(01)02519-7. [DOI] [PubMed] [Google Scholar]
  22. Spillane C., Vielle-Calzada J. P., Grossniklaus U. APO2001: A sexy apomixer in como. Plant Cell. 2001 Jul;13(7):1480–1491. doi: 10.1105/tpc.13.7.1480. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Surani M. A. Imprinting and the initiation of gene silencing in the germ line. Cell. 1998 May 1;93(3):309–312. doi: 10.1016/s0092-8674(00)81156-3. [DOI] [PubMed] [Google Scholar]
  24. Tilghman S. M. The sins of the fathers and mothers: genomic imprinting in mammalian development. Cell. 1999 Jan 22;96(2):185–193. doi: 10.1016/s0092-8674(00)80559-0. [DOI] [PubMed] [Google Scholar]
  25. Vinkenoog R., Spielman M., Adams S., Fischer R. L., Dickinson H. G., Scott R. J. Hypomethylation promotes autonomous endosperm development and rescues postfertilization lethality in fie mutants. Plant Cell. 2000 Nov;12(11):2271–2282. doi: 10.1105/tpc.12.11.2271. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Philosophical Transactions of the Royal Society B: Biological Sciences are provided here courtesy of The Royal Society

RESOURCES