Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 2003 Oct 15;375(Pt 2):395–403. doi: 10.1042/BJ20030556

Cyclic ADP-ribose is a second messenger in the lipopolysaccharide-stimulated proliferation of human peripheral blood mononuclear cells.

Santina Bruzzone 1, Antonio De Flora 1, Cesare Usai 1, Richard Graeff 1, Hon Cheung Lee 1
PMCID: PMC1223684  PMID: 12852785

Abstract

Cyclic ADP-ribose (cADPR), a universal calcium mobilizer from intracellular stores, was recently demonstrated to stimulate proliferation of various cell types. The role of cADPR in a specific process of monocyte- and plasma-mediated activation of T-lymphocytes by lipopolysaccharide (LPS) was addressed using human mononuclear cells from peripheral blood (PBMCs). Incubation of PBMCs with 0.1 microg/ml of LPS for 24 h provided a doubling in the intracellular levels of cADPR as compared with unstimulated PBMCs. The cADPR increase was abolished either by prior removal of monocytes or by pre-incubating a whole PBMC population with a monoclonal antibody against the monocyte marker CD14. The increased concentrations of intracellular cADPR elicited by LPS stimulation were paralleled by significant increases in NAD+ levels and in the activities of ectocellular and membrane-bound fractions of ADP-ribosyl cyclase/cADPR hydrolase activities. A cytosolic ADP-ribosyl cyclase was also detectable in PBMCs and its activity was comparably enhanced by LPS stimulation. This soluble cyclase is distinguished from the membrane-bound cyclase by both substrate and inhibitor sensitivities. LPS-stimulated PBMCs showed 2-3-fold increases of intracellular calcium ([Ca2+]i), and these changes were prevented completely by the cADPR antagonist 8-Br-cADPR and by ryanodine. Both compounds, and the cyclase inhibitor nicotinamide, significantly inhibited the T-lymphocyte proliferation induced by LPS in PBMCs. These results demonstrate that cADPR plays a role of second messenger in the adaptive immune recognition process of LPS-stimulated proliferation of PBMCs.

Full Text

The Full Text of this article is available as a PDF (150.6 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Berridge M. J., Lipp P., Bootman M. D. The versatility and universality of calcium signalling. Nat Rev Mol Cell Biol. 2000 Oct;1(1):11–21. doi: 10.1038/35036035. [DOI] [PubMed] [Google Scholar]
  2. Blanchard D. K., Djeu J. Y., Klein T. W., Friedman H., Stewart W. E., 2nd Interferon-gamma induction by lipopolysaccharide: dependence on interleukin 2 and macrophages. J Immunol. 1986 Feb 1;136(3):963–970. [PubMed] [Google Scholar]
  3. Boittin François-Xavier, Dipp Michelle, Kinnear Nicholas P., Galione Antony, Evans A. Mark. Vasodilation by the calcium-mobilizing messenger cyclic ADP-ribose. J Biol Chem. 2002 Dec 16;278(11):9602–9608. doi: 10.1074/jbc.M204891200. [DOI] [PubMed] [Google Scholar]
  4. Bradford M. M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem. 1976 May 7;72:248–254. doi: 10.1016/0003-2697(76)90527-3. [DOI] [PubMed] [Google Scholar]
  5. Bruzzone S., Franco L., Guida L., Zocchi E., Contini P., Bisso A., Usai C., De Flora A. A self-restricted CD38-connexin 43 cross-talk affects NAD+ and cyclic ADP-ribose metabolism and regulates intracellular calcium in 3T3 fibroblasts. J Biol Chem. 2001 Oct 15;276(51):48300–48308. doi: 10.1074/jbc.M107308200. [DOI] [PubMed] [Google Scholar]
  6. Bruzzone S., Guida L., Zocchi E., Franco L., De Flora A Connexin 43 hemi channels mediate Ca2+-regulated transmembrane NAD+ fluxes in intact cells. FASEB J. 2000 Nov 9;15(1):10–12. doi: 10.1096/fj.00-0566fje. [DOI] [PubMed] [Google Scholar]
  7. Carafoli E., Santella L., Branca D., Brini M. Generation, control, and processing of cellular calcium signals. Crit Rev Biochem Mol Biol. 2001 Apr;36(2):107–260. doi: 10.1080/20014091074183. [DOI] [PubMed] [Google Scholar]
  8. Chien E. J., Chien C. H., Chen J. J., Wang S. W., Hsieh D. J. Bacterial lipopolysaccharide activates protein kinase C, but not intracellular calcium elevation, in human peripheral T cells. J Cell Biochem. 2000 Jan;76(3):404–410. doi: 10.1002/(sici)1097-4644(20000301)76:3<404::aid-jcb8>3.0.co;2-e. [DOI] [PubMed] [Google Scholar]
  9. Dentener M. A., Bazil V., Von Asmuth E. J., Ceska M., Buurman W. A. Involvement of CD14 in lipopolysaccharide-induced tumor necrosis factor-alpha, IL-6 and IL-8 release by human monocytes and alveolar macrophages. J Immunol. 1993 Apr 1;150(7):2885–2891. [PubMed] [Google Scholar]
  10. Deshpande Deepak A., Walseth Timothy F., Panettieri Reynold A., Kannan Mathur S. CD38/cyclic ADP-ribose-mediated Ca2+ signaling contributes to airway smooth muscle hyper-responsiveness. FASEB J. 2003 Jan 2;17(3):452–454. doi: 10.1096/fj.02-0450fje. [DOI] [PubMed] [Google Scholar]
  11. Ferretti Stephane, Bonneau Olivier, Dubois Gerald R., Jones Carol E., Trifilieff Alexandre. IL-17, produced by lymphocytes and neutrophils, is necessary for lipopolysaccharide-induced airway neutrophilia: IL-15 as a possible trigger. J Immunol. 2003 Feb 15;170(4):2106–2112. doi: 10.4049/jimmunol.170.4.2106. [DOI] [PubMed] [Google Scholar]
  12. Giovannini L., Panichi V., Migliori M., De Pietro S., Bertelli A. A., Fulgenzi A., Filippi C., Sarnico I., Taccola D., Palla R. 1,25-dihydroxyvitamin D(3) dose-dependently inhibits LPS-induced cytokines production in PBMC modulating intracellular calcium. Transplant Proc. 2001 May;33(3):2366–2368. doi: 10.1016/s0041-1345(01)02023-1. [DOI] [PubMed] [Google Scholar]
  13. Graeff Richard, Lee Hon Cheung. A novel cycling assay for cellular cADP-ribose with nanomolar sensitivity. Biochem J. 2002 Jan 15;361(Pt 2):379–384. doi: 10.1042/bj3610379. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Guida L., Franco L., Zocchi E., De Flora A. Structural role of disulfide bridges in the cyclic ADP-ribose related bifunctional ectoenzyme CD38. FEBS Lett. 1995 Jul 24;368(3):481–484. doi: 10.1016/0014-5793(95)00715-l. [DOI] [PubMed] [Google Scholar]
  15. Guse A. H., da Silva C. P., Berg I., Skapenko A. L., Weber K., Heyer P., Hohenegger M., Ashamu G. A., Schulze-Koops H., Potter B. V. Regulation of calcium signalling in T lymphocytes by the second messenger cyclic ADP-ribose. Nature. 1999 Mar 4;398(6722):70–73. doi: 10.1038/18024. [DOI] [PubMed] [Google Scholar]
  16. Guse Andreas H. Cyclic ADP-ribose (cADPR) and nicotinic acid adenine dinucleotide phosphate (NAADP): novel regulators of Ca2+-signaling and cell function. Curr Mol Med. 2002 May;2(3):273–282. doi: 10.2174/1566524024605707. [DOI] [PubMed] [Google Scholar]
  17. Hodge G., Hodge S., Han P. Increased levels of apoptosis of leukocyte subsets in cultured PBMCs compared to whole blood as shown by Annexin V binding: relevance to cytokine production. Cytokine. 2000 Dec;12(12):1763–1768. doi: 10.1006/cyto.2000.0790. [DOI] [PubMed] [Google Scholar]
  18. Holst O., Ulmer A. J., Brade H., Flad H. D., Rietschel E. T. Biochemistry and cell biology of bacterial endotoxins. FEMS Immunol Med Microbiol. 1996 Dec 1;16(2):83–104. doi: 10.1111/j.1574-695X.1996.tb00126.x. [DOI] [PubMed] [Google Scholar]
  19. Howard M., Grimaldi J. C., Bazan J. F., Lund F. E., Santos-Argumedo L., Parkhouse R. M., Walseth T. F., Lee H. C. Formation and hydrolysis of cyclic ADP-ribose catalyzed by lymphocyte antigen CD38. Science. 1993 Nov 12;262(5136):1056–1059. doi: 10.1126/science.8235624. [DOI] [PubMed] [Google Scholar]
  20. Le J., Lin J. X., Henriksen-DeStefano D., Vilcek J. Bacterial lipopolysaccharide-induced interferon-gamma production: roles of interleukin 1 and interleukin 2. J Immunol. 1986 Jun 15;136(12):4525–4530. [PubMed] [Google Scholar]
  21. Lee H. C. Physiological functions of cyclic ADP-ribose and NAADP as calcium messengers. Annu Rev Pharmacol Toxicol. 2001;41:317–345. doi: 10.1146/annurev.pharmtox.41.1.317. [DOI] [PubMed] [Google Scholar]
  22. Liu M. K., Herrera-Velit P., Brownsey R. W., Reiner N. E. CD14-dependent activation of protein kinase C and mitogen-activated protein kinases (p42 and p44) in human monocytes treated with bacterial lipopolysaccharide. J Immunol. 1994 Sep 15;153(6):2642–2652. [PubMed] [Google Scholar]
  23. Lynn W. A., Golenbock D. T. Lipopolysaccharide antagonists. Immunol Today. 1992 Jul;13(7):271–276. doi: 10.1016/0167-5699(92)90009-V. [DOI] [PubMed] [Google Scholar]
  24. Manigold T., Böcker U., Traber P., Dong-Si T., Kurimoto M., Hanck C., Singer M. V., Rossol S. Lipopolysaccharide/endotoxin induces IL-18 via CD14 in human peripheral blood mononuclear cells in vitro. Cytokine. 2000 Dec;12(12):1788–1792. doi: 10.1006/cyto.2000.0783. [DOI] [PubMed] [Google Scholar]
  25. Martin Michael U., Wesche Holger. Summary and comparison of the signaling mechanisms of the Toll/interleukin-1 receptor family. Biochim Biophys Acta. 2002 Nov 11;1592(3):265–280. doi: 10.1016/s0167-4889(02)00320-8. [DOI] [PubMed] [Google Scholar]
  26. Matsui K., Tanaka N., Nishikawa A. Lipopolysaccharide of Haemophilus influenzae induces interleukin-5 mRNA expression in human peripheral blood mononuclear cells. J Interferon Cytokine Res. 2001 Jun;21(6):439–443. doi: 10.1089/107999001750277925. [DOI] [PubMed] [Google Scholar]
  27. Mattern T., Flad H. D., Brade L., Rietschel E. T., Ulmer A. J. Stimulation of human T lymphocytes by LPS is MHC unrestricted, but strongly dependent on B7 interactions. J Immunol. 1998 Apr 1;160(7):3412–3418. [PubMed] [Google Scholar]
  28. Mattern T., Girroleit G., Flad H. D., Rietschel E. T., Ulmer A. J. CD34(+) hematopoietic stem cells exert accessory function in lipopolysaccharide-induced T cell stimulation and CD80 expression on monocytes. J Exp Med. 1999 Feb 15;189(4):693–700. doi: 10.1084/jem.189.4.693. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Mattern T., Thanhäuser A., Reiling N., Toellner K. M., Duchrow M., Kusumoto S., Rietschel E. T., Ernst M., Brade H., Flad H. D. Endotoxin and lipid A stimulate proliferation of human T cells in the presence of autologous monocytes. J Immunol. 1994 Oct 1;153(7):2996–3004. [PubMed] [Google Scholar]
  30. Medzhitov R. Toll-like receptors and innate immunity. Nat Rev Immunol. 2001 Nov;1(2):135–145. doi: 10.1038/35100529. [DOI] [PubMed] [Google Scholar]
  31. Milner E. C., Rudbach J. A., Von Eschen K. B. Cellular responses to bacterial lipopolysaccharide: LPS facilitates priming of antigen-reactive T cells. Scand J Immunol. 1983 Jul;18(1):29–35. doi: 10.1111/j.1365-3083.1983.tb00832.x. [DOI] [PubMed] [Google Scholar]
  32. Munshi Cyrus B., Graeff Richard, Lee Hon Cheung. Evidence for a causal role of CD38 expression in granulocytic differentiation of human HL-60 cells. J Biol Chem. 2002 Oct 16;277(51):49453–49458. doi: 10.1074/jbc.M209313200. [DOI] [PubMed] [Google Scholar]
  33. Musso T., Deaglio S., Franco L., Calosso L., Badolato R., Garbarino G., Dianzani U., Malavasi F. CD38 expression and functional activities are up-regulated by IFN-gamma on human monocytes and monocytic cell lines. J Leukoc Biol. 2001 Apr;69(4):605–612. [PubMed] [Google Scholar]
  34. Peavy D. L., Adler W. H., Smith R. T. The mitogenic effects of endotoxin and staphylococcal enterotoxin B on mouse spleen cells and human peripheral lymphocytes. J Immunol. 1970 Dec;105(6):1453–1458. [PubMed] [Google Scholar]
  35. Podestà M., Zocchi E., Pitto A., Usai C., Franco L., Bruzzone S., Guida L., Bacigalupo A., Scadden D. T., Walseth T. F. Extracellular cyclic ADP-ribose increases intracellular free calcium concentration and stimulates proliferation of human hemopoietic progenitors. FASEB J. 2000 Apr;14(5):680–690. doi: 10.1096/fasebj.14.5.680. [DOI] [PubMed] [Google Scholar]
  36. Podestà Marina, Pitto Anna, Figari Osvaldo, Bacigalupo Andrea, Bruzzone Santina, Guida Lucrezia, Franco Luisa, De Flora Antonio, Zocchi Elena. Cyclic ADP-ribose generation by CD38 improves human hemopoietic stem cell engraftment into NOD/SCID mice. FASEB J. 2002 Dec 3;17(2):310–312. doi: 10.1096/fj.02-0520fje. [DOI] [PubMed] [Google Scholar]
  37. Raetz C. R. Biochemistry of endotoxins. Annu Rev Biochem. 1990;59:129–170. doi: 10.1146/annurev.bi.59.070190.001021. [DOI] [PubMed] [Google Scholar]
  38. Rietschel E. T., Brade H. Bacterial endotoxins. Sci Am. 1992 Aug;267(2):54–61. doi: 10.1038/scientificamerican0892-54. [DOI] [PubMed] [Google Scholar]
  39. Rietschel E. T., Kirikae T., Schade F. U., Mamat U., Schmidt G., Loppnow H., Ulmer A. J., Zähringer U., Seydel U., Di Padova F. Bacterial endotoxin: molecular relationships of structure to activity and function. FASEB J. 1994 Feb;8(2):217–225. doi: 10.1096/fasebj.8.2.8119492. [DOI] [PubMed] [Google Scholar]
  40. Schafer P. H., Wang L., Wadsworth S. A., Davis J. E., Siekierka J. J. T cell activation signals up-regulate p38 mitogen-activated protein kinase activity and induce TNF-alpha production in a manner distinct from LPS activation of monocytes. J Immunol. 1999 Jan 15;162(2):659–668. [PubMed] [Google Scholar]
  41. Surette M. E., Nadeau M., Borgeat P., Gosselin J. Priming of human peripheral blood mononuclear cells with lipopolysaccharides for enhanced arachidonic acid release and leukotriene synthesis. J Leukoc Biol. 1996 May;59(5):709–715. doi: 10.1002/jlb.59.5.709. [DOI] [PubMed] [Google Scholar]
  42. Tilg H., Trehu E., Atkins M. B., Dinarello C. A., Mier J. W. Interleukin-6 (IL-6) as an anti-inflammatory cytokine: induction of circulating IL-1 receptor antagonist and soluble tumor necrosis factor receptor p55. Blood. 1994 Jan 1;83(1):113–118. [PubMed] [Google Scholar]
  43. Triantafilou Martha, Triantafilou Kathy. Lipopolysaccharide recognition: CD14, TLRs and the LPS-activation cluster. Trends Immunol. 2002 Jun;23(6):301–304. doi: 10.1016/s1471-4906(02)02233-0. [DOI] [PubMed] [Google Scholar]
  44. Ulmer A. J., Flad H., Rietschel T., Mattern T. Induction of proliferation and cytokine production in human T lymphocytes by lipopolysaccharide (LPS). Toxicology. 2000 Nov 2;152(1-3):37–45. doi: 10.1016/s0300-483x(00)00290-0. [DOI] [PubMed] [Google Scholar]
  45. Vogel S. N., Hilfiker M. L., Caulfield M. J. Endotoxin-induced T lymphocyte proliferation. J Immunol. 1983 Apr;130(4):1774–1779. [PubMed] [Google Scholar]
  46. Walseth T. F., Lee H. C. Synthesis and characterization of antagonists of cyclic-ADP-ribose-induced Ca2+ release. Biochim Biophys Acta. 1993 Sep 13;1178(3):235–242. doi: 10.1016/0167-4889(93)90199-y. [DOI] [PubMed] [Google Scholar]
  47. Wright S. D., Ramos R. A., Tobias P. S., Ulevitch R. J., Mathison J. C. CD14, a receptor for complexes of lipopolysaccharide (LPS) and LPS binding protein. Science. 1990 Sep 21;249(4975):1431–1433. doi: 10.1126/science.1698311. [DOI] [PubMed] [Google Scholar]
  48. Zocchi E., Daga A., Usai C., Franco L., Guida L., Bruzzone S., Costa A., Marchetti C., De Flora A. Expression of CD38 increases intracellular calcium concentration and reduces doubling time in HeLa and 3T3 cells. J Biol Chem. 1998 Apr 3;273(14):8017–8024. doi: 10.1074/jbc.273.14.8017. [DOI] [PubMed] [Google Scholar]
  49. Zocchi E., Podestà M., Pitto A., Usai C., Bruzzone S., Franco L., Guida L., Bacigalupo A., De Flora A. Paracrinally stimulated expansion of early human hemopoietic progenitors by stroma-generated cyclic ADP-ribose. FASEB J. 2001 Jul;15(9):1610–1612. doi: 10.1096/fj.00-0803fje. [DOI] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES