Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1975 Dec;151(3):543–553. doi: 10.1042/bj1510543

The structure of keratan sulphates from various sources.

H U Choi, K Meyer
PMCID: PMC1172401  PMID: 130131

Abstract

Quantitative structural comparisons were made between keratan sulphates isolated from various sources, namely pig nucleus pulposus, bovine cornea, and the costal cartilages of children, a young adult with Marfan syndrome and of old human autopsies. In human costal cartilage the amount of keratan sulphate increases markedly with age, although total mucopolysaccharide decreases to some extent, concomitant with a decrease in chondroitin 4-sulphate and an increase in chondroitin 6-sulphate. Comparison of molecular weights estimated by gel chromatography with those calculated from the molar ratio of galactose to mannose indicates that keratan sulphates of human costal cartilages of children and of a young adult with Marfan syndrome, and of pig nucleus pulposus, contain one mannose residue per chain, whereas keratan sulphates of old human costal cartilage and of bovine cornea contain one to two, and two, per chain respectively. After mild acid-catalysed desulphation of pig nucleus pulposus keratan sulphate, approx. 12% of the mucopolysaccharide aggregates irreversibly once the water is removed from the polysaccharide. The following conclusions have been drawn from a methylation analysis of keratan sulphates of various sources, aided by g.l.c.-mass spectrometry. (1) Fucose and N-acetylneuraminic acid are non-reducing terminal residues and the sialic acid is linked to the 3-position of galactose residues. (2) Pig nucleus pulposus keratan sulphate has approximately 4 non-reducing terminal groups per molecule and appears to be slightly less branched than the costal-cartilage keratan sulphate of children. The branching in human costal-cartilage keratan sulphates decreases with age. Bovine corneal keratan sulphate appears to be unbranched. (3) Mannose residues are linked by 3 different substituents in human costal-cartilage and bovine corneal keratan sulphates, and by two different substituents in pig nucleus pulposus keratan sulphate. (4) The sulphate ester groups are all on the 6-position of N-acetyl-glucosamine and galactose residues. The degree of sulphation increases with age in costal keratan sulphates with the increase mainly of the galactose 6-sulphate residues.

Full text

PDF
543

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. ANTONOPOULOS C. A., BORELIUS E., GARDELL S., HAMNSTROM B., SCOTT J. E. The precipitation of polyanions by long-chain aliphatic ammonium compounds. IV. Elution in salt solutions of mucopolysaccharide-quaternary ammonium complexes adsorbed on a support. Biochim Biophys Acta. 1961 Dec 9;54:213–226. doi: 10.1016/0006-3002(61)90360-2. [DOI] [PubMed] [Google Scholar]
  2. Bhavanandan V. P., Meyer K. Mucopolysaccharides: N-acetylglucosamine- and galactose-6-sulfates from keratosulfate. Science. 1966 Mar 18;151(3716):1404–1405. doi: 10.1126/science.151.3716.1404. [DOI] [PubMed] [Google Scholar]
  3. Bhavanandan V. P., Meyer K. Studies on keratosulfates. Methylation and partial acid hydrolysis of bovine corneal keratosulfate. J Biol Chem. 1967 Oct 10;242(19):4352–4359. [PubMed] [Google Scholar]
  4. Bhavanandan V. P., Meyer K. Studies on keratosulfates. Methylation, desulfation, and acid hydrolysis studies on old human rib cartilage keratosulfate. J Biol Chem. 1968 Mar 10;243(5):1052–1059. [PubMed] [Google Scholar]
  5. Choi H. U., Carubelli R. Neuramin-lactose, neuramin-lactose sulfate, and lactose sulfate from rat mammary glands. Isolation, purification, and permethylation studies. Biochemistry. 1968 Dec;7(12):4423–4430. doi: 10.1021/bi00852a039. [DOI] [PubMed] [Google Scholar]
  6. Choi H. U., Meyer K. The structure of a sulfated glycoprotein of chick allantoic fluid. J Biol Chem. 1974 Feb 10;249(3):932–939. [PubMed] [Google Scholar]
  7. Choi H. U., Meyer K. The structure of a sulfated glycoprotein of chick allantoic fluid: methylation and periodate oxidation. Carbohydr Res. 1975 Mar;40(1):77–88. doi: 10.1016/s0008-6215(00)82670-1. [DOI] [PubMed] [Google Scholar]
  8. HAKOMORI S. A RAPID PERMETHYLATION OF GLYCOLIPID, AND POLYSACCHARIDE CATALYZED BY METHYLSULFINYL CARBANION IN DIMETHYL SULFOXIDE. J Biochem. 1964 Feb;55:205–208. [PubMed] [Google Scholar]
  9. Hirano S., Meyer K. Purification and properties of a keratan sulfate hydrolyzing enzyme, an endo-beta-galactosidase. Connect Tissue Res. 1973;2(1):1–10. doi: 10.3109/03008207309152594. [DOI] [PubMed] [Google Scholar]
  10. Hopwood J. J., Robinson H. C. The alkali-labile linkage between keratan sulphate and protein. Biochem J. 1974 Jul;141(1):57–69. doi: 10.1042/bj1410057. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. KAPLAN D., MEYER K. Ageing of human cartilage. Nature. 1959 May 2;183(4670):1267–1268. doi: 10.1038/1831267a0. [DOI] [PubMed] [Google Scholar]
  12. Kieras F. J. The linkage region of cartilage keratan sulfate to protein. J Biol Chem. 1974 Dec 10;249(23):7506–7513. [PubMed] [Google Scholar]
  13. Kim J. H., Shome B., Liao T. H., Pierce J. G. Analysis of neutral sugars by gas-liquid chromatography of alditol acetates: application to thyrotropic hormone and other glycoproteins. Anal Biochem. 1967 Aug;20(2):258–274. doi: 10.1016/0003-2697(67)90031-0. [DOI] [PubMed] [Google Scholar]
  14. LAURENT T. C., ANSETH A. Studies on corneal polysaccharides. II. Characterization. Exp Eye Res. 1961 Dec;1:99–105. doi: 10.1016/s0014-4835(61)80014-6. [DOI] [PubMed] [Google Scholar]
  15. Lohmander S., Antonopoulos C. A., Friberg U. Chemical and metabolic heterogeneity of chondroitin sulfate and keratin sulfate in guinea pig cartilage and nucleus pulposus. Biochim Biophys Acta. 1973 Apr 28;304(2):430–448. doi: 10.1016/0304-4165(73)90263-8. [DOI] [PubMed] [Google Scholar]
  16. MEYER K., HOFFMAN P., LINKER A. Mucopolysaccharides of costal cartilage. Science. 1958 Oct 17;128(3329):896–896. doi: 10.1126/science.128.3329.896. [DOI] [PubMed] [Google Scholar]
  17. MEYER K., LINKER A., DAVIDSON E. A., WEISSMANN B. The mucopolysaccharides of bovine cornea. J Biol Chem. 1953 Dec;205(2):611–616. [PubMed] [Google Scholar]
  18. Mathews M. B., Cifonelli J. A. Comparative biochemistry of keratosulfates. J Biol Chem. 1965 Nov;240(11):4140–4145. [PubMed] [Google Scholar]
  19. PARK J. T., JOHNSON M. J. A submicrodetermination of glucose. J Biol Chem. 1949 Nov;181(1):149–151. [PubMed] [Google Scholar]
  20. REISSIG J. L., STORMINGER J. L., LELOIR L. F. A modified colorimetric method for the estimation of N-acetylamino sugars. J Biol Chem. 1955 Dec;217(2):959–966. [PubMed] [Google Scholar]
  21. SENO N., MEYER K., ANDERSON B., HOFFMAN P. VARIATIONS IN KERATOSULFATES. J Biol Chem. 1965 Mar;240:1005–1010. [PubMed] [Google Scholar]
  22. SVENNERHOLM L. Quantitative estimation of sialic acids. II. A colorimetric resorcinol-hydrochloric acid method. Biochim Biophys Acta. 1957 Jun;24(3):604–611. doi: 10.1016/0006-3002(57)90254-8. [DOI] [PubMed] [Google Scholar]
  23. Stellner K., Saito H., Hakomori S. I. Determination of aminosugar linkages in glycolipids by methylation. Aminosugar linkages of ceramide pentasaccharides of rabbit erythrocytes and of Forssman antigen. Arch Biochem Biophys. 1973 Apr;155(2):464–472. doi: 10.1016/0003-9861(73)90138-0. [DOI] [PubMed] [Google Scholar]
  24. Stern E. L., Lindahl B., Rodén L. The linkage of dermatan sulfate to protein. II. Monosaccharide sequence of the linkage region. J Biol Chem. 1971 Sep 25;246(18):5707–5715. [PubMed] [Google Scholar]
  25. Terho T. T., Hartiala K. Method for determination of the sulfate content of glycosaminoglycans. Anal Biochem. 1971 Jun;41(2):471–476. doi: 10.1016/0003-2697(71)90167-9. [DOI] [PubMed] [Google Scholar]
  26. WARREN L. The thiobarbituric acid assay of sialic acids. J Biol Chem. 1959 Aug;234(8):1971–1975. [PubMed] [Google Scholar]
  27. Yamagata T., Saito H., Habuchi O., Suzuki S. Purification and properties of bacterial chondroitinases and chondrosulfatases. J Biol Chem. 1968 Apr 10;243(7):1523–1535. [PubMed] [Google Scholar]
  28. Yang H. J., Hakomori S. I. A sphingolipid having a novel type of ceramide and lacto-N-fucopentaose 3. J Biol Chem. 1971 Mar 10;246(5):1192–1200. [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES