Skip to main content
Proceedings of the National Academy of Sciences of the United States of America logoLink to Proceedings of the National Academy of Sciences of the United States of America
. 1992 May 15;89(10):4668–4672. doi: 10.1073/pnas.89.10.4668

Estrogen receptors colocalize with low-affinity nerve growth factor receptors in cholinergic neurons of the basal forebrain.

C D Toran-Allerand 1, R C Miranda 1, W D Bentham 1, F Sohrabji 1, T J Brown 1, R B Hochberg 1, N J MacLusky 1
PMCID: PMC49144  PMID: 1316615

Abstract

The rodent and primate basal forebrain is a target of a family of endogenous peptide signaling molecules, the neurotrophins--nerve growth factor, brain-derived neurotrophic factor, and neurotrophin 3--and of the gonadal steroid hormone estrogen, both of which have been implicated in cholinergic function. To investigate whether or not these ligands may act on the same neurons in the developing and adult rodent basal forebrain, we combined autoradiography with 125I-labeled estrogen and either nonisotopic in situ hybridization histochemistry or immunohistochemistry. We now report colocalization of intranuclear estrogen binding sites with the mRNA and immunoreactive protein for the low-affinity nerve growth factor receptor, which binds all three neurotrophins, and for the cholinergic marker enzyme choline acetyltransferase (acetyl-CoA:choline O-acetyltransferase, EC 2.3.1.6). Colocalization of estrogen and low-affinity nerve growth factor receptors implies that their ligands may act on the same neuron, perhaps synergistically, to regulate the expression of specific genes or gene networks that may influence neuronal survival, differentiation, regeneration, and plasticity. That cholinergic neurons in brain regions subserving cognitive functions may be regulated not only by the neurotrophins but also by estrogen may have considerable relevance for the development and maintenance of neural substrates of cognition. If estrogen-neurotrophin interactions are important for survival of target neurons, then clinical conditions associated with estrogen deficiency could contribute to the atrophy or death of these neurons. These findings have implications for the subsequent decline in those differentiated neural functions associated with aging and Alzheimer disease.

Full text

PDF
4668

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Alderson R. F., Alterman A. L., Barde Y. A., Lindsay R. M. Brain-derived neurotrophic factor increases survival and differentiated functions of rat septal cholinergic neurons in culture. Neuron. 1990 Sep;5(3):297–306. doi: 10.1016/0896-6273(90)90166-d. [DOI] [PubMed] [Google Scholar]
  2. Arnold A. P. Quantitative analysis of sex differences in hormone accumulation in the zebra finch brain: methodological and theoretical issues. J Comp Neurol. 1980 Feb 1;189(3):421–436. doi: 10.1002/cne.901890302. [DOI] [PubMed] [Google Scholar]
  3. Barde Y. A. Trophic factors and neuronal survival. Neuron. 1989 Jun;2(6):1525–1534. doi: 10.1016/0896-6273(89)90040-8. [DOI] [PubMed] [Google Scholar]
  4. Bartus R. T., Dean R. L., 3rd, Beer B., Lippa A. S. The cholinergic hypothesis of geriatric memory dysfunction. Science. 1982 Jul 30;217(4558):408–414. doi: 10.1126/science.7046051. [DOI] [PubMed] [Google Scholar]
  5. Batchelor P. E., Armstrong D. M., Blaker S. N., Gage F. H. Nerve growth factor receptor and choline acetyltransferase colocalization in neurons within the rat forebrain: response to fimbria-fornix transection. J Comp Neurol. 1989 Jun 8;284(2):187–204. doi: 10.1002/cne.902840204. [DOI] [PubMed] [Google Scholar]
  6. Berrard S., Brice A., Mallet J. Molecular genetic approach to the study of mammalian choline acetyltransferase. Brain Res Bull. 1989 Jan;22(1):147–153. doi: 10.1016/0361-9230(89)90139-1. [DOI] [PubMed] [Google Scholar]
  7. Brice A., Berrard S., Raynaud B., Ansieau S., Coppola T., Weber M. J., Mallet J. Complete sequence of a cDNA encoding an active rat choline acetyltransferase: a tool to investigate the plasticity of cholinergic phenotype expression. J Neurosci Res. 1989 Jul;23(3):266–273. doi: 10.1002/jnr.490230304. [DOI] [PubMed] [Google Scholar]
  8. Brown T. J., MacLusky N. J., Toran-Allerand C. D., Zielinski J. E., Hochberg R. B. Characterization of 11 beta-methoxy-16 alpha-[125I]iodoestradiol binding: neuronal localization of estrogen-binding sites in the developing rat brain. Endocrinology. 1989 May;124(5):2074–2088. doi: 10.1210/endo-124-5-2074. [DOI] [PubMed] [Google Scholar]
  9. Chandler C. E., Parsons L. M., Hosang M., Shooter E. M. A monoclonal antibody modulates the interaction of nerve growth factor with PC12 cells. J Biol Chem. 1984 Jun 10;259(11):6882–6889. [PubMed] [Google Scholar]
  10. Ernfors P., Hallbök F., Ebendal T., Shooter E. M., Radeke M. J., Misko T. P., Persson H. Developmental and regional expression of beta-nerve growth factor receptor mRNA in the chick and rat. Neuron. 1988 Dec;1(10):983–996. doi: 10.1016/0896-6273(88)90155-9. [DOI] [PubMed] [Google Scholar]
  11. Ernfors P., Wetmore C., Olson L., Persson H. Identification of cells in rat brain and peripheral tissues expressing mRNA for members of the nerve growth factor family. Neuron. 1990 Oct;5(4):511–526. doi: 10.1016/0896-6273(90)90090-3. [DOI] [PubMed] [Google Scholar]
  12. Fischer W., Björklund A., Chen K., Gage F. H. NGF improves spatial memory in aged rodents as a function of age. J Neurosci. 1991 Jul;11(7):1889–1906. doi: 10.1523/JNEUROSCI.11-07-01889.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Freund T. F. GABAergic septohippocampal neurons contain parvalbumin. Brain Res. 1989 Jan 30;478(2):375–381. doi: 10.1016/0006-8993(89)91520-5. [DOI] [PubMed] [Google Scholar]
  14. Gabrieli J. D., Corkin S., Crawford J. D. The influence of sex steroids on human nonverbal memory processes. Ann N Y Acad Sci. 1985;444:457–459. doi: 10.1111/j.1749-6632.1985.tb37609.x. [DOI] [PubMed] [Google Scholar]
  15. Gnahn H., Hefti F., Heumann R., Schwab M. E., Thoenen H. NGF-mediated increase of choline acetyltransferase (ChAT) in the neonatal rat forebrain: evidence for a physiological role of NGF in the brain? Brain Res. 1983 Jul;285(1):45–52. doi: 10.1016/0165-3806(83)90107-4. [DOI] [PubMed] [Google Scholar]
  16. Hefti F. Nerve growth factor promotes survival of septal cholinergic neurons after fimbrial transections. J Neurosci. 1986 Aug;6(8):2155–2162. doi: 10.1523/JNEUROSCI.06-08-02155.1986. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Hier D. B., Crowley W. F., Jr Spatial ability in androgen-deficient men. N Engl J Med. 1982 May 20;306(20):1202–1205. doi: 10.1056/NEJM198205203062003. [DOI] [PubMed] [Google Scholar]
  18. Higgins G. A., Koh S., Chen K. S., Gage F. H. NGF induction of NGF receptor gene expression and cholinergic neuronal hypertrophy within the basal forebrain of the adult rat. Neuron. 1989 Aug;3(2):247–256. doi: 10.1016/0896-6273(89)90038-x. [DOI] [PubMed] [Google Scholar]
  19. Kaplan D. R., Martin-Zanca D., Parada L. F. Tyrosine phosphorylation and tyrosine kinase activity of the trk proto-oncogene product induced by NGF. Nature. 1991 Mar 14;350(6314):158–160. doi: 10.1038/350158a0. [DOI] [PubMed] [Google Scholar]
  20. Klein R., Jing S. Q., Nanduri V., O'Rourke E., Barbacid M. The trk proto-oncogene encodes a receptor for nerve growth factor. Cell. 1991 Apr 5;65(1):189–197. doi: 10.1016/0092-8674(91)90419-y. [DOI] [PubMed] [Google Scholar]
  21. Klein R., Parada L. F., Coulier F., Barbacid M. trkB, a novel tyrosine protein kinase receptor expressed during mouse neural development. EMBO J. 1989 Dec 1;8(12):3701–3709. doi: 10.1002/j.1460-2075.1989.tb08545.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Koh S., Loy R. Localization and development of nerve growth factor-sensitive rat basal forebrain neurons and their afferent projections to hippocampus and neocortex. J Neurosci. 1989 Sep;9(9):2999–0318. doi: 10.1523/JNEUROSCI.09-09-02999.1989. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Kromer L. F. Nerve growth factor treatment after brain injury prevents neuronal death. Science. 1987 Jan 9;235(4785):214–216. doi: 10.1126/science.3798108. [DOI] [PubMed] [Google Scholar]
  24. Kurz E. M., Sengelaub D. R., Arnold A. P. Androgens regulate the dendritic length of mammalian motoneurons in adulthood. Science. 1986 Apr 18;232(4748):395–398. doi: 10.1126/science.3961488. [DOI] [PubMed] [Google Scholar]
  25. Lamballe F., Klein R., Barbacid M. trkC, a new member of the trk family of tyrosine protein kinases, is a receptor for neurotrophin-3. Cell. 1991 Sep 6;66(5):967–979. doi: 10.1016/0092-8674(91)90442-2. [DOI] [PubMed] [Google Scholar]
  26. Luine V. N., McEwen B. S. Sex differences in cholinergic enzymes of diagonal band nuclei in the rat preoptic area. Neuroendocrinology. 1983 Jun;36(6):475–482. doi: 10.1159/000123501. [DOI] [PubMed] [Google Scholar]
  27. MacLusky N. J., Clark A. S., Naftolin F., Goldman-Rakic P. S. Estrogen formation in the mammalian brain: possible role of aromatase in sexual differentiation of the hippocampus and neocortex. Steroids. 1987 Oct-Dec;50(4-6):459–474. doi: 10.1016/0039-128x(87)90032-8. [DOI] [PubMed] [Google Scholar]
  28. Martin-Zanca D., Barbacid M., Parada L. F. Expression of the trk proto-oncogene is restricted to the sensory cranial and spinal ganglia of neural crest origin in mouse development. Genes Dev. 1990 May;4(5):683–694. doi: 10.1101/gad.4.5.683. [DOI] [PubMed] [Google Scholar]
  29. Matsumoto A., Arai Y. Neuronal plasticity in the deafferented hypothalamic arcuate nucleus of adult female rats and its enhancement by treatment with estrogen. J Comp Neurol. 1981 Apr 1;197(2):197–205. doi: 10.1002/cne.901970203. [DOI] [PubMed] [Google Scholar]
  30. Miranda R. C., Toran-Allerand C. D. Developmental expression of estrogen receptor mRNA in the rat cerebral cortex: a nonisotopic in situ hybridization histochemistry study. Cereb Cortex. 1992 Jan-Feb;2(1):1–15. doi: 10.1093/cercor/2.1.1. [DOI] [PubMed] [Google Scholar]
  31. Mobley W. C., Woo J. E., Edwards R. H., Riopelle R. J., Longo F. M., Weskamp G., Otten U., Valletta J. S., Johnston M. V. Developmental regulation of nerve growth factor and its receptor in the rat caudate-putamen. Neuron. 1989 Nov;3(5):655–664. doi: 10.1016/0896-6273(89)90276-6. [DOI] [PubMed] [Google Scholar]
  32. Mukku V. R., Stancel G. M. Regulation of epidermal growth factor receptor by estrogen. J Biol Chem. 1985 Aug 15;260(17):9820–9824. [PubMed] [Google Scholar]
  33. Nance D. M., Shryne J., Gorski R. A. Facilitation of female sexual behavior in male rats by septal lesions: an interaction with estrogen. Horm Behav. 1975 Sep;6(3):289–299. doi: 10.1016/0018-506x(75)90015-x. [DOI] [PubMed] [Google Scholar]
  34. Nelson K. G., Takahashi T., Bossert N. L., Walmer D. K., McLachlan J. A. Epidermal growth factor replaces estrogen in the stimulation of female genital-tract growth and differentiation. Proc Natl Acad Sci U S A. 1991 Jan 1;88(1):21–25. doi: 10.1073/pnas.88.1.21. [DOI] [PMC free article] [PubMed] [Google Scholar]
  35. Radeke M. J., Misko T. P., Hsu C., Herzenberg L. A., Shooter E. M. Gene transfer and molecular cloning of the rat nerve growth factor receptor. Nature. 1987 Feb 12;325(6105):593–597. doi: 10.1038/325593a0. [DOI] [PubMed] [Google Scholar]
  36. Rodriguez-Tébar A., Dechant G., Barde Y. A. Binding of brain-derived neurotrophic factor to the nerve growth factor receptor. Neuron. 1990 Apr;4(4):487–492. doi: 10.1016/0896-6273(90)90107-q. [DOI] [PubMed] [Google Scholar]
  37. Schatteman G. C., Gibbs L., Lanahan A. A., Claude P., Bothwell M. Expression of NGF receptor in the developing and adult primate central nervous system. J Neurosci. 1988 Mar;8(3):860–873. doi: 10.1523/JNEUROSCI.08-03-00860.1988. [DOI] [PMC free article] [PubMed] [Google Scholar]
  38. Sehgal A., Patil N., Chao M. A constitutive promoter directs expression of the nerve growth factor receptor gene. Mol Cell Biol. 1988 Aug;8(8):3160–3167. doi: 10.1128/mcb.8.8.3160. [DOI] [PMC free article] [PubMed] [Google Scholar]
  39. Toran-Allerand C. D., Ellis L., Pfenninger K. H. Estrogen and insulin synergism in neurite growth enhancement in vitro: mediation of steroid effects by interactions with growth factors? Brain Res. 1988 Jun 1;469(1-2):87–100. doi: 10.1016/0165-3806(88)90172-1. [DOI] [PubMed] [Google Scholar]
  40. Toran-Allerand C. D., Miranda R. C., Hochberg R. B., MacLusky N. J. Cellular variations in estrogen receptor mRNA translation in the developing brain: evidence from combined [125I]estrogen autoradiography and non-isotopic in situ hybridization histochemistry. Brain Res. 1992 Mar 27;576(1):25–41. doi: 10.1016/0006-8993(92)90606-a. [DOI] [PubMed] [Google Scholar]
  41. Toran-Allerand C. D. Organotypic culture of the developing cerebral cortex and hypothalamus: relevance to sexual differentiation. Psychoneuroendocrinology. 1991;16(1-3):7–24. doi: 10.1016/0306-4530(91)90068-5. [DOI] [PubMed] [Google Scholar]
  42. Toran-Allerand C. D. Sex steroids and the development of the newborn mouse hypothalamus and preoptic area in vitro: implications for sexual differentiation. Brain Res. 1976 Apr 23;106(2):407–412. doi: 10.1016/0006-8993(76)91038-6. [DOI] [PubMed] [Google Scholar]
  43. Weisz A., Rosales R. Identification of an estrogen response element upstream of the human c-fos gene that binds the estrogen receptor and the AP-1 transcription factor. Nucleic Acids Res. 1990 Sep 11;18(17):5097–5106. doi: 10.1093/nar/18.17.5097. [DOI] [PMC free article] [PubMed] [Google Scholar]
  44. Whitehouse P. J., Price D. L., Struble R. G., Clark A. W., Coyle J. T., Delon M. R. Alzheimer's disease and senile dementia: loss of neurons in the basal forebrain. Science. 1982 Mar 5;215(4537):1237–1239. doi: 10.1126/science.7058341. [DOI] [PubMed] [Google Scholar]
  45. Zielinski J. E., Yabuki H., Pahuja S. L., Larner J. M., Hochberg R. B. 16 Alpha-[125I]iodo-11 beta-methoxy-17 beta-estradiol: a radiochemical probe for estrogen-sensitive tissues. Endocrinology. 1986 Jul;119(1):130–139. doi: 10.1210/endo-119-1-130. [DOI] [PubMed] [Google Scholar]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences

RESOURCES