Skip to main content
The Journal of Clinical Investigation logoLink to The Journal of Clinical Investigation
. 1976 Apr;57(4):1009–1018. doi: 10.1172/JCI108342

The effect of thyroid hormone on bile salt-independent bile flow and Na+, K+ -ATPase activity in liver plasma membranes enriched in bile canaliculi.

T J Layden, J L Boyer
PMCID: PMC436744  PMID: 133119

Abstract

The relationship between bile salt-independent canalicular flow and ATPase activity in liver plasma membranes (LPM) enriched in bile canaliculi, was studied in control, hyperthyroid, and hypothyroid rats. Canalicular bile production was significantly increased in hyperthyroid rats (3.19 +/- 0.23 mul/min per g liver) compared to controls (2.27 +/- 0.24 mul/min per g liver), while it diminished in hypothyroid animals (1.58 +/- 0.17 mul/min per g liver). Although bile salt excretion was also increased in hyperthyroid animals (62.4 +/- 13.3 vs. 41.2 +/- 8.4 nmol/min per g liver), the stimulation in canalicular secretion was primarily related to enhancement of the bile salt-independent fraction of flow (2.47 mul/min per g liver in hyperthyroid rats vs. 1.67 mul/min per g liver in controls). LPM Na+, K+-ATPase activity doubled in hyperthyroid animals (21.5 +/- 5.8 vs. 10.7 +/- 3.1 mumol Pi/mg protein per h) while Mg++-ATPase activity remained unchanged and 5'-nucleotidase activity increased to a small but significant extent. In hypothyroid rats, bile salt excretion remained unchanged from control values so that the reduced secretion was entirely secondary to an inhibition of bile salt-independent secretion (1.19 mul/min per g liver). Na+, K+-ATPase activity in the LPMs from hypothyroid animals decreased by nearly 50% (5.4 +/- 1.6 mumol Pi/mg protein per h), although comparable reductions in the specific activity of Mg++-ATPase and 5'-nucleotidase were also observed. Administration of L-thyroxine to hypothyroid animals restored both bile salt-independent canalicular secretion and membrane enzymes to control values within 2 and 4 days, respectively. Sodium dodecyl sulfate gel electrophoresis demonstrated no significant changes in LPM protein fractions from any of the treatment groups. These studies indicate that thyroid hormone has a parallel effect on bile salt-independent canalicular secretion and LPM Na+, K+-ATPase activity, supporting the hypothesis that Na+ transport and Na+, K+-ATPase may be determinants of bile salt-independent canalicular flow.

Full text

PDF
1009

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Berthelot P., Erlinger S., Dhumeaux D., Preaux A. M. Mechanism of phenobarbital-induced hypercholeresis in the rat. Am J Physiol. 1970 Sep;219(3):809–813. doi: 10.1152/ajplegacy.1970.219.3.809. [DOI] [PubMed] [Google Scholar]
  2. Boyer J. L., Bloomer J. R. Canalicular bile secretion in man. Studies utilizing the biliary clearance of (14C)mannitol. J Clin Invest. 1974 Oct;54(4):773–781. doi: 10.1172/JCI107817. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Boyer J. L. Canalicular bile formation in the isolated perfused rat liver. Am J Physiol. 1971 Oct;221(4):1156–1163. doi: 10.1152/ajplegacy.1971.221.4.1156. [DOI] [PubMed] [Google Scholar]
  4. Boyer J. L., Klatskin G. Canalicular bile flow and bile secretory pressure. Evidence for a non-bile salt dependent fraction in the isolated perfused rat liver. Gastroenterology. 1970 Dec;59(6):853–859. [PubMed] [Google Scholar]
  5. Boyer J. L., Reno D. Properties of (Na+ plus K+)-activated ATPase in rat liver plasma membranes enriched with bile canaliculi. Biochim Biophys Acta. 1975 Aug 5;401(1):59–72. doi: 10.1016/0005-2736(75)90341-7. [DOI] [PubMed] [Google Scholar]
  6. Dhumeaux D., Erlinger S., Benhamou J. P., Fauvert R. Effects of rose bengal on bile secretion in the rabbit: inhibition of a bile salt-independent fraction. Gut. 1970 Feb;11(2):134–140. doi: 10.1136/gut.11.2.134. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. ERIKSSON S. Influence of thyroid activity on excretion of bile acids and cholesterol in the rat. Proc Soc Exp Biol Med. 1957 Mar;94(3):582–584. doi: 10.3181/00379727-94-23019. [DOI] [PubMed] [Google Scholar]
  8. Edelman I. S. Thyroid thermogenesis. N Engl J Med. 1974 Jun 6;290(23):1303–1308. doi: 10.1056/NEJM197406062902308. [DOI] [PubMed] [Google Scholar]
  9. Erlinger S., Dhumeaux D., Berthelot P., Dumont M. Effect of inhibitors of sodium transport on bile formation in the rabbit. Am J Physiol. 1970 Aug;219(2):416–422. doi: 10.1152/ajplegacy.1970.219.2.416. [DOI] [PubMed] [Google Scholar]
  10. Erlinger S., Dhumeaux D. Mechanisms and control of secretion of bile water and electrolytes. Gastroenterology. 1974 Feb;66(2):281–304. [PubMed] [Google Scholar]
  11. Forker E. L., Hicklin T., Sornson H. The clearance of mannitol and erythritol in rat bile. Proc Soc Exp Biol Med. 1967 Oct;126(1):115–119. doi: 10.3181/00379727-126-32380. [DOI] [PubMed] [Google Scholar]
  12. Forker E. L. Two sites of bile formation as determined by mannitol and erythritol clearance in the guinea pig. J Clin Invest. 1967 Jul;46(7):1189–1195. doi: 10.1172/JCI105612. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Gartner L. M., Arias I. M. Hormonal control of hepatic bilirubin transport and conjugation. Am J Physiol. 1972 May;222(5):1091–1099. doi: 10.1152/ajplegacy.1972.222.5.1091. [DOI] [PubMed] [Google Scholar]
  14. Gumucio J. J., Valdivieso V. D. Studies on the mechanism of the ethynylestradiol impairment of bile flow and bile salt excretion in the rat. Gastroenterology. 1971 Sep;61(3):339–344. [PubMed] [Google Scholar]
  15. Heikel T. A., Lathe G. H. The effect of 17-alpha-ethinyl-substituted steroids on adenosine triphosphatases of rat liver plasma membrane. Biochem J. 1970 Jun;118(1):187–189. doi: 10.1042/bj1180187. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Hillier A. P. Transport of thyroxine glucuronide into bile. J Physiol. 1972 Dec;227(1):195–200. doi: 10.1113/jphysiol.1972.sp010026. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Hoch F. L., Lipmann F. THE UNCOUPLING OF RESPIRATION AND PHOSPHORYLATION BY THYROID HORMONES. Proc Natl Acad Sci U S A. 1954 Oct;40(10):909–921. doi: 10.1073/pnas.40.10.909. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Ismail-Beigi F., Edelman I. S. Effects of thyroid status on electrolyte distribution in rat tissues. Am J Physiol. 1973 Nov;225(5):1172–1177. doi: 10.1152/ajplegacy.1973.225.5.1172. [DOI] [PubMed] [Google Scholar]
  19. Ismail-Beigi F., Edelman I. S. The mechanism of the calorigenic action of thyroid hormone. Stimulation of Na plus + K plus-activated adenosinetriphosphatase activity. J Gen Physiol. 1971 Jun;57(6):710–722. doi: 10.1085/jgp.57.6.710. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Ismail-Beigi F., Edelman I. S. Time-course of the effects of thyroid hormone on respiration and Na+ + K+-ATPase activity in rat liver. Proc Soc Exp Biol Med. 1974 Sep;146(4):983–988. doi: 10.3181/00379727-146-38232. [DOI] [PubMed] [Google Scholar]
  21. Israel Y., Videla L., Macdonald A., Bernstein J. Metabolic alterations produced in the liver by chronic ethanol administration. Comparison between the effects produced by ethanol and by thyroid hormones. Biochem J. 1973 Jun;134(2):523–529. doi: 10.1042/bj1340523. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Javitt N. B., Emerman S. Effect of sodium taurolithocholate on bile flow and bile acid exeretion. J Clin Invest. 1968 May;47(5):1002–1014. doi: 10.1172/JCI105790. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Jones J. K., Ismail-Beigi F., Edelman I. S. Rat liver adenyl cyclase activity in various thyroid states. J Clin Invest. 1972 Sep;51(9):2498–2501. doi: 10.1172/JCI107064. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Katz A. I., Epstein F. H. Physiologic role of sodium-potassium-activated adenosine triphosphatase in the transport of cations across biologic membranes. N Engl J Med. 1968 Feb 1;278(5):253–261. doi: 10.1056/NEJM196802012780506. [DOI] [PubMed] [Google Scholar]
  25. Katz A. I., Lindheimer M. D. Renal sodium- and potassium-activated adenosine triphosphatase and sodium reabsorption in the hypothyroid rat. J Clin Invest. 1973 Apr;52(4):796–804. doi: 10.1172/JCI107243. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Keynes R. D. From frog skin to sheep rumen: a survey of transport of salts and water across multicellular structures. Q Rev Biophys. 1969 Aug;2(3):177–281. doi: 10.1017/s0033583500001086. [DOI] [PubMed] [Google Scholar]
  27. Krishna G., Hynie S., Brodie B. B. Effects of thyroid hormones on adenyl cyclase in adipose tissue and on free fatty acid mobilization. Proc Natl Acad Sci U S A. 1968 Mar;59(3):884–889. doi: 10.1073/pnas.59.3.884. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
  29. Laperche Y., Launay A., Oudéa P. Effects of phenobarbital and rose bengal on the ATPases of plasma membranes of rat and rabbit liver. Gut. 1972 Nov;13(11):920–925. doi: 10.1136/gut.13.11.920. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Lenard J. Protein and glycolipid components of human erythrocyte membranes. Biochemistry. 1970 Mar 3;9(5):1129–1132. doi: 10.1021/bi00807a012. [DOI] [PubMed] [Google Scholar]
  31. Luly P., Barnabei O., Tria E. Hormonal control in vitro of plasma membrane-bound (Na + -K + )-ATPase of rat liver. Biochim Biophys Acta. 1972 Sep 1;282(1):447–452. doi: 10.1016/0005-2736(72)90352-5. [DOI] [PubMed] [Google Scholar]
  32. Maddrey W. C., Boyer J. L. The acute and chronic effects of ethanol administration on bile secretion in the rat. J Lab Clin Med. 1973 Aug;82(2):215–225. [PubMed] [Google Scholar]
  33. Neville D. M., Jr Isolation of an organ specific protein antigen from cell-surface membrane of rat liver. Biochim Biophys Acta. 1968 Apr 9;154(3):540–552. doi: 10.1016/0005-2795(68)90014-7. [DOI] [PubMed] [Google Scholar]
  34. Ohnhaus E. E., Thorgeirsson S. S., Davies D. S., Breckenridge A. Changes in liver blood flow during enzyme induction. Biochem Pharmacol. 1971 Oct;20(10):2561–2570. doi: 10.1016/0006-2952(71)90164-x. [DOI] [PubMed] [Google Scholar]
  35. PREISIG R., COOPER H. L., WHEELER H. O. The relationship between taurocholate secretion rate and bile production in the unanesthetized dog during cholinergic blockade and during secretin administration. J Clin Invest. 1962 May;41:1152–1162. doi: 10.1172/JCI104568. [DOI] [PMC free article] [PubMed] [Google Scholar]
  36. Prandi D. Canalicular bile production in man. Eur J Clin Invest. 1975 Feb;5(1):1–6. doi: 10.1111/j.1365-2362.1975.tb00421.x. [DOI] [PubMed] [Google Scholar]
  37. SKOU J. C. ENZYMATIC BASIS FOR ACTIVE TRANSPORT OF NA+ AND K+ ACROSS CELL MEMBRANE. Physiol Rev. 1965 Jul;45:596–617. doi: 10.1152/physrev.1965.45.3.596. [DOI] [PubMed] [Google Scholar]
  38. STRAND O. EFFECTS OF D- AND L-TRIIODOTHYRONINE AND OF PROPYLTHIOURACIL ON THE PRODUCTION OF BILE ACIDS IN THE RAT. J Lipid Res. 1963 Jul;4:305–311. [PubMed] [Google Scholar]
  39. Shapiro A. L., Viñuela E., Maizel J. V., Jr Molecular weight estimation of polypeptide chains by electrophoresis in SDS-polyacrylamide gels. Biochem Biophys Res Commun. 1967 Sep 7;28(5):815–820. doi: 10.1016/0006-291x(67)90391-9. [DOI] [PubMed] [Google Scholar]
  40. Shephard E. H., Hübscher G. Phosphatidate biosynthesis in mitochondrial subfractions of rat liver. Biochem J. 1969 Jun;113(2):429–440. doi: 10.1042/bj1130429. [DOI] [PMC free article] [PubMed] [Google Scholar]
  41. Song C. S., Bodansky O. Subcellular localization and properties of 5'-nucleotidase in the rat liver. J Biol Chem. 1967 Feb 25;242(4):694–699. [PubMed] [Google Scholar]
  42. Song C. S., Rubin W., Rifkind A. B., Kappas A. Plasma membranes of the rat liver. Isolation and enzymatic characterization of a fraction rich in bile canaliculi. J Cell Biol. 1969 Apr;41(1):124–132. doi: 10.1083/jcb.41.1.124. [DOI] [PMC free article] [PubMed] [Google Scholar]
  43. TATA J. R., ERNSTER L., LINDBERG O., ARRHENIUS E., PEDERSEN S., HEDMAN R. The action of thyroid hormones at the cell level. Biochem J. 1963 Mar;86:408–428. doi: 10.1042/bj0860408. [DOI] [PMC free article] [PubMed] [Google Scholar]
  44. TATA J. R. Inhibition of the biological action of thyroid hormones by actinomycin D and puromycin. Nature. 1963 Mar 23;197:1167–1168. doi: 10.1038/1971167a0. [DOI] [PubMed] [Google Scholar]
  45. Tata J. R., Widnell C. C. Ribonucleic acid synthesis during the early action of thyroid hormones. Biochem J. 1966 Feb;98(2):604–620. doi: 10.1042/bj0980604. [DOI] [PMC free article] [PubMed] [Google Scholar]
  46. Wheeler H. O., Ross E. D., Bradley S. E. Canalicular bile production in dogs. Am J Physiol. 1968 Apr;214(4):866–874. doi: 10.1152/ajplegacy.1968.214.4.866. [DOI] [PubMed] [Google Scholar]

Articles from Journal of Clinical Investigation are provided here courtesy of American Society for Clinical Investigation

RESOURCES