Skip to main content
The Journal of Biophysical and Biochemical Cytology logoLink to The Journal of Biophysical and Biochemical Cytology
. 1960 Jul 1;7(4):631–644. doi: 10.1083/jcb.7.4.631

A Cytochemical Study on the Pancreas of the Guinea Pig

VI. Release of Enzymes and Ribonucleic Acid from Ribonucleoprotein Particles

Philip Siekevitz 1, George E Palade 1
PMCID: PMC2224893  PMID: 14446511

Abstract

Ribonucleoprotein (RNP)1 particles isolated by DOC treatment from pancreatic microsomes have a RNA content of 35 to 45 per cent of their dry weight. In the analytical ultracentrifuge about 85 per cent of the material has a sedimentation coefficient of ∼85 S. These particles contain amylase, RNase, and trypsin-activatable proteolytic activities which cannot be washed off or detached by incubation in 0.44 M sucrose. The enzymes are released, however, by incubation in the presence of low concentrations of ATP, PP, or EDTA, and high concentrations of IP and AMP. At the same time, and at the same concentrations, ∼80 per cent of the RNA and ∼25 per cent of the protein of the particles becomes also non-sedimentable. The simultaneous addition of Mg++ to the incubation medium prevents these losses. This finding, together with the observation that all the Mg++ of the particles is released by the same agents, makes it likely that Mg++ holds the particles together, and that its removal by the chelators used causes the particles to disintegrate. These findings are discussed in relation to the molecular structure of the RNP particles.

Full Text

The Full Text of this article is available as a PDF (1.5 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. BONNER J., TS'O P. O., VINOGRAD J. Microsomal nucleoprotein particles from pea seedlings. J Biophys Biochem Cytol. 1956 Jul 25;2(4):451–466. doi: 10.1083/jcb.2.4.451. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. BURTON K. Formation constants for the complexes of adenosine di- or tri-phosphate with magnesium or calcium ions. Biochem J. 1959 Feb;71(2):388–395. doi: 10.1042/bj0710388. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. CHAO F. C. Dissociation of macromolecular ribonucleoprotein of yeast. Arch Biochem Biophys. 1957 Aug;70(2):426–431. doi: 10.1016/0003-9861(57)90130-3. [DOI] [PubMed] [Google Scholar]
  4. CHAO F. C., SCHACHMAN H. K. The isolation and characterization of a macro-molecular ribonucleoprotein from yeast. Arch Biochem Biophys. 1956 Mar;61(1):220–230. doi: 10.1016/0003-9861(56)90334-4. [DOI] [PubMed] [Google Scholar]
  5. CRICK F. H., WATSON J. D. Structure of small viruses. Nature. 1956 Mar 10;177(4506):473–475. doi: 10.1038/177473a0. [DOI] [PubMed] [Google Scholar]
  6. DE HARVEN E. A new technique for carbon films. J Biophys Biochem Cytol. 1958 Jan 25;4(1):133–134. doi: 10.1083/jcb.4.1.133. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. DICKMAN S. R., TRUPIN K. M. Bound and latent mouse-pancreas ribonucleases. Biochim Biophys Acta. 1958 Oct;30(1):200–201. doi: 10.1016/0006-3002(58)90267-1. [DOI] [PubMed] [Google Scholar]
  8. DOUGLAS T. A., MUNRO H. N. The occurrence of inactive amylase within the pancreatic cell and its significance. Exp Cell Res. 1959 Jan;16(1):148–164. doi: 10.1016/0014-4827(59)90202-2. [DOI] [PubMed] [Google Scholar]
  9. ELSON D. Evidence for hydrogen bonds in a ribonucleoprotein. Biochim Biophys Acta. 1958 Jan;27(1):207–208. doi: 10.1016/0006-3002(58)90314-7. [DOI] [PubMed] [Google Scholar]
  10. ELSON D. Latent ribonuclease activity in a ribonucleoprotein. Biochim Biophys Acta. 1958 Jan;27(1):216–217. doi: 10.1016/0006-3002(58)90320-2. [DOI] [PubMed] [Google Scholar]
  11. EPSTEIN M. A. Composition of the Rous virus nucleoid. Nature. 1958 Jun 28;181(4626):1808–1808. doi: 10.1038/1811808a0. [DOI] [PubMed] [Google Scholar]
  12. GAMBLE J. L., Jr Aggregation of mitochondria, mitochondrial fragments, and microsomes by cytochrome c. Biochim Biophys Acta. 1957 Feb;23(2):306–311. doi: 10.1016/0006-3002(57)90332-3. [DOI] [PubMed] [Google Scholar]
  13. GORRY J. D., GOTTLIEB B., ROSENTHAL O., VARS H. M. Influence of cations on the intracellular distribution of rat liver arginase. J Biol Chem. 1956 Nov;223(1):469–478. [PubMed] [Google Scholar]
  14. HAMILTON M. G., PETERMANN M. L. Ultracentrifugal studies on ribonucleoprotein from rat liver microsomes. J Biol Chem. 1959 Jun;234(6):1441–1446. [PubMed] [Google Scholar]
  15. HENDLER R. W. Passage of radioactivity between protein fractions of a hen oviduct homogenate. J Biol Chem. 1957 Dec;229(2):553–561. [PubMed] [Google Scholar]
  16. HUMMEL J. P., KALNITSKY G. The influence of urea and electrolytes upon yeast ribonucleic acid. J Biol Chem. 1959 Jun;234(6):1517–1519. [PubMed] [Google Scholar]
  17. KELLER P. J., COHEN E., NEURATH H. The proteins of bovine pancreatic juice. II. Rates of synthesis in vivo of the cationic proteins. J Biol Chem. 1959 Feb;234(2):311–315. [PubMed] [Google Scholar]
  18. KHESIN R. B. Obrazovanie amilazy tsitoplazmaticheskimi granulami, vydelennymi z kletok podzheludochnoi zhelezy. Biokhimiia. 1953 Jul-Aug;18(4):462–474. [PubMed] [Google Scholar]
  19. Kern M., Helmreich E., Eisen H. N. A DEMONSTRATION OF ANTIBODY ACTIVITY ON MICROSOMES. Proc Natl Acad Sci U S A. 1959 Jun;45(6):862–867. doi: 10.1073/pnas.45.6.862. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Koshland D. E. Application of a Theory of Enzyme Specificity to Protein Synthesis. Proc Natl Acad Sci U S A. 1958 Feb;44(2):98–104. doi: 10.1073/pnas.44.2.98. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. LAIRD A. K., BARTON A. D. Protein synthesis in rat pancreas. I. Intracellular distribution of amylase. Biochim Biophys Acta. 1957 Jul;25(1):56–62. doi: 10.1016/0006-3002(57)90416-x. [DOI] [PubMed] [Google Scholar]
  22. LIEBECQ C., JACQUEMOTTE-LOUIS M. Nucléotides de l'adénine. IV. Instabilité des complexes magnésiens de l'adénosine triphosphate. Bull Soc Chim Biol (Paris) 1958;40(1):67–85. [PubMed] [Google Scholar]
  23. LITTLEFIELD J. W., KELLER E. B., GROSS J., ZAMECNIK P. C. Studies on cytoplasmic ribonucleoprotein particles from the liver of the rat. J Biol Chem. 1955 Nov;217(1):111–123. [PubMed] [Google Scholar]
  24. LOFTFIELD R. B. The biosynthesis of protein. Prog Biophys Biophys Chem. 1957;8:347–386. [PubMed] [Google Scholar]
  25. LUND H. A. An apparent aldolase synthesis by corn microsomes. Biochim Biophys Acta. 1959 Jun;33(2):347–359. doi: 10.1016/0006-3002(59)90125-8. [DOI] [PubMed] [Google Scholar]
  26. LYNN W. S., Jr, BROWN R. H., MULLINS J. Catalytic and adsorptive properties of testicular microsomes. J Biol Chem. 1958 Jun;232(2):995–1004. [PubMed] [Google Scholar]
  27. ORANGE M., RHEIN H. C. Microestimation of magnesium in body fluids. J Biol Chem. 1951 Mar;189(1):379–386. [PubMed] [Google Scholar]
  28. PAIGEN K. Hemoglobin as the red pigment of microsomes. Biochim Biophys Acta. 1956 Feb;19(2):297–299. doi: 10.1016/0006-3002(56)90431-0. [DOI] [PubMed] [Google Scholar]
  29. PALADE G. E. A small particulate component of the cytoplasm. J Biophys Biochem Cytol. 1955 Jan;1(1):59–68. doi: 10.1083/jcb.1.1.59. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. PALADE G. E., SIEKEVITZ P. Liver microsomes; an integrated morphological and biochemical study. J Biophys Biochem Cytol. 1956 Mar 25;2(2):171–200. doi: 10.1083/jcb.2.2.171. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. PALADE G. E., SIEKEVITZ P. Pancreatic microsomes; an integrated morphological and biochemical study. J Biophys Biochem Cytol. 1956 Nov 25;2(6):671–690. doi: 10.1083/jcb.2.6.671. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. PETERMANN M. L., HAMILTON M. G. The purification and properties of cytoplasmic ribonucleoprotein from rat liver. J Biol Chem. 1957 Feb;224(2):725–736. [PubMed] [Google Scholar]
  33. PETERS T., Jr Cytoplasmic particles and serum albumin synthesis. J Histochem Cytochem. 1959 Jul;7(4):224–234. doi: 10.1177/7.4.224. [DOI] [PubMed] [Google Scholar]
  34. RABINOVITZ M., OLSON M. E. Participation of reticulocyte microsomes in the incorporation of iron into haemoglobin. Nature. 1958 Jun 14;181(4624):1665–1666. doi: 10.1038/1811665a0. [DOI] [PubMed] [Google Scholar]
  35. ROTH J. S. Observations on the instability in the ribonucleic acid of microsomal ribonucleoprotein. Arch Biochem Biophys. 1958 Mar;74(1):277–279. doi: 10.1016/0003-9861(58)90220-0. [DOI] [PubMed] [Google Scholar]
  36. SACHS H. Further studies on the amino acid incorporating system of rat liver microsomes. J Biol Chem. 1958 Sep;233(3):643–649. [PubMed] [Google Scholar]
  37. SACHS H. The effect of pyrophosphate on the amino acid incorporating system of rat liver microsomes. J Biol Chem. 1958 Sep;233(3):650–656. [PubMed] [Google Scholar]
  38. SACHS H., WAELSCH H. The effect of pyrophosphate on amino acid incorporation into rat liver microsomes. Biochim Biophys Acta. 1956 Jul;21(1):188–189. doi: 10.1016/0006-3002(56)90121-4. [DOI] [PubMed] [Google Scholar]
  39. SCHNEIDER W. C., HOGEBOOM G. H. Intracellular distribution of enzymes. X. Desoxyribonuclease and ribonuclease. J Biol Chem. 1952 Sep;198(1):155–163. [PubMed] [Google Scholar]
  40. SIEKEVITZ P., PALADE G. E. A cyto-chemical study on the pancreas of the guinea pig. III. In vivo incorporation of leucine-1-C14 into the proteins of cell fractions. J Biophys Biochem Cytol. 1958 Sep 25;4(5):557–566. doi: 10.1083/jcb.4.5.557. [DOI] [PMC free article] [PubMed] [Google Scholar]
  41. SIEKEVITZ P., PALADE G. E. A cytochemical study on the pancreas of the guinea pig. 5. In vivo incorporation of leucine-1-C14 into the chymotrypsinogen of various cell fractions. J Biophys Biochem Cytol. 1960 Jul;7:619–630. doi: 10.1083/jcb.7.4.619. [DOI] [PMC free article] [PubMed] [Google Scholar]
  42. SIEKEVITZ P., PALADE G. E. A cytochemical study on the pancreas of the guinea pig. I. Isolation and enzymatic activities of cell fractions. J Biophys Biochem Cytol. 1958 Mar 25;4(2):203–218. doi: 10.1083/jcb.4.2.203. [DOI] [PMC free article] [PubMed] [Google Scholar]
  43. SIEKEVITZ P., PALADE G. E. A cytochemical study on the pancreas of the guinea pig. II. Functional variations in the enzymatic activity of microsomes. J Biophys Biochem Cytol. 1958 May 25;4(3):309–318. doi: 10.1083/jcb.4.3.309. [DOI] [PMC free article] [PubMed] [Google Scholar]
  44. SIMKIN J. L. The labelling by [14C]amino acids of cell-sap protein in a cell-free system from guinea-pig liver: the site of origin of labelled protein. Biochem J. 1958 Oct;70(2):305–313. doi: 10.1042/bj0700305. [DOI] [PMC free article] [PubMed] [Google Scholar]
  45. TISSIERES A., WATSON J. D. Ribonucleoprotein particles from Escherichia coli. Nature. 1958 Sep 20;182(4638):778–780. doi: 10.1038/182778b0. [DOI] [PubMed] [Google Scholar]
  46. TS'O P. O., BONNER J., VINOGRAD J. Structure and properties of microsomal nucleoprotein particles from pea seedlings. Biochim Biophys Acta. 1958 Dec;30(3):570–582. doi: 10.1016/0006-3002(58)90104-5. [DOI] [PubMed] [Google Scholar]
  47. ULLMANN A., STRAUB F. B. Eiweisssynthese im Homogenat; vorläufige Mitteilung. Acta Physiol Acad Sci Hung. 1954;6(2-3):377–378. [PubMed] [Google Scholar]
  48. WATSON M. L. Staining of tissue sections for electron microscopy with heavy metals. II. Application of solutions containing lead and barium. J Biophys Biochem Cytol. 1958 Nov 25;4(6):727–730. doi: 10.1083/jcb.4.6.727. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from The Journal of Biophysical and Biochemical Cytology are provided here courtesy of The Rockefeller University Press

RESOURCES