Skip to main content
CNS Drug Reviews logoLink to CNS Drug Reviews
. 2006 Jun 7;9(4):327–342. doi: 10.1111/j.1527-3458.2003.tb00258.x

The Promises and Pitfalls of Reboxetine

Michelle E Page 1,
PMCID: PMC6741698  PMID: 14647527

ABSTRACT

The antidepressant compound, morpholine, 2‐[(2‐ethoxyphenoxy)phenylmethyl]‐, methanesulfonate, or reboxetine, is a selective noradrenergic reuptake inhibitor that acts by binding to the norepinephrine (NE) transporter and blocking reuptake of extracellular NE back into terminals. This compound has low affinity for other transporters and receptors. The development of reboxetine as a potential antidepressant stems from the prior demonstration that blockade of the NE transporter imparts antidepressant activity. Desipramine, lofepramine, and nortryptiline are examples of tricyclic antidepressant (TCA) compounds from the first generation of antidepressants that exert their effects by blockade of NE reuptake. Maprotiline, a non‐tricyclic compound, is also a NE selective reuptake inhibitor. Unfortunately, these antidepressants are also associated with interactions with muscarinic, histaminergic, and adrenergic receptors, which are known to contribute to a variety of untoward side effects. Despite the positive pharmacological profile of reboxetine, i.e., selectivity and specificity, with relatively fewer side effects, its use as an antidepressant is currently limited to Europe. Reboxetine is marketed as Edronax in the UK, Norebox in Italy, and as Irenor in Spain. It is registered in Germany, Sweden, Denmark, Ireland, Austria and Finland. Based on studies conducted primarily outside the US, the FDA granted a preliminary letter of approval in 1999. However, more recent clinical studies conducted in the US and Canada, prompted by the FDA, resulted in a letter of non‐approval. To date, it is unclear why the further development of reboxetine as an antidepressant in the US has been halted. Despite this setback, reboxetine has been a valuable pharmacological tool to assess the role of the noradrenergic system in preclinical studies of depressive disorder.

Keywords: Depression, Monoamines, Norepinephrine, Reboxetine, Receptors Transporters

Full Text

The Full Text of this article is available as a PDF (132.7 KB).

References

  • 1. Abercrombie ED, Jacobs BL. Single unit response of noradrenergic neurons in locus coeruleus of freely moving cats. II. Adaptation to chronically presented stressful stimuli. J Neurosci 1987;7:2844–2848. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 2. Abercrombie ED, Jacobs BL. Single unit response of noradrenergic neurons in the locus coeruleus of freely moving cats. I. Acutely presented stressful and nonstressful stimuli. J Neurosci 1987;7:2837–2843. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 3. Ameyaw MM, Syvanen AC, Ulmanen I, Ofori‐Adjei D, McLeod HL. Pharmacogenetics of catechol‐O‐methyltransferase: Frequency of low activity allele in a Ghanaian population. Hum Mutat 2000;16:445–446. [DOI] [PubMed] [Google Scholar]
  • 4. Anand A, Charney DS. Norepinephrine dysfunction in depression. J Clin Psychiatry 2000;61 (Suppl 10): 16–24. [PubMed] [Google Scholar]
  • 5. Anisman H. Vulnerability to depression: Contribution of stress In: Ziegler M. G. and Lake C. R., Eds. Frontiers of clinical neuroscience. Baltimore : Williams and Wilkins, 1985;407–431. [Google Scholar]
  • 6. Anisman H, Zacharko RM. Depression: The predisposing influence of stress. Behav Brain Sci 1982;5:89–137. [Google Scholar]
  • 7. Aoki C, Go CG, Venkatesan C, Kurose H. Perikaryal and synaptic localization of α2A‐adrenergic receptor‐like immunoreactivity. Brain Res 1994;650:181–204. [DOI] [PubMed] [Google Scholar]
  • 8. Aoki C, Venkatesan C, Kurose H. Noradrenergic modulation of the prefrontal cortex as revealed by electron microscopic immunocytochemistry. Adv Pharmacol 1998;42:777–780. [DOI] [PubMed] [Google Scholar]
  • 9. Aston‐Jones G, Akaoka H, Charlety P, Chouvet G. Serotonin selectively attenuates glutamate‐evoked activation of noradrenergic locus coeruleus neurons. J Neurosci 1991;11:760–769. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 10. Aston‐Jones G, Bloom FE. Activity of norepinephrine‐containing locus coeruleus neurons in behaving rats anticipates fluctuations in the sleep‐waking cycle. J Neurosci 1981;1:876–886. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 11. Aston‐Jones G, Bloom FE. Norepinephrine‐containing locus coeruleus neurons in behaving rats exhibit pronounced responses to non‐noxious environmental stimuli. J Neurosci 1981;1:887–900. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 12. Balcells‐Olivero M, Cousins MS, Seiden LS. Holtzman and Harlan Sprague‐Dawley rats: Differences in drl 72‐sec performance and 8‐hydroxy‐di‐propylamino tetralin‐induced hypothermia. J Pharmacol Exp Ther 1998;286:742–752. [PubMed] [Google Scholar]
  • 13. Baraban JM, Aghajanian GK. Suppression of firing activity of 5‐HT neurons in the dorsal raphe by alpha‐adrenoceptor antagonists. Neuropharmacology 1980;19:355–363. [DOI] [PubMed] [Google Scholar]
  • 14. Bengtsson HJ, Kele J, Johansson J, Hjorth S. Interaction of the antidepressant mirtazepine with α2‐adrenoceptors modulating the release of 5‐HT in different rat brain regions in vivo. Naunyn-Schmiedeberg's Arch Pharmacol 2000;362:406–412. [DOI] [PubMed] [Google Scholar]
  • 15. Benkert O, Szegedi A, Kohnen R. Rapid onset of therapeutic action in major depression: A comparative trial of mirtazapine and paroxetine. J Clin Psychiatry 2000;69:656–663. [DOI] [PubMed] [Google Scholar]
  • 16. Berzewski H, Van Moffaert M, Gagiano CA. Efficacy and tolerability of reboxetine compared with imipramine in a double‐blind study in patients suffering from major depressive episodes. Eur Neuropsychopharmacol 1997;7 (Suppl 1): S37–47 ;discussion S71–33. [DOI] [PubMed] [Google Scholar]
  • 17. Bosc M. Assessment of social functioning in depression. Compar Psychiatry 2000;41:63–69. [DOI] [PubMed] [Google Scholar]
  • 18. Bosc M, Dubini A, Polin V. Development and validation of a social functioning scale, the social adaptation self‐evaluation scale. Eur Neuropsychopharmacol 1997;7 (Suppl 1): S57–70 ;discussion S71–53. [DOI] [PubMed] [Google Scholar]
  • 19. Brady LS, Whitfield HJ, Jr. , Fox RJ, Gold PW, Herkenham M. Long‐term antidepressant administration alters corticotropin‐releasing hormone, tyrosine hydroxylase, and mineralocorticoid receptor gene expression in rat brain. Therapeutic implications. J Clin Invest 1991;87:831–837. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 20. Breslau N, Peterson EL, Schultz LR, Chilcoat HD, Andreski P. Major depression and stages of smoking. A longitudinal investigation. Arch Gen Psychiatry 1998;55:161–166. [DOI] [PubMed] [Google Scholar]
  • 21. Brunello N, Mendlewicz J, Kasper S, et al. The role of noradrenaline and selective noradrenaline reuptake inhibition in depression. Eur Neuropsychopharmacol 2002;12:461–475. [DOI] [PubMed] [Google Scholar]
  • 22. Charney D. Monoamine dysfunction and the pathophysiology and treatment of depression. J Clin Psychiatry 1998;59 (Suppl 14): 11–14. [PubMed] [Google Scholar]
  • 23. Connor TJ, Kelliher P, Harkin A, Kelly JP, Leonard BE. Reboxetine attenuates forced swim test‐induced behavioural and neurochemical alterations in the rat. Eur J Pharmacol 1999;379:125–133. [DOI] [PubMed] [Google Scholar]
  • 24. Covey LS, Glassman AH, Stetner F. Major depression following smoking cessation. Am J Psychiatry 1997;154:263–265. [DOI] [PubMed] [Google Scholar]
  • 25. Cryan JF, Dalvi A, Jin SH, Hirsch BR, Lucki I, Thomas SA. Use of dopamine‐beta‐hydroxylase‐deficient mice to determine the role of norepinephrine in the mechanism of action of antidepressant drugs. J Pharmacol Exp Ther 2001;298:651–657. [PubMed] [Google Scholar]
  • 26. Cryan JF, Markou A, Lucki I. Assessing antidepressant activity in rodents: Recent developments and future needs. Trends Pharmacol Sci 2002;23:238–245. [DOI] [PubMed] [Google Scholar]
  • 27. Dannon PN, Iancu I, Grunhaus L. The efficacy of reboxetine in the treatment‐refractory patients with panic disorder: An open label study. Hum Psychopharmacol 2002;17:329–333. [DOI] [PubMed] [Google Scholar]
  • 28. De Paermentier F, Cheetham SC, Crompton MR, Katona CLE, Horton RW. Brain beta‐adrenoceptor binding sites in antidepressant‐free depressed suicide victims. Brain Res 1990;525:71–77. [DOI] [PubMed] [Google Scholar]
  • 29. Dekeyne A, Gobert A, Auclair A, Girardon S, Millan MJ. Differential modulation of efficiency in a food‐rewarded “differential reinforcement of low‐rate” 72‐s schedule in rats by norepinephrine and serotonin reup‐take inhibitors. Psychopharmacology (Berl) 2002;162:156–167. [DOI] [PubMed] [Google Scholar]
  • 30. Detke MJ, Rickels M, Lucki I. Active behaviors in the rat forced swimming test differentially produced by serotonergic and noradrenergic antidepressants. Psychopharmacology (Berl) 1995;121:66–72. [DOI] [PubMed] [Google Scholar]
  • 31. Dostert P, Benedetti MS, Poggesi I. Review of the pharmacokinetics and metabolism of reboxetine, a selective noradrenaline reuptake inhibitor. Eur Neuropsychopharmacol 1997;7 (Suppl 1): S23–35 ; discussion S71–23. [DOI] [PubMed] [Google Scholar]
  • 32. Ferris R, Maxwell RA, Cooper BR, Soroko FE. Neurochemical and neuropharmacological investigations into the mechanisms of action of buprion · HCl — a new atypical antidepressant agent. Adv Biochem Psychopharmacol 1982;31:271–286. [PubMed] [Google Scholar]
  • 33. Ferris RM, Cooper BR, Maxwell RA. Studies of bupropion's mechanism of antidepressant activity. J Clin Psychiatry 1983;44:74–78. [PubMed] [Google Scholar]
  • 34. Frazer A. Norepinephrine involvement in antidepressant action. J Clin Psychiatry 2000;61 (Suppl 10): 25–30. [PubMed] [Google Scholar]
  • 35. Glassman AH. Cigarette smoking: Implications for psychiatric illness. Am J Psychiatry 1993;150:546–553. [DOI] [PubMed] [Google Scholar]
  • 36. Goodwin F, Bunney WJ. Depressions following reserpine: A reevaluation. Semin Psychiatry 1971;3:435–448. [PubMed] [Google Scholar]
  • 37. Greenberg P, Stiglin LE, Finkelstein SN, Berndt ER. The economic burden of depression in 1990. J Clin Psychiatry 1990;54:405–418. [PubMed] [Google Scholar]
  • 38. Gutierrez B, Bertranpetit J, Guillamat R, et al. Association analysis of the catechol o‐methyltransferase gene and bipolar affective disorder. Am J Psychiatry 1997;154:113–115. [DOI] [PubMed] [Google Scholar]
  • 39. Harkin A, Kelly JP, McNamara M, et al. Activity and onset of action of reboxetine and effect of combination with sertraline in an animal model of depression. Eur J Pharmacol 1999;364:123–132. [DOI] [PubMed] [Google Scholar]
  • 40. Harkin A, Nally R, Kelly JP, Leonard BE. Effects of reboxetine and sertraline treatments alone and in combination on the binding properties of cortical NMDA and β1‐adrenergic receptors in an animal model of depression. J Neural Transm 2000;107:1213–1227. [DOI] [PubMed] [Google Scholar]
  • 41. Henderson AS, Korten AE, Jorm AF, et al. COMT and drd3 polymorphisms, environmental exposures, and personality traits related to common mental disorders. Am J Med Genet 2000;96:102–107. [DOI] [PubMed] [Google Scholar]
  • 42. Hirschfeld RM. History and evolution of the monoamine hypothesis of depression. J Clin Psychiatry 2000;61:4–6. [PubMed] [Google Scholar]
  • 43. Hjorth S, Magnusson T. The 5‐HT1A receptor agonist, 8‐OH‐DPAT, preferentially activates cell body 5‐HT autoreceptors in rat brain in vivo. Naunyn-Schmiedeberg's Arch Pharmacol 1988;338:463–471. [DOI] [PubMed] [Google Scholar]
  • 44. Invernizzi R, Parini S, Sacchetti G, et al. Chronic treatment with reboxetine by osmotic pumps facilitates its effect on extracellular noradrenaline and may desensitize α2‐adrenoceptors in the prefrontal cortex. Br J Pharmacol 2001;132:183–188. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 45. Jansson A, Tinner B, Bancila M, et al. Relationships of 5‐hydroxytryptamine immunoreactive terminal‐like varicosities to 5‐hydroxytryptamine2A receptor‐immunoreactive neuronal processes in the rat forebrain. J Chem Neuroanat 2001;22:185–203. [DOI] [PubMed] [Google Scholar]
  • 46. Kaehler ST, Singewald N, Philippu A. Dependence of serotonin release in the locus coeruleus on dorsal raphe neuronal activity. Naunyn-Schmiedeberg's Arch Pharmacol 1999;359:386–393. [DOI] [PubMed] [Google Scholar]
  • 47. Karege F, Bovier P, Gaillard JM, Tissot R. The decrease of erythrocyte catechol‐o‐methyltransferase activity in depressed patients and its diagnostic significance. Acta Psychiatr Scand 1987;76:303–308. [DOI] [PubMed] [Google Scholar]
  • 48. Karpa K, Cavanaugh J, Lakoski J. Duloxetine pharmacology: Profile of a dual monoamine modulator. CNS Drug Rev 2002;8:361–376. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 49. Kendler KS, Neale MC, MacLean CJ, Heath AC, Eaves LJ, Kessler RC. Smoking and major depression. A causal analysis. Arch Gen Psychiatry 1993;50:36–43. [DOI] [PubMed] [Google Scholar]
  • 50. Kennedy S, Lam R, Cohen N, et al. Reboxetine: A preliminary report on its use through the special access program. J Psychiatry Neurosci 2002;27:418–422. [PMC free article] [PubMed] [Google Scholar]
  • 51. Klimek V, Stockmeier C, Overholser J, et al. Reduced levels of norepinephrine transporters in the locus coeruleus in major depression. J Neurosci 1997;17:8451–8458. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 52. Leger L, Descarries L. Serotonin nerve terminals in the locus coeruleus of adult rat: A radioautographic study. Brain Res 1978;145:1–13. [DOI] [PubMed] [Google Scholar]
  • 53. Leinonen E, Skarstein J, Behnke K, Agren H, Helsdingen JT. Efficacy and tolerability of mirtazapine versus citalopram: A double‐blind, randomized study in patients with major depressive disorder. Nordic antidepressant study group. Int Clin Psychopharmacol 1999;14:329–337. [DOI] [PubMed] [Google Scholar]
  • 54. Luppi P‐H, Aston‐Jones G, Akaoka H, Chouvet G, Jouvet M. Afferent projections to the rat locus coeruleus demonstrated by retrograde cholera toxin b subunit and Phaseolus vulgaris leucoagglutinin. Neuroscience 1995;65:119–160. [DOI] [PubMed] [Google Scholar]
  • 55. Mann JJ, Kapur S. A dopaminergic hypothesis of major depression. Clinical Neuropharmacology 1995;18 (Suppl 1): S57–S65. [Google Scholar]
  • 56. Mann JJ, Stanely M, McBride PA, McEwen BS. Increased serotonin2 and beta‐adrenergic receptor binding in the frontal cortices of suicide victims. Arch Gen Psychiatry 1986;43:954–959. [DOI] [PubMed] [Google Scholar]
  • 57. Markou A, Kosten TR, Koob GF. Neurobiological similarities in depression and drug‐dependence: A self‐medication hypothesis. Neuropsychopharmacology 1998;18:135–174. [DOI] [PubMed] [Google Scholar]
  • 58. McEwen B. Effects of adverse experiences for brain structure and function. Biol Psychiatry 2000;48:721–731. [DOI] [PubMed] [Google Scholar]
  • 59. McEwen BS. Protective and damaging effects of stress mediators: Central role of the brain. Prog Brain Res 2000;122:25–34. [DOI] [PubMed] [Google Scholar]
  • 60. Melia KR, Nestler EJ, Duman RS. Chronic imipramine treatment normalizes levels of tyrosine hydroxylase in the locus coeruleus of chronically stressed rats. Psychopharmacology (Berl) 1992;108:23–26. [DOI] [PubMed] [Google Scholar]
  • 61. Meyer JH, Goulding VS, Wilson AA, Hussey D, Christensen BK, Houle S. Bupropion occupancy of the dopamine transporter is low during clinical treatment. Psychopharmacology (Berl) 2002;163:102–105. [DOI] [PubMed] [Google Scholar]
  • 62. Miller DK, Sumithran SP, Dwoskin LP. Bupropion inhibits nicotine‐evoked [3H]‐overflow from rat striatal slices preloaded with [3H]dopamine and from rat hippocampal slices preloaded with [3H]norepinephrine. J Pharmacol Exp Ther 2002;302:1113–1122. [DOI] [PubMed] [Google Scholar]
  • 63. Miller DK, Wong EH, Chesnut MD, Dwoskin LP. Reboxetine: Functional inhibition of monoamine transporters and nicotinic acetylcholine receptors. J Pharmacol Exp Ther 2002;302:687–695. [DOI] [PubMed] [Google Scholar]
  • 64. Montgomery S, Ferguson JM, Schwartz GE. The antidepressant efficacy of reboxetine in patients with severe depression. J Clin Int Psychopharm 2003;23:45–50. [DOI] [PubMed] [Google Scholar]
  • 65. Montgomery SA. Rapid onset of action of venlafaxine. Int Clin Psychopharmacol 1995;10 (Suppl 2): 21–27. [DOI] [PubMed] [Google Scholar]
  • 66. Montgomery SA. Safety of mirtazapine: A review. Int Clin Psychopharmacol 1995;10 (Suppl 4): 37–45. [DOI] [PubMed] [Google Scholar]
  • 67. Mori S, Popoli M, Brunello N, Racagni G, Perez J. Effect of reboxetine treatment on brain cAMP‐ and calcium/calmodulin‐dependent protein kinases. Neuropharmacology 2001;40:448–456. [DOI] [PubMed] [Google Scholar]
  • 68. Morilak DA, Fornal C, Jacobs BL. Effects of physiological manipulations on locus coeruleus neuronal activity in freely moving cats. I. Thermoregulatory challenge. Brain Res 1987;422:17–23. [DOI] [PubMed] [Google Scholar]
  • 69. Morilak DA, Fornal C, Jacobs BL. Effects of physiological manipulations on locus coeruleus neuronal activity in freely moving cats. II. Cardiovascular challenge. Brain Res 1987;422:24–31. [DOI] [PubMed] [Google Scholar]
  • 70. Nestler EJ, McMahon A, Sabban EL, Tallman JF, Duman RS. Chronic antidepressant administration decreases the expression of tyrosine hydroxylase in the rat locus coeruleus. Proc Natl Acad Sci USA 1990;87:7522–7526. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 71. Olver JS, Burrows GD, Norman TR. Third‐generation antidepressants: Do they offer advantages over the SSRIs CNSD rugs 2001;15:941–954. [DOI] [PubMed] [Google Scholar]
  • 72. Ordway G, Streator‐Smith K, Haycock JW. Elevated tyrosine hydroxylase in the locus coeruleus of suicide victims. J Neurochem 1994;62:680–685. [DOI] [PubMed] [Google Scholar]
  • 73. Page ME, Abercrombie ED. An analysis of the effects of acute and chronic fluoxetine on extracellular norepinephrine in the rat hippocampus during stress. Neuropsychopharmacology 1997;16:419–425. [DOI] [PubMed] [Google Scholar]
  • 74. Page ME, Akaoka H, Aston‐Jones G, Valentino RJ. Bladder distention activates noradrenergic locus coeruleus neurons by an excitatory amino acid mechanism. Neuroscience 1992;51:555–563. [DOI] [PubMed] [Google Scholar]
  • 75. Page ME, Brown K, Lucki I. Simultaneous analyses of the neurochemical and behavioral effects of the norepinephrine reuptake inhibitor reboxetine in a rat model of antidepressant action. Psychopharmacology (Berl) 2003;165:194–201. [DOI] [PubMed] [Google Scholar]
  • 76. Page ME, Detke MJ, Dalvi A, Kirby LG, Lucki I. Serotonergic mediation of the effects of fluoxetine, but not desipramine, in the rat forced swimming test. Psychopharmacology 1999147:162–167. [DOI] [PubMed] [Google Scholar]
  • 77. Page ME, Lucki I. Effects of acute and chronic reboxetine treatment on stress‐induced monoamine efflux in the rat frontal cortex. Neuropsychopharmacology 2002;27:237–247. [DOI] [PubMed] [Google Scholar]
  • 78. Page ME, Valentino RJ. Locus coeruleus activation by physiological challenges. Brain Res Bull 1994;35:557–560. [DOI] [PubMed] [Google Scholar]
  • 79. Pompeiano M, Palacios JM, Mengod G. Distribution of the serotonin 5‐HT2 receptor family mRNAs: Comparison between 5‐HT2A and 5‐HT2C receptors. Brain Res Mol Brain Res 1994;23:163–178. [DOI] [PubMed] [Google Scholar]
  • 80. Popoli M, Brunello N, Perez J, Racagni G. Second messenger‐regulated protein kinases in the brain: Their functional role and the action of antidepressant drugs. J Neurochem 2000;74:21–33. [DOI] [PubMed] [Google Scholar]
  • 81. Popoli M, Venegoni A, Vocaturo C, et al. Long‐term blockade of serotonin reuptake affects synaptotagmin phosphorylation in the hippocampus. Mol Pharmacol 1997;51:19–26. [DOI] [PubMed] [Google Scholar]
  • 82. Porsolt R, Anton G, Deniel M, Jalfre M. Behavioral despair in rats: A new model sensitive to antidepressant treatments. Eur J Pharmacol 1978;47:379–391. [DOI] [PubMed] [Google Scholar]
  • 83. Porsolt R, Le Pichon M, Jalfre M. Depression: Anew animal model sensitive to antidepressant treatments. Nature 1977;266:730–732. [DOI] [PubMed] [Google Scholar]
  • 84. Porsolt RD, Bertin A, Jalfre M. Behavioural despair” in rats and mice: Strain differences and the effects of imipramine. Eur J Pharmacol 1978;51:291–294. [DOI] [PubMed] [Google Scholar]
  • 85. Rauhut AS, Mullins SN, Dwoskin LP, Bardo MT. Reboxetine: Attenuation of intravenous nicotine self‐administration in rats. J Pharmacol Exp Ther 2002;303:664–672. [DOI] [PubMed] [Google Scholar]
  • 86. Ressler KJ, Nemeroff CB. Role of serotonergic and noradrenergic systems in the pathophysiology of depression and anxiety disorders. Depress Anxiety 2000;12 (Suppl 1): 2–19. [DOI] [PubMed] [Google Scholar]
  • 87. Rosin DL, Melia K, Knorr AM, Nestler EJ, Roth RH, Duman RS. Chronic imipramine administration alters the activity and phosphorylation state of tyrosine hydroxylase in dopaminergic regions of rat brain. Neuropsychopharmacology 1995;12:113–121. [DOI] [PubMed] [Google Scholar]
  • 88. Sacchetti G, Bernini M, Bianchetti A, Parini S, Invernizzi RW, Samanin R. Studies on the acute and chronic effects of reboxetine on extracellular noradrenaline and other monoamines in the rat brain. Br J Pharmacol 1999;128:1332–1338. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 89. Schatzberg AF. Antidepressant effectiveness in severe depression and melancholia. J Clin Psychiatry 1999;60: (Suppl 4): 14–21;discussion 22. [PubMed] [Google Scholar]
  • 90. Schildkraut J. The catecholamine hypothesis of affective disorders, a review of the supporting evidence. Am J Psychiatry 1965;12:509–512. [DOI] [PubMed] [Google Scholar]
  • 91. Schwartz G, Such P, Schatzberg A. Reboxetine vs venlafaxine in the treatment of severe major depression. Eur Neuropsychopharmacol 2002;12 (Suppl 3): S204–S205. [Google Scholar]
  • 92. Sharp T, Bramwell SR, Grahame‐Smith DG. 5‐HT1 agonists reduce 5‐hydroxytryptamine release in rat hippocampus in vivo as determined by brain microdialysis. Br J Pharmacol 1989;96:283–290. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 93. Slemmer JE, Martin BR, Damaj MI. Bupropion is a nicotinic antagonist. J Pharmacol Exp Ther 2000;295:321–327. [PubMed] [Google Scholar]
  • 94. Smith D, Dempster C, Glanville J, Freemantle N, Anderson I. Efficacy and tolerability of venlafaxine compared with selective serotonin reuptake inhibitors and other antidepressants: A meta‐analysis. Br J Psychiatry 2002;180:396–404. [DOI] [PubMed] [Google Scholar]
  • 95. Sprouse JS, Aghajanian GK. Electrophysiological responses of serotonergic dorsal raphe neurons to 5‐HT1A and 5‐HT1B agonists. Synapse 1987;1:3–9. [DOI] [PubMed] [Google Scholar]
  • 96. Sprouse JS, Aghajanian GK. (–)‐Propranolol blocks the inhibition of serotonergic dorsal raphe cell firing by 5‐HT1A selective agonists. Eur J Pharmacol 1986;128:295–298. [DOI] [PubMed] [Google Scholar]
  • 97. Sulser F, Vetulani J, Mobley PL. Mode of action of antidepressant drugs. Biochem Pharmacol 1978;27:257–261. [DOI] [PubMed] [Google Scholar]
  • 98. Szabadi E, Tavernor S. Hypo‐ and hypersalivation induced by psychoactive drugs: Incidence, mechanisms and therapeutic implications. CNSD rugs 1999;11:449–466. [Google Scholar]
  • 99. Szabo ST, Blier P. Effect of the selective noradrenergic reuptake inhibitor reboxetine on the firing activity of noradrenaline and serotonin neurons. Eur J Neurosci 2001;13:2077–2087. [DOI] [PubMed] [Google Scholar]
  • 100. Szabo ST, Blier P. Functional and pharmacological characterization of the modulatory role of serotonin on the firing activity of locus coeruleus norepinephrine neurons. Brain Res 2001;922:9–20. [DOI] [PubMed] [Google Scholar]
  • 101. Tanum L. Reboxetine: Tolerability and safety profile in patients with major depression. Acta Psychiatr Scand 2000;101 (Suppl 402): 37–40. [DOI] [PubMed] [Google Scholar]
  • 102. Tao R, Hjorth S. Alphα2‐adrenoceptor modulation of rat ventral hippocampal 5‐hydroxytryptamine release in vivo. Naunyn-Schmiedeberg's Arch Pharmacol 1992;345:137–143. [DOI] [PubMed] [Google Scholar]
  • 103. Tran P, Bymaster F, McNamara R, Potter W. Dual monoamine modulation for improved treatment of major depressive disorder. J Clin Psychopharmacol 2003;23:78–86. [DOI] [PubMed] [Google Scholar]
  • 104. Vaswani M, Linda FK, Ramesh S. Role of selective serotonin reuptake inhibitors in psychiatric disorders: A comprehensive review. Prog Neuropsychopharmacol Biol Psychiatry 2003;27:85–102. [DOI] [PubMed] [Google Scholar]
  • 105. Venditti L, Arcelus A, Birnbaum H, et al. The impact of antidepressant use on social functioning: Reboxetine versus fluoxetine. Int Clin Psychopharmacol 2000;15:279–289. [DOI] [PubMed] [Google Scholar]
  • 106. Vetulani J, Stawarz RJ, Dingell JV, Sulser F. A possible common mechanism of action of antidepressant treatments. Naunyn-Schmiedeberg's Arch Pharmacol 1976;293:109–114. [DOI] [PubMed] [Google Scholar]
  • 107. Wheatley DP, van Moffaert M, Timmerman L, Kremer CM. Mirtazapine: Efficacy and tolerability in comparison with fluoxetine in patients with moderate to severe major depressive disorder. Mirtazapine‐fluoxetine study group. J Clin Psychiatry 1998;59:306–312. [PubMed] [Google Scholar]
  • 108. Wienkers LC, Allievi C, Hauer MJ, Wynalda MA. Cytochrome p450‐mediated metabolism of the individual enantiomers of the antidepressant agent reboxetine in human liver microsomes. Drug Metab Dispos 1999;27:1334–1340. [PubMed] [Google Scholar]
  • 109. Wong EH, Sonders MS, Amara SG, et al. Reboxetine: A pharmacologically potent, selective, and specific norepinephrine reuptake inhibitor. Biol Psychiatry 2000;47:818–829. [DOI] [PubMed] [Google Scholar]
  • 110. Wong ML, Licinio J. Research and treatment approaches to depression. Nat Rev Neurosci 2001;2:343–351. [DOI] [PubMed] [Google Scholar]
  • 111. Zanko M, Beigon A. Increased adrenergic receptor binding in human frontal cortex of suicide victims. Soc Neurosci 1983;9:719, Abstract 210.5. [Google Scholar]

Articles from CNS Drug Reviews are provided here courtesy of Wiley

RESOURCES