Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 2004 Apr 15;379(Pt 2):283–289. doi: 10.1042/BJ20031176

Characterization of the Drosophila protein arginine methyltransferases DART1 and DART4.

Marie-Chloé Boulanger 1, Tina Branscombe Miranda 1, Steven Clarke 1, Marco Di Fruscio 1, Beat Suter 1, Paul Lasko 1, Stéphane Richard 1
PMCID: PMC1224071  PMID: 14705965

Abstract

The role of arginine methylation in Drosophila melanogaster is unknown. We identified a family of nine PRMTs (protein arginine methyltransferases) by sequence homology with mammalian arginine methyltransferases, which we have named DART1 to DART9 ( Drosophila arginine methyltransferases 1-9). In keeping with the mammalian PRMT nomenclature, DART1, DART4, DART5 and DART7 are the putative homologues of PRMT1, PRMT4, PRMT5 and PRMT7. Other DART family members have a closer resemblance to PRMT1, but do not have identifiable homologues. All nine genes are expressed in Drosophila at various developmental stages. DART1 and DART4 have arginine methyltransferase activity towards substrates, including histones and RNA-binding proteins. Amino acid analysis of the methylated arginine residues confirmed that both DART1 and DART4 catalyse the formation of asymmetrical dimethylated arginine residues and they are type I arginine methyltransferases. The presence of PRMTs in D. melanogaster suggest that flies are a suitable genetic system to study arginine methylation.

Full Text

The Full Text of this article is available as a PDF (375.7 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bauer Uta-Maria, Daujat Sylvain, Nielsen Søren J., Nightingale Karl, Kouzarides Tony. Methylation at arginine 17 of histone H3 is linked to gene activation. EMBO Rep. 2001 Dec 19;3(1):39–44. doi: 10.1093/embo-reports/kvf013. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Bedford M. T., Frankel A., Yaffe M. B., Clarke S., Leder P., Richard S. Arginine methylation inhibits the binding of proline-rich ligands to Src homology 3, but not WW, domains. J Biol Chem. 2000 May 26;275(21):16030–16036. doi: 10.1074/jbc.M909368199. [DOI] [PubMed] [Google Scholar]
  3. Boisvert Francois-Michel, Cote Jocelyn, Boulanger Marie-Chloe, Cleroux Patrick, Bachand Francois, Autexier Chantal, Richard Stephane. Symmetrical dimethylarginine methylation is required for the localization of SMN in Cajal bodies and pre-mRNA splicing. J Cell Biol. 2002 Dec 16;159(6):957–969. doi: 10.1083/jcb.200207028. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Branscombe T. L., Frankel A., Lee J. H., Cook J. R., Yang Z., Pestka S., Clarke S. PRMT5 (Janus kinase-binding protein 1) catalyzes the formation of symmetric dimethylarginine residues in proteins. J Biol Chem. 2001 Jun 18;276(35):32971–32976. doi: 10.1074/jbc.M105412200. [DOI] [PubMed] [Google Scholar]
  5. Carrera P., Johnstone O., Nakamura A., Casanova J., Jäckle H., Lasko P. VASA mediates translation through interaction with a Drosophila yIF2 homolog. Mol Cell. 2000 Jan;5(1):181–187. doi: 10.1016/s1097-2765(00)80414-1. [DOI] [PubMed] [Google Scholar]
  6. Chen D., Ma H., Hong H., Koh S. S., Huang S. M., Schurter B. T., Aswad D. W., Stallcup M. R. Regulation of transcription by a protein methyltransferase. Science. 1999 Jun 25;284(5423):2174–2177. doi: 10.1126/science.284.5423.2174. [DOI] [PubMed] [Google Scholar]
  7. Chen Shen Liang, Loffler Kelly A., Chen Dagang, Stallcup Michael R., Muscat George E. O. The coactivator-associated arginine methyltransferase is necessary for muscle differentiation: CARM1 coactivates myocyte enhancer factor-2. J Biol Chem. 2001 Nov 16;277(6):4324–4333. doi: 10.1074/jbc.M109835200. [DOI] [PubMed] [Google Scholar]
  8. Chen T., Damaj B. B., Herrera C., Lasko P., Richard S. Self-association of the single-KH-domain family members Sam68, GRP33, GLD-1, and Qk1: role of the KH domain. Mol Cell Biol. 1997 Oct;17(10):5707–5718. doi: 10.1128/mcb.17.10.5707. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Côté Jocelyn, Boisvert Francois-Michel, Boulanger Marie-Chloé, Bedford Mark T., Richard Stéphane. Sam68 RNA binding protein is an in vivo substrate for protein arginine N-methyltransferase 1. Mol Biol Cell. 2003 Jan;14(1):274–287. doi: 10.1091/mbc.E02-08-0484. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Fabbrizio Eric, El Messaoudi Selma, Polanowska Jolanta, Paul Conception, Cook Jeffry R., Lee Jin-Hyung, Negre Vincent, Rousset Mathieu, Pestka Sidney, Le Cam Alphonse. Negative regulation of transcription by the type II arginine methyltransferase PRMT5. EMBO Rep. 2002 Jul;3(7):641–645. doi: 10.1093/embo-reports/kvf136. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Frankel Adam, Yadav Neelu, Lee Jaeho, Branscombe Tina L., Clarke Steven, Bedford Mark T. The novel human protein arginine N-methyltransferase PRMT6 is a nuclear enzyme displaying unique substrate specificity. J Biol Chem. 2001 Nov 27;277(5):3537–3543. doi: 10.1074/jbc.M108786200. [DOI] [PubMed] [Google Scholar]
  12. Friesen W. J., Paushkin S., Wyce A., Massenet S., Pesiridis G. S., Van Duyne G., Rappsilber J., Mann M., Dreyfuss G. The methylosome, a 20S complex containing JBP1 and pICln, produces dimethylarginine-modified Sm proteins. Mol Cell Biol. 2001 Dec;21(24):8289–8300. doi: 10.1128/MCB.21.24.8289-8300.2001. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Gary J. D., Clarke S. RNA and protein interactions modulated by protein arginine methylation. Prog Nucleic Acid Res Mol Biol. 1998;61:65–131. doi: 10.1016/s0079-6603(08)60825-9. [DOI] [PubMed] [Google Scholar]
  14. Gros Laurent, Delaporte Charlotte, Frey Stéphane, Decesse Julien, de Saint-Vincent Bruno Robert, Cavarec Laurent, Dubart Anne, Gudkov Andrei V., Jacquemin-Sablon Alain. Identification of new drug sensitivity genes using genetic suppressor elements: protein arginine N-methyltransferase mediates cell sensitivity to DNA-damaging agents. Cancer Res. 2003 Jan 1;63(1):164–171. [PubMed] [Google Scholar]
  15. Jenuwein T., Allis C. D. Translating the histone code. Science. 2001 Aug 10;293(5532):1074–1080. doi: 10.1126/science.1063127. [DOI] [PubMed] [Google Scholar]
  16. Koh Stephen S., Li Hongwei, Lee Young-Ho, Widelitz Randall B., Chuong Cheng-Ming, Stallcup Michael R. Synergistic coactivator function by coactivator-associated arginine methyltransferase (CARM) 1 and beta-catenin with two different classes of DNA-binding transcriptional activators. J Biol Chem. 2002 Apr 30;277(29):26031–26035. doi: 10.1074/jbc.M110865200. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Lasko P. The drosophila melanogaster genome: translation factors and RNA binding proteins. J Cell Biol. 2000 Jul 24;150(2):F51–F56. doi: 10.1083/jcb.150.2.f51. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Lee Jaeho, Bedford Mark T. PABP1 identified as an arginine methyltransferase substrate using high-density protein arrays. EMBO Rep. 2002 Feb 15;3(3):268–273. doi: 10.1093/embo-reports/kvf052. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Li Hongwei, Park Sungmin, Kilburn Britta, Jelinek Mary Anne, Henschen-Edman Agnes, Aswad Dana W., Stallcup Michael R., Laird-Offringa Ite A. Lipopolysaccharide-induced methylation of HuR, an mRNA-stabilizing protein, by CARM1. Coactivator-associated arginine methyltransferase. J Biol Chem. 2002 Sep 16;277(47):44623–44630. doi: 10.1074/jbc.M206187200. [DOI] [PubMed] [Google Scholar]
  20. Lin W. J., Gary J. D., Yang M. C., Clarke S., Herschman H. R. The mammalian immediate-early TIS21 protein and the leukemia-associated BTG1 protein interact with a protein-arginine N-methyltransferase. J Biol Chem. 1996 Jun 21;271(25):15034–15044. doi: 10.1074/jbc.271.25.15034. [DOI] [PubMed] [Google Scholar]
  21. Ma H., Baumann C. T., Li H., Strahl B. D., Rice R., Jelinek M. A., Aswad D. W., Allis C. D., Hager G. L., Stallcup M. R. Hormone-dependent, CARM1-directed, arginine-specific methylation of histone H3 on a steroid-regulated promoter. Curr Biol. 2001 Dec 11;11(24):1981–1985. doi: 10.1016/s0960-9822(01)00600-5. [DOI] [PubMed] [Google Scholar]
  22. Meister G., Eggert C., Bühler D., Brahms H., Kambach C., Fischer U. Methylation of Sm proteins by a complex containing PRMT5 and the putative U snRNP assembly factor pICln. Curr Biol. 2001 Dec 11;11(24):1990–1994. doi: 10.1016/s0960-9822(01)00592-9. [DOI] [PubMed] [Google Scholar]
  23. Mowen K. A., Tang J., Zhu W., Schurter B. T., Shuai K., Herschman H. R., David M. Arginine methylation of STAT1 modulates IFNalpha/beta-induced transcription. Cell. 2001 Mar 9;104(5):731–741. doi: 10.1016/s0092-8674(01)00269-0. [DOI] [PubMed] [Google Scholar]
  24. Najbauer J., Johnson B. A., Young A. L., Aswad D. W. Peptides with sequences similar to glycine, arginine-rich motifs in proteins interacting with RNA are efficiently recognized by methyltransferase(s) modifying arginine in numerous proteins. J Biol Chem. 1993 May 15;268(14):10501–10509. [PubMed] [Google Scholar]
  25. Nichols R. C., Wang X. W., Tang J., Hamilton B. J., High F. A., Herschman H. R., Rigby W. F. The RGG domain in hnRNP A2 affects subcellular localization. Exp Cell Res. 2000 May 1;256(2):522–532. doi: 10.1006/excr.2000.4827. [DOI] [PubMed] [Google Scholar]
  26. Norvell A., Kelley R. L., Wehr K., Schüpbach T. Specific isoforms of squid, a Drosophila hnRNP, perform distinct roles in Gurken localization during oogenesis. Genes Dev. 1999 Apr 1;13(7):864–876. doi: 10.1101/gad.13.7.864. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Pawlak M. R., Scherer C. A., Chen J., Roshon M. J., Ruley H. E. Arginine N-methyltransferase 1 is required for early postimplantation mouse development, but cells deficient in the enzyme are viable. Mol Cell Biol. 2000 Jul;20(13):4859–4869. doi: 10.1128/mcb.20.13.4859-4869.2000. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Pollack B. P., Kotenko S. V., He W., Izotova L. S., Barnoski B. L., Pestka S. The human homologue of the yeast proteins Skb1 and Hsl7p interacts with Jak kinases and contains protein methyltransferase activity. J Biol Chem. 1999 Oct 29;274(44):31531–31542. doi: 10.1074/jbc.274.44.31531. [DOI] [PubMed] [Google Scholar]
  29. Schurter B. T., Koh S. S., Chen D., Bunick G. J., Harp J. M., Hanson B. L., Henschen-Edman A., Mackay D. R., Stallcup M. R., Aswad D. W. Methylation of histone H3 by coactivator-associated arginine methyltransferase 1. Biochemistry. 2001 May 15;40(19):5747–5756. doi: 10.1021/bi002631b. [DOI] [PubMed] [Google Scholar]
  30. Shen E. C., Henry M. F., Weiss V. H., Valentini S. R., Silver P. A., Lee M. S. Arginine methylation facilitates the nuclear export of hnRNP proteins. Genes Dev. 1998 Mar 1;12(5):679–691. doi: 10.1101/gad.12.5.679. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Strahl B. D., Briggs S. D., Brame C. J., Caldwell J. A., Koh S. S., Ma H., Cook R. G., Shabanowitz J., Hunt D. F., Stallcup M. R. Methylation of histone H4 at arginine 3 occurs in vivo and is mediated by the nuclear receptor coactivator PRMT1. Curr Biol. 2001 Jun 26;11(12):996–1000. doi: 10.1016/s0960-9822(01)00294-9. [DOI] [PubMed] [Google Scholar]
  32. Styhler S., Nakamura A., Swan A., Suter B., Lasko P. vasa is required for GURKEN accumulation in the oocyte, and is involved in oocyte differentiation and germline cyst development. Development. 1998 May;125(9):1569–1578. doi: 10.1242/dev.125.9.1569. [DOI] [PubMed] [Google Scholar]
  33. Tang J., Frankel A., Cook R. J., Kim S., Paik W. K., Williams K. R., Clarke S., Herschman H. R. PRMT1 is the predominant type I protein arginine methyltransferase in mammalian cells. J Biol Chem. 2000 Mar 17;275(11):7723–7730. doi: 10.1074/jbc.275.11.7723. [DOI] [PubMed] [Google Scholar]
  34. Wang H., Huang Z. Q., Xia L., Feng Q., Erdjument-Bromage H., Strahl B. D., Briggs S. D., Allis C. D., Wong J., Tempst P. Methylation of histone H4 at arginine 3 facilitating transcriptional activation by nuclear hormone receptor. Science. 2001 May 31;293(5531):853–857. doi: 10.1126/science.1060781. [DOI] [PubMed] [Google Scholar]
  35. Xu W., Chen H., Du K., Asahara H., Tini M., Emerson B. M., Montminy M., Evans R. M. A transcriptional switch mediated by cofactor methylation. Science. 2001 Nov 8;294(5551):2507–2511. doi: 10.1126/science.1065961. [DOI] [PubMed] [Google Scholar]
  36. Yadav Neelu, Lee Jaeho, Kim Jeesun, Shen Jianjun, Hu Mickey C-T, Aldaz C. Marcelo, Bedford Mark T. Specific protein methylation defects and gene expression perturbations in coactivator-associated arginine methyltransferase 1-deficient mice. Proc Natl Acad Sci U S A. 2003 May 19;100(11):6464–6468. doi: 10.1073/pnas.1232272100. [DOI] [PMC free article] [PubMed] [Google Scholar]
  37. Yun C. Y., Fu X. D. Conserved SR protein kinase functions in nuclear import and its action is counteracted by arginine methylation in Saccharomyces cerevisiae. J Cell Biol. 2000 Aug 21;150(4):707–718. doi: 10.1083/jcb.150.4.707. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES