Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1992 Dec 15;288(Pt 3):865–874. doi: 10.1042/bj2880865

Isolation and kinetic properties of acetohydroxy acid isomeroreductase from spinach (Spinacia oleracea) chloroplasts overexpressed in Escherichia coli.

R Dumas 1, D Job 1, J Y Ortholand 1, G Emeric 1, A Greiner 1, R Douce 1
PMCID: PMC1131967  PMID: 1472001

Abstract

Acetohydroxy acid isomeroreductase catalyses a two-step reaction, an alkyl migration and a NADPH-dependent reduction, in the assembly of the carbon skeletons of branched-chain amino acids. Detailed investigations of acetohydroxy acid isomeroreductase aimed at elucidating the biosynthetic pathway of branched-chain amino acids and at designing new inhibitors of the enzyme having herbicidal potency have so far been conducted with the enzymes isolated from bacteria. To gain more information on a plant system, the gene encoding the mature acetohydroxy acid isomeroreductase from spinach (Spinacia oleracea) leaf chloroplasts has been used to transform Escherichia coli cells and to overexpress the enzyme. A rapid protocol is described that allows the preparation of large quantities of pure spinach chloroplast acetohydroxy acid isomeroreductase. Kinetic and structural properties of the plant enzyme expressed in Escherichia coli are compared with those reported in our previous studies on the native enzymes purified from spinach chloroplasts and with those reported for the corresponding enzymes isolated from Escherichia coli and Salmonella typhimurium. Both the plant and the bacterial enzymes obey an ordered mechanism in which NADPH binds first, followed by substrate (either 2-acetolactate or 2-aceto-2-hydroxybutyrate). Inhibition studies employing an inactive substrate analogue, 2-hydroxy-2-methyl-3-oxopentanoate, showed, however, that the binding of 2-hydroxy-2-methyl-3-oxopentanoate and NADPH occurs randomly, suggestive of some flexibility of the plant enzyme active site. The observed preference of the enzyme for 2-aceto-2-hydroxybutyrate over 2-acetolactate is discussed with regard to the contribution of acetohydroxy acid isomeroreductase activity in the partitioning between isoleucine and valine biosyntheses. Moreover, the kinetic properties of the chloroplast enzyme support the notion that biosynthesis of branched-chain amino acids in plants is controlled by light. As judged by analytical-ultracentrifugation and gel-filtration analyses the overexpressed plant enzyme is a dimer of identical subunits.

Full text

PDF
865

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. ARMSTRONG F. B., WAGNER R. P. Biosynthesis of valine and isoleucine. IV. alpha-Hydroxy-beta-keto acid reductoisomerase of Salmonella. J Biol Chem. 1961 Jul;236:2027–2032. [PubMed] [Google Scholar]
  2. Aguilar O. M., Grasso D. H. The product of the Rhizobium meliloti ilvC gene is required for isoleucine and valine synthesis and nodulation of alfalfa. J Bacteriol. 1991 Dec;173(24):7756–7764. doi: 10.1128/jb.173.24.7756-7764.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Arfin S. M., Umbarger H. E. Purification and properties of the acetohydroxy acid isomeroreductase of Salmonella typhimurium. J Biol Chem. 1969 Mar 10;244(5):1118–1127. [PubMed] [Google Scholar]
  4. Aulabaugh A., Schloss J. V. Oxalyl hydroxamates as reaction-intermediate analogues for ketol-acid reductoisomerase. Biochemistry. 1990 Mar 20;29(11):2824–2830. doi: 10.1021/bi00463a027. [DOI] [PubMed] [Google Scholar]
  5. Chunduru S. K., Mrachko G. T., Calvo K. C. Mechanism of ketol acid reductoisomerase--steady-state analysis and metal ion requirement. Biochemistry. 1989 Jan 24;28(2):486–493. doi: 10.1021/bi00428a012. [DOI] [PubMed] [Google Scholar]
  6. Cleland W. W. Statistical analysis of enzyme kinetic data. Methods Enzymol. 1979;63:103–138. doi: 10.1016/0076-6879(79)63008-2. [DOI] [PubMed] [Google Scholar]
  7. Daniel J., Dondon L., Danchin A. 2-Ketobutyrate: a putative alarmone of Escherichia coli. Mol Gen Genet. 1983;190(3):452–458. doi: 10.1007/BF00331076. [DOI] [PubMed] [Google Scholar]
  8. Dumas R., Joyard J., Douce R. Purification and characterization of acetohydroxyacid reductoisomerase from spinach chloroplasts. Biochem J. 1989 Sep 15;262(3):971–976. doi: 10.1042/bj2620971. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Dumas R., Lebrun M., Douce R. Isolation, characterization and sequence analysis of a full-length cDNA clone encoding acetohydroxy acid reductoisomerase from spinach chloroplasts. Biochem J. 1991 Jul 15;277(Pt 2):469–475. doi: 10.1042/bj2770469. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Gollop N., Damri B., Chipman D. M., Barak Z. Physiological implications of the substrate specificities of acetohydroxy acid synthases from varied organisms. J Bacteriol. 1990 Jun;172(6):3444–3449. doi: 10.1128/jb.172.6.3444-3449.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Hofler J. G., Decedue C. J., Luginbuhl G. H., Reynolds J. A., Burns R. O. The subunit structure of alpha-acetohydroxyacid isomeroreductase from Salmonella typhimurium. J Biol Chem. 1975 Feb 10;250(3):877–882. [PubMed] [Google Scholar]
  12. LaRossa R. A., Van Dyk T. K., Smulski D. R. Toxic accumulation of alpha-ketobutyrate caused by inhibition of the branched-chain amino acid biosynthetic enzyme acetolactate synthase in Salmonella typhimurium. J Bacteriol. 1987 Apr;169(4):1372–1378. doi: 10.1128/jb.169.4.1372-1378.1987. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Laemmli U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970 Aug 15;227(5259):680–685. doi: 10.1038/227680a0. [DOI] [PubMed] [Google Scholar]
  14. Petersen J. G., Holmberg S. The ILV5 gene of Saccharomyces cerevisiae is highly expressed. Nucleic Acids Res. 1986 Dec 22;14(24):9631–9651. doi: 10.1093/nar/14.24.9631. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Sanger F., Nicklen S., Coulson A. R. DNA sequencing with chain-terminating inhibitors. Proc Natl Acad Sci U S A. 1977 Dec;74(12):5463–5467. doi: 10.1073/pnas.74.12.5463. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Schulz A., Spönemann P., Köcher H., Wengenmayer F. The herbicidally active experimental compound Hoe 704 is a potent inhibitor of the enzyme acetolactate reductoisomerase. FEBS Lett. 1988 Oct 10;238(2):375–378. doi: 10.1016/0014-5793(88)80515-5. [DOI] [PubMed] [Google Scholar]
  17. Scopes R. K. Measurement of protein by spectrophotometry at 205 nm. Anal Biochem. 1974 May;59(1):277–282. doi: 10.1016/0003-2697(74)90034-7. [DOI] [PubMed] [Google Scholar]
  18. Shematek E. M., Arfin S. M., Diven W. F. A kinetic study of -acetohydroxy acid isomeroreductase from Salmonella typhimurium. Arch Biochem Biophys. 1973 Sep;158(1):132–138. doi: 10.1016/0003-9861(73)90605-x. [DOI] [PubMed] [Google Scholar]
  19. Wek R. C., Hatfield G. W. Nucleotide sequence and in vivo expression of the ilvY and ilvC genes in Escherichia coli K12. Transcription from divergent overlapping promoters. J Biol Chem. 1986 Feb 15;261(5):2441–2450. [PubMed] [Google Scholar]
  20. YPHANTIS D. A. EQUILIBRIUM ULTRACENTRIFUGATION OF DILUTE SOLUTIONS. Biochemistry. 1964 Mar;3:297–317. doi: 10.1021/bi00891a003. [DOI] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES