Abstract
1. The mechanism of the renal transport of L-tryptophan by basolateral and luminal membrane vesicles prepared from either the pars convoluta or the pars recta of the rabbit proximal tubule was studied. The uptake of L-tryptophan by basolateral membrane vesicles from the pars convoluta was found to be an Na(+)-dependent transport event. The Na(+)-conditional influx of the amino acid was stimulated in the presence of an inwardly directed H+ gradient. Lowering the pH without an H+ gradient had no effect, indicating that L-tryptophan is co-transported with H+. 3. On the other hand, no transient accumulation of L-tryptophan was observed in the presence or absence of Na+ in basolateral membrane vesicles from the pars recta. 4. In luminal membrane vesicles from the pars recta, the transient Na(+)-dependent accumulation of L-tryptophan occurred via a dual transport system. In addition, an inwardly directed H+ gradient could drive the uphill transport of L-tryptophan into these vesicles in both the presence and the absence of an Na+ gradient. 5. By contrast, the uptake of L-tryptophan by luminal membrane vesicles from the pars convoluta was a strictly Na(+)-dependent and electrogenic transport process, mediated by a single transport component. 6. Investigation of the coupling ratio in luminal membrane vesicles suggested that 1 Na+:1 L-tryptophan are co-transported in the pars convoluta. In the pars recta, examination of the stoichiometry indicated that approx. 1 H+ and 2 Na+ (high affinity) or 1 Na+ (low affinity) are involved in the uptake of L-tryptophan.
Full text
PDF







Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Chan Y. L., Huang K. C. Microperfusion studies on renal tubular transport of tryptophan derivatives in rats. Am J Physiol. 1971 Aug;221(2):575–579. doi: 10.1152/ajplegacy.1971.221.2.575. [DOI] [PubMed] [Google Scholar]
- Chan Y. L., Huang K. C. Renal excretion of D-tryptophan, 5-hydroxytryptamine, and 5-hydroxyindoleacetic acid in rats. Am J Physiol. 1973 Jan;224(1):140–143. doi: 10.1152/ajplegacy.1973.224.1.140. [DOI] [PubMed] [Google Scholar]
- Ganapathy M. E., Leibach F. H., Mahesh V. B., Howard J. C., Devoe L. D., Ganapathy V. Characterization of tryptophan transport in human placental brush-border membrane vesicles. Biochem J. 1986 Aug 15;238(1):201–208. doi: 10.1042/bj2380201. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hopfer U., Nelson K., Perrotto J., Isselbacher K. J. Glucose transport in isolated brush border membrane from rat small intestine. J Biol Chem. 1973 Jan 10;248(1):25–32. [PubMed] [Google Scholar]
- Jacobsen C., Frich J. R., Steensgaard J. Determination of affinity of monoclonal antibodies against human IgG. J Immunol Methods. 1982;50(1):77–88. doi: 10.1016/0022-1759(82)90305-2. [DOI] [PubMed] [Google Scholar]
- Jessen H., Jørgensen K. E., Røigaard-Petersen H., Sheikh M. I. Demonstration of H+- and Na+-coupled co-transport of beta-alanine by luminal membrane vesicles of rabbit proximal tubule. J Physiol. 1989 Apr;411:517–528. doi: 10.1113/jphysiol.1989.sp017587. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Jessen H., Sheikh M. I. Renal transport of taurine in luminal membrane vesicles from rabbit proximal tubule. Biochim Biophys Acta. 1991 May 7;1064(2):189–198. doi: 10.1016/0005-2736(91)90301-n. [DOI] [PubMed] [Google Scholar]
- Jessen H., Sheikh M. I. Stoichiometric studies of beta-alanine transporters in rabbit proximal tubule. Biochem J. 1991 Aug 1;277(Pt 3):891–894. doi: 10.1042/bj2770891. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Jessen H., Vorum H., Jørgensen K. E., Sheikh M. I. Characteristics of D-alanine transport by luminal membrane vesicles from pars convoluta and pars recta of rabbit proximal tubule. Biochim Biophys Acta. 1988 Jul 21;942(2):262–270. doi: 10.1016/0005-2736(88)90028-4. [DOI] [PubMed] [Google Scholar]
- Jørgensen K. E., Kragh-Hansen U., Sheikh M. I. Transport of leucine, isoleucine and valine by luminal membrane vesicles from rabbit proximal tubule. J Physiol. 1990 Mar;422:41–54. doi: 10.1113/jphysiol.1990.sp017971. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Jørgensen K. E., Sheikh M. I. Renal transport of neutral amino acids. Cation-dependent uptake of L-alanine by luminal-membrane vesicles. Biochem J. 1987 Dec 1;248(2):533–538. doi: 10.1042/bj2480533. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kragh-Hansen U., Jørgensen K. E., Sheikh M. I. The use of potential-sensitive cyanine dye for studying ion-dependent electrogenic renal transport of organic solutes. Spectrophotometric measurements. Biochem J. 1982 Nov 15;208(2):359–368. doi: 10.1042/bj2080359. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kragh-Hansen U., Røigaard-Petersen H., Jacobsen C., Sheikh M. I. Renal transport of neutral amino acids. Tubular localization of Na+-dependent phenylalanine- and glucose-transport systems. Biochem J. 1984 May 15;220(1):15–24. doi: 10.1042/bj2200015. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kragh-Hansen U., Røigaard-Petersen H., Sheikh M. I. Segmental localization of the rabbit renal proximal tubular Na+-H+ exchange system. Am J Physiol. 1985 Nov;249(5 Pt 2):F704–F712. doi: 10.1152/ajprenal.1985.249.5.F704. [DOI] [PubMed] [Google Scholar]
- Kragh-Hansen U., Sheikh M. I. Serine uptake by luminal and basolateral membrane vesicles from rabbit kidney. J Physiol. 1984 Sep;354:55–67. doi: 10.1113/jphysiol.1984.sp015361. [DOI] [PMC free article] [PubMed] [Google Scholar]
- LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
- Peterson G. L. A simplification of the protein assay method of Lowry et al. which is more generally applicable. Anal Biochem. 1977 Dec;83(2):346–356. doi: 10.1016/0003-2697(77)90043-4. [DOI] [PubMed] [Google Scholar]
- Røigaard-Petersen H., Jacobsen C., Iqbal Sheikh M. H+-L-proline cotransport by vesicles from pars convoluta of rabbit proximal tubule. Am J Physiol. 1987 Jul;253(1 Pt 2):F15–F20. doi: 10.1152/ajprenal.1987.253.1.F15. [DOI] [PubMed] [Google Scholar]
- Røigaard-Petersen H., Jacobsen C., Sheikh M. I. Transport of L-proline by luminal membrane vesicles from pars recta of rabbit proximal tubule. Am J Physiol. 1988 May;254(5 Pt 2):F628–F633. doi: 10.1152/ajprenal.1988.254.5.F628. [DOI] [PubMed] [Google Scholar]
- Røigaard-Petersen H., Jessen H., Mollerup S., Jørgensen K. E., Jacobsen C., Sheikh M. I. Proton gradient-dependent renal transport of glycine: evidence for vesicle studies. Am J Physiol. 1990 Feb;258(2 Pt 2):F388–F396. doi: 10.1152/ajprenal.1990.258.2.F388. [DOI] [PubMed] [Google Scholar]
- Røigaard-Petersen H., Sheikh M. I. Renal transport of neutral amino acids. Demonstration of Na+-independent and Na+-dependent electrogenic uptake of L-proline, hydroxy-L-proline and 5-oxo-L-proline by luminal-membrane vesicles. Biochem J. 1984 May 15;220(1):25–33. doi: 10.1042/bj2200025. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Sheikh M. I., Kragh-Hansen U., Jørgensen K. E., Røigaard-Petersen H. An efficient method for the isolation and separation of basolateral-membrane and luminal-membrane vesicles from rabbit kidney cortex. Biochem J. 1982 Nov 15;208(2):377–382. doi: 10.1042/bj2080377. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Turner R. J., Moran A. Further studies of proximal tubular brush border membrane D-glucose transport heterogeneity. J Membr Biol. 1982;70(1):37–45. doi: 10.1007/BF01871587. [DOI] [PubMed] [Google Scholar]
- Turner R. J., Moran A. Stoichiometric studies of the renal outer cortical brush border membrane D-glucose transporter. J Membr Biol. 1982;67(1):73–80. doi: 10.1007/BF01868649. [DOI] [PubMed] [Google Scholar]
- Vorum H., Jessen H., Jørgensen K. E., Sheikh M. I. Mechanism of transport of L-alanine by luminal-membrane vesicles from pars recta of rabbit proximal tubule. FEBS Lett. 1988 Jan 18;227(1):35–38. doi: 10.1016/0014-5793(88)81408-x. [DOI] [PubMed] [Google Scholar]
- Williams W. M., Huang K. C. In vitro and in vivo renal tubular transport of tryptophan derivatives. Am J Physiol. 1970 Nov;219(5):1468–1474. doi: 10.1152/ajplegacy.1970.219.5.1468. [DOI] [PubMed] [Google Scholar]