Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1992 Aug 15;286(Pt 1):103–110. doi: 10.1042/bj2860103

L-tryptophan uptake by segment-specific membrane vesicles from the proximal tubule of rabbit kidney.

H Jessen 1, M I Sheikh 1
PMCID: PMC1133024  PMID: 1520258

Abstract

1. The mechanism of the renal transport of L-tryptophan by basolateral and luminal membrane vesicles prepared from either the pars convoluta or the pars recta of the rabbit proximal tubule was studied. The uptake of L-tryptophan by basolateral membrane vesicles from the pars convoluta was found to be an Na(+)-dependent transport event. The Na(+)-conditional influx of the amino acid was stimulated in the presence of an inwardly directed H+ gradient. Lowering the pH without an H+ gradient had no effect, indicating that L-tryptophan is co-transported with H+. 3. On the other hand, no transient accumulation of L-tryptophan was observed in the presence or absence of Na+ in basolateral membrane vesicles from the pars recta. 4. In luminal membrane vesicles from the pars recta, the transient Na(+)-dependent accumulation of L-tryptophan occurred via a dual transport system. In addition, an inwardly directed H+ gradient could drive the uphill transport of L-tryptophan into these vesicles in both the presence and the absence of an Na+ gradient. 5. By contrast, the uptake of L-tryptophan by luminal membrane vesicles from the pars convoluta was a strictly Na(+)-dependent and electrogenic transport process, mediated by a single transport component. 6. Investigation of the coupling ratio in luminal membrane vesicles suggested that 1 Na+:1 L-tryptophan are co-transported in the pars convoluta. In the pars recta, examination of the stoichiometry indicated that approx. 1 H+ and 2 Na+ (high affinity) or 1 Na+ (low affinity) are involved in the uptake of L-tryptophan.

Full text

PDF
103

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Chan Y. L., Huang K. C. Microperfusion studies on renal tubular transport of tryptophan derivatives in rats. Am J Physiol. 1971 Aug;221(2):575–579. doi: 10.1152/ajplegacy.1971.221.2.575. [DOI] [PubMed] [Google Scholar]
  2. Chan Y. L., Huang K. C. Renal excretion of D-tryptophan, 5-hydroxytryptamine, and 5-hydroxyindoleacetic acid in rats. Am J Physiol. 1973 Jan;224(1):140–143. doi: 10.1152/ajplegacy.1973.224.1.140. [DOI] [PubMed] [Google Scholar]
  3. Ganapathy M. E., Leibach F. H., Mahesh V. B., Howard J. C., Devoe L. D., Ganapathy V. Characterization of tryptophan transport in human placental brush-border membrane vesicles. Biochem J. 1986 Aug 15;238(1):201–208. doi: 10.1042/bj2380201. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Hopfer U., Nelson K., Perrotto J., Isselbacher K. J. Glucose transport in isolated brush border membrane from rat small intestine. J Biol Chem. 1973 Jan 10;248(1):25–32. [PubMed] [Google Scholar]
  5. Jacobsen C., Frich J. R., Steensgaard J. Determination of affinity of monoclonal antibodies against human IgG. J Immunol Methods. 1982;50(1):77–88. doi: 10.1016/0022-1759(82)90305-2. [DOI] [PubMed] [Google Scholar]
  6. Jessen H., Jørgensen K. E., Røigaard-Petersen H., Sheikh M. I. Demonstration of H+- and Na+-coupled co-transport of beta-alanine by luminal membrane vesicles of rabbit proximal tubule. J Physiol. 1989 Apr;411:517–528. doi: 10.1113/jphysiol.1989.sp017587. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Jessen H., Sheikh M. I. Renal transport of taurine in luminal membrane vesicles from rabbit proximal tubule. Biochim Biophys Acta. 1991 May 7;1064(2):189–198. doi: 10.1016/0005-2736(91)90301-n. [DOI] [PubMed] [Google Scholar]
  8. Jessen H., Sheikh M. I. Stoichiometric studies of beta-alanine transporters in rabbit proximal tubule. Biochem J. 1991 Aug 1;277(Pt 3):891–894. doi: 10.1042/bj2770891. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Jessen H., Vorum H., Jørgensen K. E., Sheikh M. I. Characteristics of D-alanine transport by luminal membrane vesicles from pars convoluta and pars recta of rabbit proximal tubule. Biochim Biophys Acta. 1988 Jul 21;942(2):262–270. doi: 10.1016/0005-2736(88)90028-4. [DOI] [PubMed] [Google Scholar]
  10. Jørgensen K. E., Kragh-Hansen U., Sheikh M. I. Transport of leucine, isoleucine and valine by luminal membrane vesicles from rabbit proximal tubule. J Physiol. 1990 Mar;422:41–54. doi: 10.1113/jphysiol.1990.sp017971. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Jørgensen K. E., Sheikh M. I. Renal transport of neutral amino acids. Cation-dependent uptake of L-alanine by luminal-membrane vesicles. Biochem J. 1987 Dec 1;248(2):533–538. doi: 10.1042/bj2480533. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Kragh-Hansen U., Jørgensen K. E., Sheikh M. I. The use of potential-sensitive cyanine dye for studying ion-dependent electrogenic renal transport of organic solutes. Spectrophotometric measurements. Biochem J. 1982 Nov 15;208(2):359–368. doi: 10.1042/bj2080359. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Kragh-Hansen U., Røigaard-Petersen H., Jacobsen C., Sheikh M. I. Renal transport of neutral amino acids. Tubular localization of Na+-dependent phenylalanine- and glucose-transport systems. Biochem J. 1984 May 15;220(1):15–24. doi: 10.1042/bj2200015. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Kragh-Hansen U., Røigaard-Petersen H., Sheikh M. I. Segmental localization of the rabbit renal proximal tubular Na+-H+ exchange system. Am J Physiol. 1985 Nov;249(5 Pt 2):F704–F712. doi: 10.1152/ajprenal.1985.249.5.F704. [DOI] [PubMed] [Google Scholar]
  15. Kragh-Hansen U., Sheikh M. I. Serine uptake by luminal and basolateral membrane vesicles from rabbit kidney. J Physiol. 1984 Sep;354:55–67. doi: 10.1113/jphysiol.1984.sp015361. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
  17. Peterson G. L. A simplification of the protein assay method of Lowry et al. which is more generally applicable. Anal Biochem. 1977 Dec;83(2):346–356. doi: 10.1016/0003-2697(77)90043-4. [DOI] [PubMed] [Google Scholar]
  18. Røigaard-Petersen H., Jacobsen C., Iqbal Sheikh M. H+-L-proline cotransport by vesicles from pars convoluta of rabbit proximal tubule. Am J Physiol. 1987 Jul;253(1 Pt 2):F15–F20. doi: 10.1152/ajprenal.1987.253.1.F15. [DOI] [PubMed] [Google Scholar]
  19. Røigaard-Petersen H., Jacobsen C., Sheikh M. I. Transport of L-proline by luminal membrane vesicles from pars recta of rabbit proximal tubule. Am J Physiol. 1988 May;254(5 Pt 2):F628–F633. doi: 10.1152/ajprenal.1988.254.5.F628. [DOI] [PubMed] [Google Scholar]
  20. Røigaard-Petersen H., Jessen H., Mollerup S., Jørgensen K. E., Jacobsen C., Sheikh M. I. Proton gradient-dependent renal transport of glycine: evidence for vesicle studies. Am J Physiol. 1990 Feb;258(2 Pt 2):F388–F396. doi: 10.1152/ajprenal.1990.258.2.F388. [DOI] [PubMed] [Google Scholar]
  21. Røigaard-Petersen H., Sheikh M. I. Renal transport of neutral amino acids. Demonstration of Na+-independent and Na+-dependent electrogenic uptake of L-proline, hydroxy-L-proline and 5-oxo-L-proline by luminal-membrane vesicles. Biochem J. 1984 May 15;220(1):25–33. doi: 10.1042/bj2200025. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Sheikh M. I., Kragh-Hansen U., Jørgensen K. E., Røigaard-Petersen H. An efficient method for the isolation and separation of basolateral-membrane and luminal-membrane vesicles from rabbit kidney cortex. Biochem J. 1982 Nov 15;208(2):377–382. doi: 10.1042/bj2080377. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Turner R. J., Moran A. Further studies of proximal tubular brush border membrane D-glucose transport heterogeneity. J Membr Biol. 1982;70(1):37–45. doi: 10.1007/BF01871587. [DOI] [PubMed] [Google Scholar]
  24. Turner R. J., Moran A. Stoichiometric studies of the renal outer cortical brush border membrane D-glucose transporter. J Membr Biol. 1982;67(1):73–80. doi: 10.1007/BF01868649. [DOI] [PubMed] [Google Scholar]
  25. Vorum H., Jessen H., Jørgensen K. E., Sheikh M. I. Mechanism of transport of L-alanine by luminal-membrane vesicles from pars recta of rabbit proximal tubule. FEBS Lett. 1988 Jan 18;227(1):35–38. doi: 10.1016/0014-5793(88)81408-x. [DOI] [PubMed] [Google Scholar]
  26. Williams W. M., Huang K. C. In vitro and in vivo renal tubular transport of tryptophan derivatives. Am J Physiol. 1970 Nov;219(5):1468–1474. doi: 10.1152/ajplegacy.1970.219.5.1468. [DOI] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES