Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1992 Aug 15;286(Pt 1):205–210. doi: 10.1042/bj2860205

Site-directed mutagenesis and chemical modification of cysteine residues of rat glutathione S-transferase 3-3.

W L Chen 1, J C Hsieh 1, J L Hong 1, S P Tsai 1, M F Tam 1
PMCID: PMC1133040  PMID: 1520269

Abstract

Rat liver glutathione S-transferase (GST) 3-3 is composed of two identical subunits, each containing three cysteine residues, Cys-86, Cys-114 and Cys-173. We have shown previously that Cys-86 is not involved in the enzymic activity of GST 3-3 [Hsieh, Huang, Chen, Lai & Tam (1991) Biochem, J. 278, 293-297]. At 50 degrees C, iodoacetamide can inactivate the enzyme by modifying Cys-86 and Cys-114. Cys-114 can be protected against iodoacetamide inhibition by S-(dinitrophenyl)glutathione. Site-directed mutagenesis was used to construct mutants in which serine replaced one (C114S and C173S) or all three (CallS) cysteine residues. These mutants were over-expressed in Spodoptera frugiperda cells in a baculovirus system and were found to be fully active. Replacing Cys-86 or Cys-114 with alanine (C86A and C114A) does not diminish the activity of the protein. The results suggest that cysteines are not involved in the enzymic mechanism, and Cys-114 is possibly located at the active site of GST 3-3.

Full text

PDF
205

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Ahmad H., Wilson D. E., Fritz R. R., Singh S. V., Medh R. D., Nagle G. T., Awasthi Y. C., Kurosky A. Primary and secondary structural analyses of glutathione S-transferase pi from human placenta. Arch Biochem Biophys. 1990 May 1;278(2):398–408. doi: 10.1016/0003-9861(90)90277-6. [DOI] [PubMed] [Google Scholar]
  2. Awasthi Y. C., Bhatnagar A., Singh S. V. Evidence for the involvement of histidine at the active site of glutathione S-transferase psi from human liver. Biochem Biophys Res Commun. 1987 Mar 30;143(3):965–970. doi: 10.1016/0006-291x(87)90345-7. [DOI] [PubMed] [Google Scholar]
  3. Bhargava M. M., Listowsky I., Arias I. M. Ligandin. Bilirubin binding and glutathione-S-transferase activity are independent processes. J Biol Chem. 1978 Jun 25;253(12):4112–4115. [PubMed] [Google Scholar]
  4. Carne T., Tipping E., Ketterer B. The binding and catalytic activities of forms of ligandin after modification of its thiol groups. Biochem J. 1979 Feb 1;177(2):433–439. doi: 10.1042/bj1770433. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Chang L. H., Wang L. Y., Tam M. F. The single cysteine residue on an alpha family chick liver glutathione S-transferase CL 3-3 is not functionally important. Biochem Biophys Res Commun. 1991 Oct 15;180(1):323–328. doi: 10.1016/s0006-291x(05)81295-1. [DOI] [PubMed] [Google Scholar]
  6. Christ-Hazelhof E., Nugteren D. H. Purification and characterisation of prostaglandin endoperoxide D-isomerase, a cytoplasmic, glutathione-requiring enzyme. Biochim Biophys Acta. 1979 Jan 29;572(1):43–51. doi: 10.1016/0005-2760(79)90198-x. [DOI] [PubMed] [Google Scholar]
  7. Cowan S. W., Bergfors T., Jones T. A., Tibbelin G., Olin B., Board P. G., Mannervik B. Crystallization of GST2, a human class alpha glutathione transferase. J Mol Biol. 1989 Jul 20;208(2):369–370. doi: 10.1016/0022-2836(89)90398-7. [DOI] [PubMed] [Google Scholar]
  8. Daniel V., Sharon R., Tichauer Y., Sarid S. Mouse glutathione S-transferase Ya subunit: gene structure and sequence. DNA. 1987 Aug;6(4):317–324. doi: 10.1089/dna.1987.6.317. [DOI] [PubMed] [Google Scholar]
  9. Del Boccio G., Pennelli A., Whitehead E. P., Lo Bello M., Petruzzelli R., Federici G., Ricci G. Interaction of glutathione transferase from horse erythrocytes with 7-chloro-4-nitrobenzo-2-oxa-1,3-diazole. J Biol Chem. 1991 Jul 25;266(21):13777–13782. [PubMed] [Google Scholar]
  10. Desideri A., Caccuri A. M., Polizio F., Bastoni R., Federici G. Electron paramagnetic resonance identification of a highly reactive thiol group in the proximity of the catalytic site of human placenta glutathione transferase. J Biol Chem. 1991 Feb 5;266(4):2063–2066. [PubMed] [Google Scholar]
  11. Dirr H. W., Mann K., Huber R., Ladenstein R., Reinemer P. Class pi glutathione S-transferase from pig lung. Purification, biochemical characterization, primary structure and crystallization. Eur J Biochem. 1991 Mar 28;196(3):693–698. doi: 10.1111/j.1432-1033.1991.tb15867.x. [DOI] [PubMed] [Google Scholar]
  12. Gribskov M., Burgess R. R. Sigma factors from E. coli, B. subtilis, phage SP01, and phage T4 are homologous proteins. Nucleic Acids Res. 1986 Aug 26;14(16):6745–6763. doi: 10.1093/nar/14.16.6745. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Habig W. H., Jakoby W. B. Assays for differentiation of glutathione S-transferases. Methods Enzymol. 1981;77:398–405. doi: 10.1016/s0076-6879(81)77053-8. [DOI] [PubMed] [Google Scholar]
  14. Habig W. H., Pabst M. J., Jakoby W. B. Glutathione S-transferases. The first enzymatic step in mercapturic acid formation. J Biol Chem. 1974 Nov 25;249(22):7130–7139. [PubMed] [Google Scholar]
  15. Hewick R. M., Hunkapiller M. W., Hood L. E., Dreyer W. J. A gas-liquid solid phase peptide and protein sequenator. J Biol Chem. 1981 Aug 10;256(15):7990–7997. [PubMed] [Google Scholar]
  16. Hoesch R. M., Boyer T. D. Localization of a portion of the active site of two rat liver glutathione S-transferases using a photoaffinity label. J Biol Chem. 1989 Oct 25;264(30):17712–17717. [PubMed] [Google Scholar]
  17. Hsieh J. C., Huang S. C., Chen W. L., Lai Y. C., Tam M. F. Cysteine-86 is not needed for the enzymic activity of glutathione S-transferase 3-3. Biochem J. 1991 Aug 15;278(Pt 1):293–297. doi: 10.1042/bj2780293. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Hsieh J. C., Liu L. F., Chen W. L., Tam M. F. Expression of Yb1 glutathione S-transferase using a baculovirus expression system. Biochem Biophys Res Commun. 1989 Aug 15;162(3):1147–1154. doi: 10.1016/0006-291x(89)90793-6. [DOI] [PubMed] [Google Scholar]
  19. Ishigaki S., Abramovitz M., Listowsky I. Glutathione-S-transferases are major cytosolic thyroid hormone binding proteins. Arch Biochem Biophys. 1989 Sep;273(2):265–272. doi: 10.1016/0003-9861(89)90483-9. [DOI] [PubMed] [Google Scholar]
  20. Jakobson I., Warholm M., Mannervik B. Multiple inhibition of glutathione S-transferase A from rat liver by glutathione derivatives: kinetic analysis supporting a steady-state random sequential mechanism. Biochem J. 1979 Mar 1;177(3):861–868. doi: 10.1042/bj1770861. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Knowles J. R. Tinkering with enzymes: what are we learning? Science. 1987 Jun 5;236(4806):1252–1258. doi: 10.1126/science.3296192. [DOI] [PubMed] [Google Scholar]
  22. Laemmli U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970 Aug 15;227(5259):680–685. doi: 10.1038/227680a0. [DOI] [PubMed] [Google Scholar]
  23. Lai H. C., Grove G., Tu C. P. Cloning and sequence analysis of a cDNA for a rat liver glutathione S-transferase Yb subunit. Nucleic Acids Res. 1986 Aug 11;14(15):6101–6114. doi: 10.1093/nar/14.15.6101. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Lai H. C., Li N., Weiss M. J., Reddy C. C., Tu C. P. The nucleotide sequence of a rat liver glutathione S-transferase subunit cDNA clone. J Biol Chem. 1984 May 10;259(9):5536–5542. [PubMed] [Google Scholar]
  25. Lai H. C., Tu C. P. Rat glutathione S-transferases supergene family. Characterization of an anionic Yb subunit cDNA clone. J Biol Chem. 1986 Oct 15;261(29):13793–13799. [PubMed] [Google Scholar]
  26. Lawrence R. A., Burk R. F. Glutathione peroxidase activity in selenium-deficient rat liver. Biochem Biophys Res Commun. 1976 Aug 23;71(4):952–958. doi: 10.1016/0006-291x(76)90747-6. [DOI] [PubMed] [Google Scholar]
  27. Lindwall G., Boyer T. D. Excretion of glutathione conjugates by primary cultured rat hepatocytes. J Biol Chem. 1987 Apr 15;262(11):5151–5158. [PubMed] [Google Scholar]
  28. Lo Bello M., Petruzzelli R., De Stefano E., Tenedini C., Barra D., Federici G. Identification of a highly reactive sulphydryl group in human placental glutathione transferase by a site-directed fluorescent reagent. FEBS Lett. 1990 Apr 24;263(2):389–391. doi: 10.1016/0014-5793(90)81421-j. [DOI] [PubMed] [Google Scholar]
  29. Mannervik B., Alin P., Guthenberg C., Jensson H., Tahir M. K., Warholm M., Jörnvall H. Identification of three classes of cytosolic glutathione transferase common to several mammalian species: correlation between structural data and enzymatic properties. Proc Natl Acad Sci U S A. 1985 Nov;82(21):7202–7206. doi: 10.1073/pnas.82.21.7202. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Mannervik B., Danielson U. H. Glutathione transferases--structure and catalytic activity. CRC Crit Rev Biochem. 1988;23(3):283–337. doi: 10.3109/10409238809088226. [DOI] [PubMed] [Google Scholar]
  31. Mannervik B., Guthenberg C. Glutathione transferase (human placenta). Methods Enzymol. 1981;77:231–235. doi: 10.1016/s0076-6879(81)77030-7. [DOI] [PubMed] [Google Scholar]
  32. Meyer D. J., Coles B., Pemble S. E., Gilmore K. S., Fraser G. M., Ketterer B. Theta, a new class of glutathione transferases purified from rat and man. Biochem J. 1991 Mar 1;274(Pt 2):409–414. doi: 10.1042/bj2740409. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Parker M. W., Lo Bello M., Federici G. Crystallization of glutathione S-transferase from human placenta. J Mol Biol. 1990 May 20;213(2):221–222. doi: 10.1016/s0022-2836(05)80183-4. [DOI] [PubMed] [Google Scholar]
  34. Ploemen J. H., van Ommen B., van Bladeren P. J. Irreversible inhibition of human glutathione S-transferase isoenzymes by tetrachloro-1,4-benzoquinone and its glutathione conjugate. Biochem Pharmacol. 1991 Jun 1;41(11):1665–1669. doi: 10.1016/0006-2952(91)90167-4. [DOI] [PubMed] [Google Scholar]
  35. Principato G. B., Danielson U. H., Mannervik B. Relaxed thiol substrate specificity of glutathione transferase effected by a non-substrate glutathione derivative. FEBS Lett. 1988 Apr 11;231(1):155–158. doi: 10.1016/0014-5793(88)80722-1. [DOI] [PubMed] [Google Scholar]
  36. Reinemer P., Dirr H. W., Ladenstein R., Schäffer J., Gallay O., Huber R. The three-dimensional structure of class pi glutathione S-transferase in complex with glutathione sulfonate at 2.3 A resolution. EMBO J. 1991 Aug;10(8):1997–2005. doi: 10.1002/j.1460-2075.1991.tb07729.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  37. Ricci G., Del Boccio G., Pennelli A., Aceto A., Whitehead E. P., Federici G. Nonequivalence of the two subunits of horse erythrocyte glutathione transferase in their reaction with sulfhydryl reagents. J Biol Chem. 1989 Apr 5;264(10):5462–5467. [PubMed] [Google Scholar]
  38. Schäffer J., Gallay O., Ladenstein R. Glutathione transferase from bovine placenta. Preparation, biochemical characterization, crystallization, and preliminary crystallographic analysis of a neutral class PI enzyme. J Biol Chem. 1988 Nov 25;263(33):17405–17411. [PubMed] [Google Scholar]
  39. Sesay M. A., Ammon H. L., Armstrong R. N. Crystallization and a preliminary X-ray diffraction study of isozyme 3-3 of glutathione S-transferase from rat liver. J Mol Biol. 1987 Sep 20;197(2):377–378. doi: 10.1016/0022-2836(87)90133-1. [DOI] [PubMed] [Google Scholar]
  40. Shen H. X., Tamai K., Satoh K., Hatayama I., Tsuchida S., Sato K. Modulation of class Pi glutathione transferase activity by sulfhydryl group modification. Arch Biochem Biophys. 1991 Apr;286(1):178–182. doi: 10.1016/0003-9861(91)90025-e. [DOI] [PubMed] [Google Scholar]
  41. Suguoka Y., Kano T., Okuda A., Sakai M., Kitagawa T., Muramatsu M. Cloning and the nucleotide sequence of rat glutathione S-transferase P cDNA. Nucleic Acids Res. 1985 Sep 11;13(17):6049–6057. doi: 10.1093/nar/13.17.6049. [DOI] [PMC free article] [PubMed] [Google Scholar]
  42. Tamai K., Satoh K., Tsuchida S., Hatayama I., Maki T., Sato K. Specific inactivation of glutathione S-transferases in class Pi by SH-modifiers. Biochem Biophys Res Commun. 1990 Feb 28;167(1):331–338. doi: 10.1016/0006-291x(90)91769-o. [DOI] [PubMed] [Google Scholar]
  43. Tamai K., Shen H. X., Tsuchida S., Hatayama I., Satoh K., Yasui A., Oikawa A., Sato K. Role of cysteine residues in the activity of rat glutathione transferase P (7-7): elucidation by oligonucleotide site-directed mutagenesis. Biochem Biophys Res Commun. 1991 Sep 16;179(2):790–797. doi: 10.1016/0006-291x(91)91886-h. [DOI] [PubMed] [Google Scholar]
  44. Tan K. H., Meyer D. J., Coles B., Ketterer B. Thymine hydroperoxide, a substrate for rat Se-dependent glutathione peroxidase and glutathione transferase isoenzymes. FEBS Lett. 1986 Oct 27;207(2):231–233. doi: 10.1016/0014-5793(86)81494-6. [DOI] [PubMed] [Google Scholar]
  45. Taylor J. W., Schmidt W., Cosstick R., Okruszek A., Eckstein F. The use of phosphorothioate-modified DNA in restriction enzyme reactions to prepare nicked DNA. Nucleic Acids Res. 1985 Dec 20;13(24):8749–8764. doi: 10.1093/nar/13.24.8749. [DOI] [PMC free article] [PubMed] [Google Scholar]
  46. Telakowski-Hopkins C. A., Rodkey J. A., Bennett C. D., Lu A. Y., Pickett C. B. Rat liver glutathione S-transferases. Construction of a cDNA clone complementary to a Yc mRNA and prediction of the complete amino acid sequence of a Yc subunit. J Biol Chem. 1985 May 10;260(9):5820–5825. [PubMed] [Google Scholar]
  47. Townsend A. J., Goldsmith M. E., Pickett C. B., Cowan K. H. Isolation, characterization, and expression in Escherichia coli of two murine Mu class glutathione S-transferase cDNAs homologous to the rat subunits 3 (Yb1) and 4 (Yb2). J Biol Chem. 1989 Dec 25;264(36):21582–21590. [PubMed] [Google Scholar]
  48. Tu C. P., Qian B. Human liver glutathione S-transferases: complete primary sequence of an Ha subunit cDNA. Biochem Biophys Res Commun. 1986 Nov 26;141(1):229–237. doi: 10.1016/s0006-291x(86)80358-8. [DOI] [PubMed] [Google Scholar]
  49. Warholm M., Guthenberg C., Mannervik B. Molecular and catalytic properties of glutathione transferase mu from human liver: an enzyme efficiently conjugating epoxides. Biochemistry. 1983 Jul 19;22(15):3610–3617. doi: 10.1021/bi00284a011. [DOI] [PubMed] [Google Scholar]
  50. Widersten M., Holmström E., Mannervik B. Cysteine residues are not essential for the catalytic activity of human class Mu glutathione transferase M1a-1a. FEBS Lett. 1991 Nov 18;293(1-2):156–159. doi: 10.1016/0014-5793(91)81175-8. [DOI] [PubMed] [Google Scholar]
  51. Zhang P. H., Graminski G. F., Armstrong R. N. Are the histidine residues of glutathione S-transferase important in catalysis? An assessment by 13C NMR spectroscopy and site-specific mutagenesis. J Biol Chem. 1991 Oct 15;266(29):19475–19479. [PubMed] [Google Scholar]
  52. van Ommen B., Ploemen J. H., Bogaards J. J., Monks T. J., Gau S. S., van Bladeren P. J. Irreversible inhibition of rat glutathione S-transferase 1-1 by quinones and their glutathione conjugates. Structure-activity relationship and mechanism. Biochem J. 1991 Jun 15;276(Pt 3):661–666. doi: 10.1042/bj2760661. [DOI] [PMC free article] [PubMed] [Google Scholar]
  53. van Ommen B., den Besten C., Rutten A. L., Ploemen J. H., Vos R. M., Müller F., van Bladeren P. J. Active site-directed irreversible inhibition of glutathione S-transferases by the glutathione conjugate of tetrachloro-1,4-benzoquinone. J Biol Chem. 1988 Sep 15;263(26):12939–12942. [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES