Abstract
The ability to repair damaged replication forks and restart them is important for cell survival. DnaT is essential for replication restart in vitro and yet no definite genetic analysis has been done in Escherichia coli K-12. To begin, dnaT822, an in-frame six-codon (87-92) deletion was constructed. DnaT822 mutants show colony size, cell morphology, inability to properly partition nucleoids, UV sensitivity, and basal SOS expression similar to priA2::kan mutants. DnaT822 priA2::kan double mutants had phenotypes similar to those of the single mutants. DnaT822 and dnaT822 priA2::kan mutant phenotypes were fully suppressed by dnaC809. Previously, a dominant temperature-sensitive lethal mutation, dnaT1, had been isolated in E. coli 15T(-). DnaT1 was found to have a base-pair change relative to the E. coli 15T(-) and E. coli K-12 dnaT genes that led to a single amino acid change: R152C. A plasmid-encoded E. coli K-12 mutant dnaT gene with the R152C amino acid substitution did not display a dominant temperature-sensitive lethal phenotype in a dnaT(+) strain of E. coli K-12. Instead, this mutant dnaT gene was found to complement the E. coli K-12 dnaT822 mutant phenotypes. The significance of these results is discussed in terms of models for replication restart.
Full Text
The Full Text of this article is available as a PDF (172.3 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Alikhanian S. I., Iljina T. S., Kaliaeva E. S., Kameneva S. V., Sukhodolec V. V. A genetical study of thymineless mutants of E. coli K12. Genet Res. 1966 Aug;8(1):83–100. doi: 10.1017/s0016672300009939. [DOI] [PubMed] [Google Scholar]
- Arber W., Wauters-Willems D. Host specificity of DNA produced by Escherichia coli. XII. The two restriction and modification systems of strain 15T-. Mol Gen Genet. 1970;108(3):203–217. doi: 10.1007/BF00283350. [DOI] [PubMed] [Google Scholar]
- Chaudhury A. M., Smith G. R. Role of Escherichia coli RecBC enzyme in SOS induction. Mol Gen Genet. 1985;201(3):525–528. doi: 10.1007/BF00331350. [DOI] [PubMed] [Google Scholar]
- Cox M. M., Goodman M. F., Kreuzer K. N., Sherratt D. J., Sandler S. J., Marians K. J. The importance of repairing stalled replication forks. Nature. 2000 Mar 2;404(6773):37–41. doi: 10.1038/35003501. [DOI] [PubMed] [Google Scholar]
- Cox M. M. Historical overview: searching for replication help in all of the rec places. Proc Natl Acad Sci U S A. 2001 Jul 17;98(15):8173–8180. doi: 10.1073/pnas.131004998. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kogoma T., Cadwell G. W., Barnard K. G., Asai T. The DNA replication priming protein, PriA, is required for homologous recombination and double-strand break repair. J Bacteriol. 1996 Mar;178(5):1258–1264. doi: 10.1128/jb.178.5.1258-1264.1996. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kowalczykowski S. C. Initiation of genetic recombination and recombination-dependent replication. Trends Biochem Sci. 2000 Apr;25(4):156–165. doi: 10.1016/s0968-0004(00)01569-3. [DOI] [PubMed] [Google Scholar]
- Lark C. A., Riazi J., Lark K. G. dnaT, dominant conditional-lethal mutation affecting DNA replication in Escherichia coli. J Bacteriol. 1978 Dec;136(3):1008–1017. doi: 10.1128/jb.136.3.1008-1017.1978. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Lee E. H., Kornberg A. Replication deficiencies in priA mutants of Escherichia coli lacking the primosomal replication n' protein. Proc Natl Acad Sci U S A. 1991 Apr 15;88(8):3029–3032. doi: 10.1073/pnas.88.8.3029. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Link A. J., Phillips D., Church G. M. Methods for generating precise deletions and insertions in the genome of wild-type Escherichia coli: application to open reading frame characterization. J Bacteriol. 1997 Oct;179(20):6228–6237. doi: 10.1128/jb.179.20.6228-6237.1997. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Liu J., Marians K. J. PriA-directed assembly of a primosome on D loop DNA. J Biol Chem. 1999 Aug 27;274(35):25033–25041. doi: 10.1074/jbc.274.35.25033. [DOI] [PubMed] [Google Scholar]
- Liu J., Nurse P., Marians K. J. The ordered assembly of the phiX174-type primosome. III. PriB facilitates complex formation between PriA and DnaT. J Biol Chem. 1996 Jun 28;271(26):15656–15661. doi: 10.1074/jbc.271.26.15656. [DOI] [PubMed] [Google Scholar]
- Liu J., Xu L., Sandler S. J., Marians K. J. Replication fork assembly at recombination intermediates is required for bacterial growth. Proc Natl Acad Sci U S A. 1999 Mar 30;96(7):3552–3555. doi: 10.1073/pnas.96.7.3552. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Marians K. J. Prokaryotic DNA replication. Annu Rev Biochem. 1992;61:673–719. doi: 10.1146/annurev.bi.61.070192.003325. [DOI] [PubMed] [Google Scholar]
- Marians K. J. Replication and recombination intersect. Curr Opin Genet Dev. 2000 Apr;10(2):151–156. doi: 10.1016/s0959-437x(00)00059-9. [DOI] [PubMed] [Google Scholar]
- Masai H., Arai K. Operon structure of dnaT and dnaC genes essential for normal and stable DNA replication of Escherichia coli chromosome. J Biol Chem. 1988 Oct 15;263(29):15083–15093. [PubMed] [Google Scholar]
- Masai H., Asai T., Kubota Y., Arai K., Kogoma T. Escherichia coli PriA protein is essential for inducible and constitutive stable DNA replication. EMBO J. 1994 Nov 15;13(22):5338–5345. doi: 10.1002/j.1460-2075.1994.tb06868.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- McCool J. D., Sandler S. J. Effects of mutations involving cell division, recombination, and chromosome dimer resolution on a priA2::kan mutant. Proc Natl Acad Sci U S A. 2001 Jul 17;98(15):8203–8210. doi: 10.1073/pnas.121007698. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Ng J. Y., Marians K. J. The ordered assembly of the phiX174-type primosome. I. Isolation and identification of intermediate protein-DNA complexes. J Biol Chem. 1996 Jun 28;271(26):15642–15648. doi: 10.1074/jbc.271.26.15642. [DOI] [PubMed] [Google Scholar]
- Ng J. Y., Marians K. J. The ordered assembly of the phiX174-type primosome. II. Preservation of primosome composition from assembly through replication. J Biol Chem. 1996 Jun 28;271(26):15649–15655. doi: 10.1074/jbc.271.26.15649. [DOI] [PubMed] [Google Scholar]
- Nurse P., Zavitz K. H., Marians K. J. Inactivation of the Escherichia coli priA DNA replication protein induces the SOS response. J Bacteriol. 1991 Nov;173(21):6686–6693. doi: 10.1128/jb.173.21.6686-6693.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Sandler S. J., Clark A. J. RecOR suppression of recF mutant phenotypes in Escherichia coli K-12. J Bacteriol. 1994 Jun;176(12):3661–3672. doi: 10.1128/jb.176.12.3661-3672.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Sandler S. J., Marians K. J. Role of PriA in replication fork reactivation in Escherichia coli. J Bacteriol. 2000 Jan;182(1):9–13. doi: 10.1128/jb.182.1.9-13.2000. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Sandler S. J., Marians K. J., Zavitz K. H., Coutu J., Parent M. A., Clark A. J. dnaC mutations suppress defects in DNA replication- and recombination-associated functions in priB and priC double mutants in Escherichia coli K-12. Mol Microbiol. 1999 Oct;34(1):91–101. doi: 10.1046/j.1365-2958.1999.01576.x. [DOI] [PubMed] [Google Scholar]
- Sandler S. J. Multiple genetic pathways for restarting DNA replication forks in Escherichia coli K-12. Genetics. 2000 Jun;155(2):487–497. doi: 10.1093/genetics/155.2.487. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Sandler S. J., Samra H. S., Clark A. J. Differential suppression of priA2::kan phenotypes in Escherichia coli K-12 by mutations in priA, lexA, and dnaC. Genetics. 1996 May;143(1):5–13. doi: 10.1093/genetics/143.1.5. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Singer M., Baker T. A., Schnitzler G., Deischel S. M., Goel M., Dove W., Jaacks K. J., Grossman A. D., Erickson J. W., Gross C. A. A collection of strains containing genetically linked alternating antibiotic resistance elements for genetic mapping of Escherichia coli. Microbiol Rev. 1989 Mar;53(1):1–24. doi: 10.1128/mr.53.1.1-24.1989. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Willetts N. S., Clark A. J., Low B. Genetic location of certain mutations conferring recombination deficiency in Escherichia coli. J Bacteriol. 1969 Jan;97(1):244–249. doi: 10.1128/jb.97.1.244-249.1969. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Xu Liewei, Marians Kenneth J. PriA mediates DNA replication pathway choice at recombination intermediates. Mol Cell. 2003 Mar;11(3):817–826. doi: 10.1016/s1097-2765(03)00061-3. [DOI] [PubMed] [Google Scholar]
- Zieg J., Kushner S. R. Analysis of genetic recombination between two partially deleted lactose operons of Escherichia coli K-12. J Bacteriol. 1977 Jul;131(1):123–132. doi: 10.1128/jb.131.1.123-132.1977. [DOI] [PMC free article] [PubMed] [Google Scholar]
- von Hippel P. H. The recombination-replication interface. Trends Biochem Sci. 2000 Apr;25(4):155–155. doi: 10.1016/s0968-0004(00)01571-1. [DOI] [PubMed] [Google Scholar]