Abstract
The recently described family of dependence receptors is a new family of functionally related receptors. These proteins have little sequence similarity but display the common feature of inducing two completely opposite intracellular signals depending on ligand availability: in the presence of ligand, these receptors transduce a positive signal leading to survival, differentiation or migration, while in the absence of ligand, the receptors initiate or amplify a negative signal for apoptosis. Thus, cells that express these proteins manifest a state of dependence on their respective ligands. The mechanisms that trigger cell death induction in the absence of ligand are in large part unknown, but typically require cleavage by specific caspases. In this review we will present the proposed mechanisms for cell death induction by these receptors and their potential function in nervous system development and regulation of tumorigenesis.
Key words: Dependence receptor, apoptosis, development, tumor suppressor, caspase
References
- 1.Rabizadeh S., Oh J., Zhong L. T., Yang J., Bider C. M., Butcher L. L., et al. Induction of apoptosis by the low-affinity NGF receptor. Science. 1993;261(5119):345–348. doi: 10.1126/science.8332899. [DOI] [PubMed] [Google Scholar]
- 2.Mehlen P., Rabizadeh S., Snipas S. J., Assa-Munt N., Salvesen G. S., Bredesen D. E. The DCC gene product induces apoptosis by a mechanism requiring receptor proteolysis. Nature. 1998;395(6704):801–804. doi: 10.1038/27441. [DOI] [PubMed] [Google Scholar]
- 3.Llambi F., Causeret F., Bloch-Gallego E., Mehlen P. Netrin-1 acts as a survival factor via its receptors UNC5H and DCC. EMBO J. 2001;20(11):2715–2722. doi: 10.1093/emboj/20.11.2715. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 4.Ellerby L. M., Hackam A. S., Propp S. S., Ellerby H. M., Rabizadeh S., Cashman N. R., et al. Kennedy's disease: caspase cleavage of the androgen receptor is a crucial event in cytotoxicity. J. Neurochem. 1999;72(1):185–195. doi: 10.1046/j.1471-4159.1999.0720185.x. [DOI] [PubMed] [Google Scholar]
- 5.Bordeaux M. C., Forcet C., Granger L., Corset V., Bidaud C., Billaud M., et al. The RET proto-oncogene induces apoptosis: a novel mechanism for Hirschsprung disease. EMBO J. 2000;19(15):4056–4063. doi: 10.1093/emboj/19.15.4056. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 6.Stupack D. G., Puente X. S., Boutsaboualoy S., Storgard C. M., Cheresh D. A. Apoptosis of adherent cells by recruitment of caspase-8 to unligated integrins. J. Cell Biol. 2001;155(3):459–470. doi: 10.1083/jcb.200106070. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 7.Ruoslahti E., Reed J. C. Anchorage dependence, integrins and apoptosis. Cell. 1994;77(4):477–478. doi: 10.1016/0092-8674(94)90209-7. [DOI] [PubMed] [Google Scholar]
- 8.Thibert C., Teillet M. A., Lapointe F., Mazelin L., Le Douarin N. M., Mehlen P. Inhibition of neuroepithelial patched-induced apoptosis by sonic hedgehog. Science. 2003;301(5634):843–846. doi: 10.1126/science.1085405. [DOI] [PubMed] [Google Scholar]
- 9.Levi-Montalcini R. The nerve growth factor: its mode of action on sensory and sympathetic nerve cells. Harvey Lect. 1966;60:217–259. [PubMed] [Google Scholar]
- 10.Chao M. V., Bothwell M. A., Ross A. H., Koprowski H., Lanahan A. A., Buck C. R., et al. Gene transfer and molecular cloning of the human NGF receptor. Science. 1986;232(4749):518–521. doi: 10.1126/science.3008331. [DOI] [PubMed] [Google Scholar]
- 11.Radeke M. J., Misko T. P., Hsu C., Herzenberg L. A., Shooter E. M. Gene transfer and molecular cloning of the rat nerve growth factor receptor. Nature. 1987;325(6105):593–597. doi: 10.1038/325593a0. [DOI] [PubMed] [Google Scholar]
- 12.Hempstead B. L., Martin-Zanca D., Kaplan D. R., Parada L. F., Chao M. V. High-affinity NGF binding requires coexpression of the trk proto-oncogene and the low-affinity NGF receptor. Nature. 1991;350(6320):678–683. doi: 10.1038/350678a0. [DOI] [PubMed] [Google Scholar]
- 13.Ibanez C. F. Structure-function relationships in the neurotrophin family. J. Neurobiol. 1994;25(11):1349–1361. doi: 10.1002/neu.480251104. [DOI] [PubMed] [Google Scholar]
- 14.Lee F. S., Kim A. H., Khursigara G., Chao M. V. The uniqueness of being a neurotrophin receptor. Curr. Opin. Neurobiol. 2001;11(3):281–286. doi: 10.1016/S0959-4388(00)00209-9. [DOI] [PubMed] [Google Scholar]
- 15.Verdi J. M., Birren S. J., Ibanez C. F., Persson H., Kaplan D. R., Benedetti M., et al. p75LNGFR regulates Trk signal transduction and NGF-induced neuronal differentiation in MAH cells. Neuron. 1994;12(4):733–745. doi: 10.1016/0896-6273(94)90327-1. [DOI] [PubMed] [Google Scholar]
- 16.Chao M. V. The p75 neurotrophin receptor. J. Neurobiol. 1994;25(11):1373–1385. doi: 10.1002/neu.480251106. [DOI] [PubMed] [Google Scholar]
- 17.Barrett G. L., Bartlett P. F. The p75 nerve growth factor receptor mediates survival or death depending on the stage of sensory neuron development. Proc. Natl. Acad. Sci. USA. 1994;91(14):6501–6505. doi: 10.1073/pnas.91.14.6501. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 18.Rabizadeh S., Bredesen D. E. Ten years on: mediation of cell death by the common neurotrophin receptor p75(NTR) Cytokine Growth Factor Rev. 2003;14(3–4):225–239. doi: 10.1016/S1359-6101(03)00018-2. [DOI] [PubMed] [Google Scholar]
- 19.Yeo T. T., Chua-Couzens J., Butcher L. L., Bredesen D. E., Cooper J. D., Valletta J. S., et al. Absence of p75NTR causes increased basal forebrain cholinergic neuron size, choline acetyltransferase activity and target innervation. J. Neurosci. 1997;17(20):7594–7605. doi: 10.1523/JNEUROSCI.17-20-07594.1997. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 20.Naumann T., Casademunt E., Hollerbach E., Hofmann J., Dechant G., Frotscher M., et al. Complete deletion of the neurotrophin receptor p75NTR leads to long-lasting increases in the number of basal forebrain cholinergic neurons. J. Neurosci. 2002;22(7):2409–2418. doi: 10.1523/JNEUROSCI.22-07-02409.2002. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 21.Sauer H., Nishimura M. C., H. S. P Deletion of the p75NTR gene attenuates septal cholinergic cell loss in mice heterozygous for a deletion of the NGF gene. Soc. Neurosci. Abs. 1996;22:513–514. [Google Scholar]
- 22.Casaccia-Bonnefil P., Carter B. D., Dobrowsky R. T., Chao M. V. Death of oligodendrocytes mediated by the interaction of nerve growth factor with its receptor p75. Nature. 1996;383(6602):716–719. doi: 10.1038/383716a0. [DOI] [PubMed] [Google Scholar]
- 23.Frade J. M., Rodriguez-Tebar A., Barde Y. A. Induction of cell death by endogenous nerve growth factor through its p75 receptor. Nature. 1996;383(6596):166–168. doi: 10.1038/383166a0. [DOI] [PubMed] [Google Scholar]
- 24.Bredesen D. E., Rabizadeh S. p75NTR and apoptosis: Trk-dependent and Trk-independent effects. Trends Neurosci. 1997;20(7):287–290. doi: 10.1016/S0166-2236(96)01049-1. [DOI] [PubMed] [Google Scholar]
- 25.Bredesen D. E., Ye X., Tasinato A., Sperandio S., Wang J. J., Assa-Munt N., et al. p75NTR and the concept of cellular dependence: seeing how the other half die. Cell Death Differ. 1998;5(5):365–371. doi: 10.1038/sj.cdd.4400378. [DOI] [PubMed] [Google Scholar]
- 26.Majdan M., Walsh G. S., Aloyz R., Miller E. D. TrkA mediates developmental sympathetic neuron survival in vivo by silencing an ongoing p75NTR-mediated death signal. J. Cell Biol. 2001;155(7):1275–1285. doi: 10.1083/jcb.200110017. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 27.Fearon E. R., Cho K. R., Nigro J. M., Kern S. E., Simons J. W., Ruppert J. M., et al. Identification of a chromosome 18q gene that is altered in colorectal cancers. Science. 1990;247(4938):49–56. doi: 10.1126/science.2294591. [DOI] [PubMed] [Google Scholar]
- 28.Serafini T., Kennedy T. E., Galko M. J., Mirzayan C., Jessell T. M., Tessier-Lavigne M. The netrins define a family of axon outgrowth-promoting proteins homologous to C. elegans UNC-6. Cell. 1994;78(3):409–424. doi: 10.1016/0092-8674(94)90420-0. [DOI] [PubMed] [Google Scholar]
- 29.Serafini T., Colamarino S. A., Leonardo E. D., Wang H., Beddington R., Skarnes W. C., et al. Netrin-1 is required for commissural axon guidance in the developing vertebrate nervous system. Cell. 1996;87(6):1001–1014. doi: 10.1016/S0092-8674(00)81795-X. [DOI] [PubMed] [Google Scholar]
- 30.de la Torre J. R., Hopker V. H., Ming G. L., Poo M. M., Tessier-Lavigne M., Hemmati-Brivanlou A., et al. Turning of retinal growth cones in a netrin-1 gradient mediated by the netrin receptor DCC. Neuron. 1997;19(6):1211–1224. doi: 10.1016/S0896-6273(00)80413-4. [DOI] [PubMed] [Google Scholar]
- 31.Colamarino S. A., Tessier-Lavigne M. The axonal chemoattractant netrin-1 is also a chemorepellent for trochlear motor axons. Cell. 1995;81(4):621–629. doi: 10.1016/0092-8674(95)90083-7. [DOI] [PubMed] [Google Scholar]
- 32.Mehlen P., Mazelin L. The dependence receptors DCC and UNC5H as a link between neuronal guidance and survival. Biol. Cell. 2003;95:425–436. doi: 10.1016/S0248-4900(03)00072-8. [DOI] [PubMed] [Google Scholar]
- 33.Cho K. R., Oliner J. D., Simons J. W., Hedrick L., Fearon E. R., Preisinger A. C., et al. The DCC gene: structural analysis and mutations in colorectal carcinomas. Genomics. 1994;19(3):525–531. doi: 10.1006/geno.1994.1102. [DOI] [PubMed] [Google Scholar]
- 34.Vogelstein B., Fearon E. R., Hamilton S. R., Kern S. E., Preisinger A. C., Leppert M., et al. Genetic alterations during colorectal-tumor development. N. Engl. J. Med. 1988;319(9):525–532. doi: 10.1056/NEJM198809013190901. [DOI] [PubMed] [Google Scholar]
- 35.Vogelstein B., Fearon E. R., Kern S. E., Hamilton S. R., Preisinger A. C., Nakamura Y., et al. Allelotype of colorectal carcinomas. Science. 1989;244(4901):207–211. doi: 10.1126/science.2565047. [DOI] [PubMed] [Google Scholar]
- 36.Fearon E. R., Vogelstein B. A genetic model for colorectal tumorigenesis. Cell. 1990;61(5):759–767. doi: 10.1016/0092-8674(90)90186-I. [DOI] [PubMed] [Google Scholar]
- 37.Mehlen P. and Fearon E. R. Role of the dependence receptor DCC in colorectal cancer pathogenesis. J. Clin. Oncology, in press. [DOI] [PubMed]
- 38.Sato K., Tamura G., Tsuchiya T., Endoh Y., Usuba O., Kimura W., et al. Frequent loss of expression without sequence mutations of the DCC gene in primary gastric cancer. Br. J. Cancer. 2001;85(2):199–203. doi: 10.1054/bjoc.2001.1888. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 39.Fearon E. R. DCC: is there a connection between tumorigenesis and cell guidance molecules? Biochim. Biophys. Acta. 1996;1288(2):M17–23. doi: 10.1016/0304-419x(96)00023-6. [DOI] [PubMed] [Google Scholar]
- 40.Shibata D., Reale M. A., Lavin P., Silverman M., Fearon E. R., Steele G. J., et al. The DCC protein and prognosis in colorectal cancer. N. Engl. J. Med. 1996;335(23):1727–1732. doi: 10.1056/NEJM199612053352303. [DOI] [PubMed] [Google Scholar]
- 41.Sun X. F., Rutten S., Zhang H., Nordenskjold B. Expression of the deleted in colorectal cancer gene is related to prognosis in DNA diploid and low proliferative colorectal adenocarcinoma. J. Clin. Oncol. 1999;17(6):1745–1750. doi: 10.1200/JCO.1999.17.6.1745. [DOI] [PubMed] [Google Scholar]
- 42.Klingelhutz A. J., Smith P. P., Garrett L. R., McDougall J. K. Alteration of the DCC tumor-suppressor gene in tumorigenic HPV 18 immortalized human keratinocytes transformed by nitrosomethylurea. Oncogene. 1993;8(1):95–99. [PubMed] [Google Scholar]
- 43.Velcich A., Corner G., Palumbo L., Augenlicht L. Altered phenotype of HT29 colonic adenocarcinoma cells following expression of the DCC gene. Oncogene. 1999;18(16):2599–606. doi: 10.1038/sj.onc.1202610. [DOI] [PubMed] [Google Scholar]
- 44.Riggins G. J., Thiagalingam S., Rozenblum E., Weinstein C. L., Kern S. E., Hamilton S. R., et al. Mad-related genes in the human. Nat. Genet. 1996;13(3):347–349. doi: 10.1038/ng0796-347. [DOI] [PubMed] [Google Scholar]
- 45.Thiagalingam S., Lengauer C., Leach E. S., Schutte M., Hahn S. A., Overhauser J., et al. Evaluation of candidate tumour suppressor genes on chromosome 18 in colorectal cancers. Nat. Genet. 1996;13(3):343–346. doi: 10.1038/ng0796-343. [DOI] [PubMed] [Google Scholar]
- 46.Fazeli A., Dickinson S. L., Hermiston M. L., Tighe R. V., Steen R. G., Small C. G., et al. Phenotype of mice lacking functional Deleted in colorectal cancer (Dcc) gene. Nature. 1997;386(6627):796–804. doi: 10.1038/386796a0. [DOI] [PubMed] [Google Scholar]
- 47.Chen Y. Q., Hsieh J. T., Yao F., Fang B., Pong R. C., Cipriano S. C., et al. Induction of apoptosis and G2/M cell cycle arrest by DCC. Oncogene. 1999;18(17):2747–2754. doi: 10.1038/sj.onc.1202629. [DOI] [PubMed] [Google Scholar]
- 48.Forcet C., Ye X., Granger L., Corset V., Shin H., Bredesen D. E., et al. The dependence receptor DCC (deleted in colorectal cancer) defines an alternative mechanism for caspase activation. Proc. Natl. Acad. Sci. USA. 2001;98(6):3416–3421. doi: 10.1073/pnas.051378298. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 49.Liu J., Yao F., Wu R., Morgan M., Thorburn A., Finley R. L. J., et al. Mediation of the DCC apoptotic signal by DIP13 alpha. J. Biol. Chem. 2002;277(29):26281–26285. doi: 10.1074/jbc.M204679200. [DOI] [PubMed] [Google Scholar]
- 50.Hedgecock E. M., Culotti J. G., Hall D. H. The unc-5, unc-6 and unc-40 genes guide circumferential migrations of pioneer axons and mesodermal cells on the epidermis in C. elegans. Neuron. 1990;4(1):61–85. doi: 10.1016/0896-6273(90)90444-K. [DOI] [PubMed] [Google Scholar]
- 51.Chan S. S., Zheng H., Su M. W., Wilk R., Killeen M. T., Hedgecock E. M., et al. UNC-40, a C. elegans homolog of DCC (Deleted in Colorectal Cancer), is required in motile cells responding to UNC-6 netrin cues. Cell. 1996;87(2):187–195. doi: 10.1016/S0092-8674(00)81337-9. [DOI] [PubMed] [Google Scholar]
- 52.Leonardo E. D., Hinck L., Masu M., Keino-Masu K., Ackerman S. L., Tessier-Lavigne M. Vertebrate homologues of C. elegans UNC-5 are candidate netrin receptors. Nature. 1997;386(6627):833–838. doi: 10.1038/386833a0. [DOI] [PubMed] [Google Scholar]
- 53.Hong K., Hinck L., Nishiyama M., Poo M. M., Tessier-Lavigne M., Stein E. A ligand-gated association between cytoplasmic domains of UNC5 and DCC family receptors converts netrin-induced growth cone attraction to repulsion. Cell. 1999;97(7):927–941. doi: 10.1016/S0092-8674(00)80804-1. [DOI] [PubMed] [Google Scholar]
- 54.Tanikawa C., Matsuda K., Fukuda S., Nakamura Y., Arakawa H. p53RDL1 regulates p53-dependent apoptosis. Nat. Cell Biol. 2003;5(3):216–223. doi: 10.1038/ncb943. [DOI] [PubMed] [Google Scholar]
- 55.Takahashi M., Cooper G. M. ret transforming gene encodes a fusion protein homologous to tyrosine kinases. Mol. Cell. Biol. 1987;7(4):1378–1385. doi: 10.1128/MCB.7.4.1378. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 56.Takeichi M. Cadherin cell adhesion receptors as a morphogenetic regulator. Science. 1991;251(5000):1451–1455. doi: 10.1126/science.2006419. [DOI] [PubMed] [Google Scholar]
- 57.Manic S., Santoro M., Fusco A., Billaud M. The RET receptor: function in development and dysfunction in congenital malformation. Trends. Genet. 2001;17(10):580–589. doi: 10.1016/S0168-9525(01)02420-9. [DOI] [PubMed] [Google Scholar]
- 58.Baloh R. H., Tansey M. G., Golden J. P., Creedon D. J., Heuckeroth R. O., Keck C. L., et al. Milbrandt J. TmR2, a novel receptor that mediates neurturin and GDNF signaling through Ret. Neuron. 1997;18(5):793–802. doi: 10.1016/S0896-6273(00)80318-9. [DOI] [PubMed] [Google Scholar]
- 59.Schuchardt A., D'Agati V., Larsson-Blomberg L., Costantini F., Pachnis V. Defects in the kidney and enteric nervous system of mice lacking the tyrosine kinase receptor Ret. Nature. 1994;367(6461):380–383. doi: 10.1038/367380a0. [DOI] [PubMed] [Google Scholar]
- 60.Sanchez M. P., Silos-Santiago I., Frisen J., He B., Lira S. A., Barbacid M. Renal agenesis and the absence of enteric neurons in mice lacking GDNF. Nature. 1996;382(6586):70–73. doi: 10.1038/382070a0. [DOI] [PubMed] [Google Scholar]
- 61.Cacalano G., Farinas I., Wang L. C., Hagler K., Forgie A., Moore M., et al. GFRalphal is an essential receptor component for GDNF in the developing nervous system and kidney. Neuron. 1998;21(1):53–62. doi: 10.1016/S0896-6273(00)80514-0. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 62.Mulligan L. M., Kwok J. B., Healey C. S., Elsdon M. J., Eng C., Gardner E., et al. Germ-line mutations of the RET proto-oncogene in multiple endocrine neoplasia type 2A. Nature. 1993;363(6428):458–460. doi: 10.1038/363458a0. [DOI] [PubMed] [Google Scholar]
- 63.Romeo G., Ronchetto P., Luo Y., Barone V., Seri M., Ceccherini I., et al. Point mutations affecting the tyrosine kinase domain of the RET proto-oncogene in Hirschsprung's disease. Nature. 1994;367(6461):377–378. doi: 10.1038/367377a0. [DOI] [PubMed] [Google Scholar]
- 64.Pasini B., Ceccherini I., Romeo G. RET mutations in human disease. Trends Genet. 1996;12(4):138–144. doi: 10.1016/0168-9525(96)10012-3. [DOI] [PubMed] [Google Scholar]
- 65.Stupack D. G., Cheresh D. A. Get a ligand, get a life: integrins, signaling and cell survival. J. Cell Sci. 2002;115:3729–3738. doi: 10.1242/jcs.00071. [DOI] [PubMed] [Google Scholar]
- 66.Hood J. D., Cheresh D. A. Role of integrins in cell invasion and migration. Nat. Rev. Cancer. 2002;2(2):91–100. doi: 10.1038/nrc727. [DOI] [PubMed] [Google Scholar]
- 67.Jessell T. M. Neuronal specification in the spinal cord: inductive signals and transcriptional codes. Nat. Rev. Genet. 2000;1(1):20–29. doi: 10.1038/35049541. [DOI] [PubMed] [Google Scholar]
- 68.Murone M., Rosenthal A., de Sauvage E. J. Sonic hedgehog signaling by the patched-smoothened receptor complex. Curr. Biol. 1999;9(2):76–84. doi: 10.1016/S0960-9822(99)80018-9. [DOI] [PubMed] [Google Scholar]
- 69.Ingham P. W., McMahon A. P. Hedgehog signaling in animal development: paradigms and principles. Genes Dev. 2001;15(23):3059–3087. doi: 10.1101/gad.938601. [DOI] [PubMed] [Google Scholar]
- 70.Marigo V., Davey R. A., Zuo Y., Cunningham J. M., Tabin C. J. Biochemical evidence that patched is the Hedgehog receptor. Nature. 1996;384(6605):176–179. doi: 10.1038/384176a0. [DOI] [PubMed] [Google Scholar]
- 71.Stone D. M., Hynes M., Armanini M., Swanson T. A., Gu Q., Johnson R. L., et al. The tumour-suppressor gene patched encodes a candidate receptor for Sonic hedgehog. Nature. 1996;384(6605):129–134. doi: 10.1038/384129a0. [DOI] [PubMed] [Google Scholar]
- 72.Taipale J., Cooper M. K., Maiti T., Beachy P. A. Patched acts catalytically to suppress the activity of Smoothened. Nature. 2002;418(6900):892–897. doi: 10.1038/nature00989. [DOI] [PubMed] [Google Scholar]
- 73.Charrier J. B., Teillet M. A., Lapointe F., Le Douarin N. M. Defining subregions of Hensen's node essential for caudalward movement, midline development and cell survival. Development. 1999;126(21):4771–4783. doi: 10.1242/dev.126.21.4771. [DOI] [PubMed] [Google Scholar]
- 74.Charrier J. B., Lapointe F., Le Douarin N. M., Teillet M. A. Anti-Aopotic role of Sonic hedgehog protein at the early stages of nervous system organogenesis. Development. 2001;128(20):4011–4020. doi: 10.1242/dev.128.20.4011. [DOI] [PubMed] [Google Scholar]
- 75.Wicking C., McGlinn E. The role of hedgehog signalling in tumorigenesis. Cancer Lett. 2001;173(1):1–7. doi: 10.1016/S0304-3835(01)00676-0. [DOI] [PubMed] [Google Scholar]
- 76.Lee D. K., Chang C. Molecular communication between androgen receptor and general transcription machinery. J. Steroid Biochem. Mol. Biol. 2003;84(1):41–49. doi: 10.1016/S0960-0760(03)00005-0. [DOI] [PubMed] [Google Scholar]
- 77.Clark P. E., Irvine R. A., Coetzee G. A. The androgen receptor CAG repeat and prostate cancer risk. Methods Mol. Med. 2003;81:255–266. doi: 10.1385/1-59259-372-0:255. [DOI] [PubMed] [Google Scholar]
- 78.La Spada A. R., Wilson E. M., Lubahn D. B., Harding A. E., Fischbeck K. H. Androgen receptor gene mutations in X-linked spinal and bulbar muscular atrophy. Nature. 1991;352(6330):77–79. doi: 10.1038/352077a0. [DOI] [PubMed] [Google Scholar]
- 79.Fischbeck K. H. Kennedy disease. J. Inherit. Metab. Dis. 1997;20(2):152–158. doi: 10.1023/A:1005344403603. [DOI] [PubMed] [Google Scholar]
- 80.Zupan A. A., Johnson E. M. J. Evidence for endocytosis-dependent proteolysis in the generation of soluble truncated nerve growth factor receptors by A875 human melanoma cells. J. Biol. Chem. 1991;266(23):15384–15390. [PubMed] [Google Scholar]
- 81.Kanning K. C., Hudson M., Amieux P. S., Wiley J. C., Bothwell M., Schecterson L. C. Proteolytic processing of the p75 neurotrophin receptor and two homologs generates C-terminal fragments with signaling capability. J. Neurosci. 2003;23(13):5425–5436. doi: 10.1523/JNEUROSCI.23-13-05425.2003. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 82.Hofinann K., Tschopp J. The death domain motif found in Fas (Apo-1) and TNT receptor is present in proteins involved in apoptosis and axonal guidance. FEBS Lett. 1995;371(3):321–323. doi: 10.1016/0014-5793(95)00931-X. [DOI] [PubMed] [Google Scholar]
- 83.Rabizadeh S., Ye X., Sperandio S., Wang J. J., Ellerby H. M., Ellerby L. M., et al. Neurotrophin dependence domain: a domain required for the mediation of apoptosis by the p75 neurotrophin receptor. J. Mol. Neurosci. 2000;15(3):215–229. doi: 10.1385/JMN:15:3:215. [DOI] [PubMed] [Google Scholar]
- 84.Coulson E. J., Reid K., Baca M., Shipham K. A., Hulett S. M., Kilpatrick T. J., et al. Chopper, a new death domain of the p75 neurotrophin receptor that mediates rapid neuronal cell death. J. Biol. Chem. 2000;275(39):30537–30545. doi: 10.1074/jbc.M005214200. [DOI] [PubMed] [Google Scholar]
- 85.Williams M. E., Strickland P., Watanabe K., Hinck L. J. Biol. Chem. 2003. UNC5H1 induces apoptosis via its juxtamembrane domain through an interaction with NRAGE. [DOI] [PubMed] [Google Scholar]
- 86.Salehi A. H., Roux P. P., Kubu C. J., Zeindler C., Bhakar A., Tannis L. L., et al. NRAGE, a novel MAGE protein, interacts with the p75 neurotrophin receptor and facilitates nerve growth factor-dependent apoptosis. Neuron. 2000;27(2):279–288. doi: 10.1016/S0896-6273(00)00036-2. [DOI] [PubMed] [Google Scholar]
- 87.Wang J. J., Rabizadeh S., Tasinato A., Sperandio S., Ye X., Green M., et al. Dimerization-dependent block of the proapoptotic effect of p75(NTR) J. Neurosci. Res. 2000;60(5):587–593. doi: 10.1002/(SICI)1097-4547(20000601)60:5<587::AID-JNR3>3.0.CO;2-1. [DOI] [PubMed] [Google Scholar]
- 88.Stein E., Zou Y., Poo M., Tessier-Lavigne M. Binding of DCC by netrin-1 to mediate axon guidance independent of adenosine A2B receptor activation. Science. 2001;291(5510):1976–1982. doi: 10.1126/science.1059391. [DOI] [PubMed] [Google Scholar]
- 89.Salvesen G. S., Dixit V. M. Caspases: intracellular signaling by proteolysis. Cell. 1997;91(4):443–446. doi: 10.1016/S0092-8674(00)80430-4. [DOI] [PubMed] [Google Scholar]
- 90.Yang X., Chang H. Y., Baltimore D. Autoproteolytic activation of pro-caspases by oligomerization. Mol. Cell. 1998;1(2):319–325. doi: 10.1016/S1097-2765(00)80032-5. [DOI] [PubMed] [Google Scholar]
- 91.Salvesen G. S., Duckett C. S. IAP proteins: blocking the road to death's door. Nat. Rev. Mol. Cell. Biol. 2002;3(6):401–410. doi: 10.1038/nrm830. [DOI] [PubMed] [Google Scholar]
- 92.Fernando P., Kelly J. F., Balazsi K., Slack R. S., Megeney L. A. Caspase 3 activity is required for skeletal muscle differentiation. Proc. Natl. Acad. Sci. USA. 2002;99(17):11025–11030. doi: 10.1073/pnas.162172899. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 93.Campbell D. S., Holt C. E. Apoptotic pathway and MAPKs differentially regulate chemotropic responses of retinal growth cones. Neuron. 2003;37(6):939–952. doi: 10.1016/S0896-6273(03)00158-2. [DOI] [PubMed] [Google Scholar]
- 94.Keino-Masu K., Masu M., Hinck L., Leonardo E. D., Chan S. S., Culotti J. G., et al. Deleted in Colorectal Cancer (DCC) encodes a netrin receptor. Cell. 1996;87(2):175–185. doi: 10.1016/S0092-8674(00)81336-7. [DOI] [PubMed] [Google Scholar]
- 95.Bloch-Gallego E., Ezan F., Tessier-Lavigne M., Sotelo C. Floor plate and netrin-1 are involved in the migration and survival of inferior olivary neurons. J. Neurosci. 1999;19(11):4407–4420. doi: 10.1523/JNEUROSCI.19-11-04407.1999. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 96.Yee K. T., Simon H. H., Tessier-Lavigne M., O'Leary D. M. Extension of long leading processes and neuronal migration in the mammalian brain directed by the chemoattractant netrin-1. Neuron. 1999;24(3):607–622. doi: 10.1016/S0896-6273(00)81116-2. [DOI] [PubMed] [Google Scholar]
- 97.Jiang Y., Min-tsai L., Gershon M. D. Netrins and DCC in the guidance of migrating neural Crest-Derived Cells in the developing bowel and pancreas. Dev. Biol. 2003;258:364–384. doi: 10.1016/S0012-1606(03)00136-2. [DOI] [PubMed] [Google Scholar]
- 98.Pelet A., Geneste O., Edery P., Pasini A., Chappuis S., Atti T., et al. Various mechanisms cause RET mediated signaling defects in Hirschsprung's disease. J. Clin. Invest. 1998;101(6):1415–1423. doi: 10.1172/JCI375. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 99.Charron F., Stein E., Jeong J., McMahon A. P., Tessier-Lavigne M. The morphogen Sonic Hedgehog is an axonal chemoattractant that collaborates with netrin-1 in midline axon guidance. Cell. 2003;113(1):11–23. doi: 10.1016/S0092-8674(03)00199-5. [DOI] [PubMed] [Google Scholar]
- 100.Wang K. C., Kim J. A., Sivasankaran R., Segal R., He Z. P75 interacts with the Nogo receptor as a co-receptor for Nogo, MAG and OMgp. Nature. 2002;420(6911):74–78. doi: 10.1038/nature01176. [DOI] [PubMed] [Google Scholar]
- 101.Hopker V. H., Shewan D., Tessier-Lavigne M., Poo M., Holt C. Growth-cone attraction to netrin-1 is converted to repulsion by laminin-1. Nature. 1999;401(6748):69–73. doi: 10.1038/43441. [DOI] [PubMed] [Google Scholar]
- 102.Pasterkamp R. J., Peschon J. J., Spriggs M. K., Kolodkin A. L. Semaphorin 7A promotes axon outgrowth through integrins and MAPKs. Nature. 2003;424(6947):398–405. doi: 10.1038/nature01790. [DOI] [PubMed] [Google Scholar]
- 103.Giovannucci E., Stampfer M. J., Krithivas K., Brown M., Dahl D., Brufsky A., et al. The CAG repeat within the androgen receptor gene and its relationship to prostate cancer. Proc. Natl. Acad. Sci. USA. 1997;94(7):3320–3323. doi: 10.1073/pnas.94.7.3320. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 104.Pflug B. R., Onoda M., Lynch J. H., Djakiew D. Reduced expression of the low affinity nerve growth factor receptor in benign and malignant human prostate tissue and loss of expression in four human metastatic prostate tumor cell lines. Cancer Res. 1992;52(19):5403–5406. [PubMed] [Google Scholar]
- 105.Ookawa K., Sakamoto M., Hirohashi S., Yoshida Y., Sugimura T., Terada M., et al. Concordant p53 and DCC alterations and allelic losses on chromosomes 13q and 14q associated with liver metastases of colorectal carcinoma. Int. J. Cancer. 1993;53(3):382–387. doi: 10.1002/ijc.2910530307. [DOI] [PubMed] [Google Scholar]
- 106.Koike C., Mizutani T., Ito T., Shimizu Y., Yamamichi N., Kameda T., et al. Introduction of wild-type patched gene suppresses the oncogenic potential of human squamous cell carcinoma cell lines including A431. Oncogene. 2002;21(17):2670–2678. doi: 10.1038/sj.onc.1205370. [DOI] [PubMed] [Google Scholar]
- 107.Oro A. E., Higgins K. M., Hu Z., Bonifas J. M., Epstein E. H. J., Scott M. P. Basal cell carcinomas in mice overexpressing sonic hedgehog. Science. 1997;276(5313):817–821. doi: 10.1126/science.276.5313.817. [DOI] [PubMed] [Google Scholar]
