Abstract
1. RNA interference (RNAi) is a multicomponent machinery that operates in a sequence-specific manner to repress the expression of genes in most eukaryotic cells.
2. Here we wanted to investigate in a murine neuroblastoma cell line (NBP2) (a) if replacement of the loop of the short hairpin RNA (shRNA) with a hammerhead ribozyme (shRNA.RZ) or an antisense oligonucleotide (shRNA.AS) would affect the efficacy of gene suppression, and (b) if activation or inhibition of signaling pathways would enhance the efficacy of shRNA, shRNA.RZ, and shRNA.AS complex in gene silencing.
3. We used U6-driven expression of these shRNAs to target either a short-lived green fluorescent protein (d2EGFP) or an endogenous cyclophilin A (CyP-A) gene in a d2EGFP expressing NBP2 cell line (NBP2-PN25).
4. Activation of the cAMP signaling pathway or inhibition of phosphatidylinositol 3-kinase (PI3K) enhanced the efficacy of shRNA and shRNA.RZ complex in reducing the expression of d2EGFP shRNA.RZ complex was as efficacious as shRNA in reducing the expression of d2EGFP and CyP-A shRNA.AS complex showed a slightly lower efficacy than shRNA alone in decreasing d2EGFP expression. In contrast, the U6-driven hammerhead ribozyme targeted to d2EGFP showed no gene silencing activity.
5. This report describes novel strategies of modifying shRNA and altering signaling pathways to affect siRNA-mediated gene silencing in a neuronal cell line.
Keywords: RNAi, shRNA, hammerhead ribozyme, antisense, cAMP, PI3K, d2EGFP, cyclophilin A, U6 promoter
References
- Barton, G. M., and Medzhitov, R. (2002). Retroviral delivery of small interfering RNA into primary cells. Proc. Natl. Acad. Sci. U.S.A.99(23):14943–14945. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Brummelkamp, T. R., Bernards, R., and Agami, R. (2002). A system for stable expression of short interfering RNAs in mammalian cells . Science296(5567):550–553 [DOI] [PubMed] [Google Scholar]
- Denli, A. M., and Hannon, G. J. (2003). RNAi: An ever-growing puzzle. Trends Biochem. Sci.28(4):196–201 [DOI] [PubMed] [Google Scholar]
- Dykxhoorn, D. M., Novina, C. D., and Sharp, P. A. (2003). Killing the messenger: Short RNAs that silence gene expression. Nat. Rev. Mol. Cell Biol.4(6):457–467 [DOI] [PubMed] [Google Scholar]
- Elbashir, S. M., Lendeckel, W., and Tuschl, T. (2001). RNA interference is mediated by 21- and 22-nucleotide RNAs. Genes Dev.15(2):188–200 [DOI] [PMC free article] [PubMed] [Google Scholar]
- Erickson, R. P. (1999). Antisense transgenics in animals. Methods18(3):304–310 [DOI] [PubMed] [Google Scholar]
- Fire, A., Xu, S., Montgomery, M. K., Kostas, S. A., Driver, S. E., and Mello, C. C. (1998). Potent and specific genetic interference by double-stranded RNA in Caenorhabditis elegansNature391(6669):806–811 [DOI] [PubMed] [Google Scholar]
- Hannon, G. J. (2002). RNA interference. Nature418(6894):244–251 [DOI] [PubMed] [Google Scholar]
- Katoh, T., Susa, M., Suzuki, T., Umeda, N., Watanabe, K., and Suzuki, T. (2003). Simple and rapid synthesis of siRNA derived from in vitro transcribed shRNA. Nucleic Acids Res. Suppl. (3):249–250 [DOI] [PubMed]
- Kurreck, J. (2003). Antisense technologies. Improvement through novel chemical modifications. Eur. J. Biochem.270(8):1628–1644 [DOI] [PubMed] [Google Scholar]
- Ma, D. D, Rede, T., Naqvi, N. A., and Cook, P. D. (2000). Synthetic oligonucleotides as therapeutics: The coming of age. Biotechnol. Annu. Rev.5:155–196 [DOI] [PubMed] [Google Scholar]
- Nahreini, P., Andreatta, C., and Prasad, K. N. (2001a). Proteasome activity is critical for the cAMP-induced differentiation of neuroblastoma cells. Cell Mol. Neurobiol.21(5):509–521 [DOI] [PMC free article] [PubMed] [Google Scholar]
- Nahreini, P., Hovland, A. R., Kumar, B., Andreatta, C., Edwards-Prasad, J., and Prasad, K. N. (2001b). Effects of altered cyclophilin A expression on growth and differentiation of human and mouse neuronal cells. Cell Mol. Neurobiol.21(1):65–79 [DOI] [PMC free article] [PubMed] [Google Scholar]
- Paddison, P. J., Caudy, A. A., Bernstein, E., Hannon, G. J., and Conklin, D. S. (2002). Short hairpin RNAs (shRNAs) induce sequence-specific silencing in mammalian cells. Genes Dev.16(8):948–958 [DOI] [PMC free article] [PubMed] [Google Scholar]
- Pfaffl, M. W., Horgan, G. W., and Dempfle, L. (2002). Related Articles, Links Relative expression software tool (REST) for group-wise comparison and statistical analysis of relative expression results in real-time PCR. Nucleic Acids Res.30(9):e36 [DOI] [PMC free article] [PubMed] [Google Scholar]
- Puerta-Fernandez, E., Romero-Lopez, C., Barroso-delJesus, A., and Berzal-Herranz, A. (2003). Ribozymes: Recent advances in the development of RNA tools. FEMS Microbiol. Rev.27(1):75–97 [DOI] [PubMed] [Google Scholar]
- Rossi, J. J. (1995). Controlled, targeted, intracellular expression of ribozymes: Progress and problems. Trends Biotechnol13(8):301–306 [DOI] [PubMed] [Google Scholar]
- Stewart, S. A., Dykxhoorn, D. M., Palliser, D., Mizuno, H., Yu, E. Y., An, D. S, Sabatini, D. M., Chen, I. S., Hahn, W. C., Sharp, P. A., Weinberg, R. A., and Novina, C. D. (2003). Lentivirus-delivered stable gene silencing by RNAi in primary cells. RNA9(4):493–501 [DOI] [PMC free article] [PubMed] [Google Scholar]
- Sui, G., Soohoo, C., Affar, el B., Gay, F., Shi, Y., Forrester, W. C., and Shi, Y. A. (2002). DNA vector-based RNAi technology to suppress gene expression in mammalian cells. Proc. Natl. Acad. Sci. U.S.A.99(8):5515–5520 [DOI] [PMC free article] [PubMed] [Google Scholar]