Abstract
1. Synchronized spontaneous intracellular Ca2+ spikes in networked neurons are believed to play a major role in the development and plasticity of neural circuits. Glutamate-induced signals through the ionotropic glutamate receptors (iGluRs) are profoundly involved in the generation of synchronized Ca2+ spikes.
1 2. In this study, we examined the involvement of metabotropic glutamate receptors (mGluRs) in cultured mouse cortical neurons. We pharmacologically revealed that glutamate-induced signals through inclusive mGluRs decreased the frequency of Ca2+ spikes. Further experiments indicated that this suppressive effect on the spike frequency was mainly due to the signal through group II mGluR, inactivation of adenylate cyclase-cAMP-PKA signaling pathway. Group I mGluR had little involvement in the spike frequency.
3. Taken together, glutamate generates the synchronized Ca2+ spikes through iGluRs and modulates simultaneously their frequency through group II mGluR–adenylate cyclase–cAMP–PKA signaling pathway in the present in vitro neural network. These results provide the evidence of the profound role of group II mGluR in the spontaneous and synchronous neural activities.
Keywords: mGluRs, PKA, synaptic transmission, Ca2+ imaging, synchronized Ca2+ spikes
References
- Aguirre, J. A., Andbjer, B., Gonzalez-Baron, S., Hansson, A., Stromberg, I., Agnati, L. F., and Fuxe, K. (2001). Group I mGluR antagonist AIDA protects nigral DA cells from MPTP-induced injury. Neuroreport12:2615–2617. [DOI] [PubMed] [Google Scholar]
- Akasu, T., and Tokimasa, T. (1989). Potassium currents in submucous neurones of guinea-pig caecum and their synaptic modification. J. Physiol. (Lond.)416:571–588. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Bacci, A., Verderio, C., Pravettoni, E., and Matteoli, M. (1999). Synaptic and intrinsic mechanisms shape synchronous oscillations in hippocampal neurons in culture. Eur. J. Neurosci.11:389–397. [DOI] [PubMed] [Google Scholar]
- Courtney, M. J., Lambert, J. J., and Nicholls, D. G. (1990). The interactions between plasma membrane depolarization and glutamate receptor activation in the regulation of cytoplasmic free calcium in cultured cerebellar granule cells. J. Neurosci.10:3873–3879. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Garaschuk, O., Hanse, E., and Konnerth, A. (1998). Developmental profile and synaptic origin of early network oscillations in the CA1 region of rat neonatal hippocampus. J. Physiol. (Lond.)507:219–236. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Gray, C. M., Konig, P., Engel, A. K., and Singer, W. (1989). Oscillatory responses in cat visual cortex exhibit inter-columnar synchronization which reflects global stimulus properties. Nature338:334–337. [DOI] [PubMed] [Google Scholar]
- Guiramand, J., Vignes, M., and Recasens, M. (1991). A specific transduction mechanism for the glutamate action on phosphoinositide metabolism via the quisqualate metabotropic receptor in rat brain synaptoneurosomes: II. Calcium dependency, cadmium inhibition. J. Neurochem.57:1501–1509. [DOI] [PubMed] [Google Scholar]
- Ichikawa, M., Muramoto, K., Kobayashi, K., Kawahara, M., and Kuroda, Y. (1993). Formation and maturation of synapses in primary cultures of rat cerebral cortical cells: An electron microscopic study. Neurosci. Res. Suppl.16:95–103. [DOI] [PubMed] [Google Scholar]
- Jensen, A. M., and Chiu, S. Y. (1990). Fluorescence measurement of changes in intracellular calcium induced by excitatory amino acids in cultured cortical astrocytes. J. Neurosci.10:1165–1175. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kalda, A., Kaasik, A., Vassiljev, V., Pokk, P., and Zharkovsky, A. (2000). Neuroprotective action of group I metabotropic glutamate receptor agonists against oxygen–glucose deprivation-induced neuronal death. Brain Res.853:370–373. [DOI] [PubMed] [Google Scholar]
- Knopfel, T., and Grandes, P. (2002). Metabotropic glutamate receptors in the cerebellum with a focus on their function in Purkinje cells. Cerebellum1:19–26. [DOI] [PubMed] [Google Scholar]
- Kuroda, Y., Ichikawa, M., Muramoto, K., Kobayashi, K., Matsuda, Y., Ogura, A., and Kudo, Y. (1992). Block of synapse formation between cerebral cortical neurons by a protein kinase inhibitor. Neurosci. Lett.135:255–258. [DOI] [PubMed] [Google Scholar]
- Llano, I., Dreessen, J., Kano, M., and Konnerth, A. (1991). Intradendritic release of calcium induced by glutamate in cerebellar Purkinje cells. Neuron7:577–583. [DOI] [PubMed] [Google Scholar]
- Maj, M., Bruno, V., Dragic, Z., Yamamoto, R., Battaglia, G., Inderbitzin, W., Stoehr, N., Stein, T., Gasparini, F., Vranesic, I., Kuhn, R., Nicoletti, F., and Flor, P. J. (2003). (–)-PHCCC, a positive allosteric modulator of mGluR4: Characterization, mechanism of action, and neuroprotection. Neuropharmacology45:895–906. [DOI] [PubMed] [Google Scholar]
- Manahan-Vaughan, D. (1997). Group 1 and 2 metabotropic glutamate receptors play differential roles in hippocampal long-term depression and long-term potentiation in freely moving rats. J. Neurosci.17:3303–3311. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Mao, L., and Wang, J. Q. (2001a). Upregulation of preprodynorphin and preproenkephalin mRNA expression by selective activation of group I metabotropic glutamate receptors in characterized primary cultures of rat striatal neurons. Brain Res. Mol. Brain86:125–137. [DOI] [PubMed] [Google Scholar]
- Mao, L., and Wang, J. Q. (2001b). Selective activation of group I metabotropic glutamate receptors upregulates preprodynorphin, substance P, and preproenkephalin mRNA expression in rat dorsal striatum. Synapse39:82–94. [DOI] [PubMed] [Google Scholar]
- Marti, M., Paganini, F., Stocchi, S., Bianchi, C., Beani, L., and Morari, M. (2001). Presynaptic group I and II metabotropic glutamate receptors oppositely modulate striatal acetylcholine release. Eur. J.~Neurosci.14:1181–1184. [DOI] [PubMed] [Google Scholar]
- Meli, E., Picca, R., Attucci, S., Cozzi, A., Peruginelli, F., Moroni, F., and Pellegrini-Giampietro, D. E. (2002). Activation of mGlu1 but not mGlu5 metabotropic glutamate receptors contributes to postischemic neuronal injury in vitro and in vivo. Pharmacol. Biochem. Behav.73:439–446. [DOI] [PubMed] [Google Scholar]
- Nakamura, K., Mikami, A., and Kubota, K. (1992). Oscillatory neuronal activity related to visual short-term memory in monkey temporal pole. Neuroreport3:117–120. [DOI] [PubMed] [Google Scholar]
- Nakanishi, S. (1992). Molecular diversity of glutamate receptors and implications for brain function. Science258:597–603. [DOI] [PubMed] [Google Scholar]
- Numakawa, T., Yamagishi, S., Adachi, N., Matsumoto, T., Yokomaku, D., Yamada, M., and Hatanaka, H. (2002). Brain-derived neurotrophic factor-induced potentiation of Ca(2+) oscillations in developing cortical neurons. J. Biol. Chem.277:6520–6529. [DOI] [PubMed] [Google Scholar]
- Ogura, A., Iijima, T., Amano, T., and Kudo, Y. (1987). Optical monitoring of excitatory synaptic activity between cultured hippocampal neurons by a multi-site Ca2$^{ + }$ fluorometry. Neurosci. Lett.78:69–74. [DOI] [PubMed] [Google Scholar]
- Pin, J. P., and Duvoisin, R. (1995). The metabotropic glutamate receptors: Structure and functions. Neuropharmacology34:1–26. [DOI] [PubMed] [Google Scholar]
- Przewlocki, R., Parsons, K. L., Sweeney, D. D., Trotter, C., Netzeband, J. G., Siggins, G. R., and Gruol, D.~L. (1999). Opioid enhancement of calcium oscillations and burst events involving NMDA receptors and L-type calcium channels in cultured hippocampal neurons. J. Neurosci.19:9705–9715. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Robinson, H. P., Kawahara, M., Jimbo, Y., Torimitsu, K., Kuroda, Y., and Kawana, A. (1993). Periodic synchronized bursting and intracellular calcium transients elicited by low magnesium in cultured cortical neurons. J. Neurophysiol.70:1606–1616. [DOI] [PubMed] [Google Scholar]
- Schoepp, D. D., Jane, D. E., and Monn, J. A. (1999). Pharmacological agents acting at subtypes of metabotropic glutamate receptors. Neuropharmacology38:1431–1476. [DOI] [PubMed] [Google Scholar]
- Schwarz, D. W., Tennigkeit, F., and Puil, E. (2000). Metabotropic transmitter actions in auditory thalamus. Acta Otolaryngol. (Stockh.)120:251–254. [DOI] [PubMed] [Google Scholar]
- Sluka, K. A. (1997). Activation of the cAMP transduction cascade contributes to the mechanical hyperalgesia and allodynia induced by intradermal injection of capsaicin. Br. J. Pharmacol.122:1165–1173. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Suzuki, R., Watanabe, J., Arata, S., Funahashi, H., Kikuyama, S., and Shioda, S. (2003). A transgenic mouse model for the detailed morphological study of astrocytes. Neurosci. Res.47:451–454. [DOI] [PubMed] [Google Scholar]
- Thornton, P. D., and Bornstein, J. C. (2002). Slow excitatory synaptic potentials evoked by distension in myenteric descending interneurones of guinea-pig ileum. J. Physiol. (Lond.)539:589–602. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Verderio, C., Bacci, A., Coco, S., Pravettoni, E., Fumagalli, G., and Matteoli, M. (1999). Astrocytes are required for the oscillatory activity in cultured hippocampal neurons. Eur. J. Neurosci.11:2793–2800. [DOI] [PubMed] [Google Scholar]
- Yasumoto, F., Negishi, T., Ishii, Y., Kyuwa, S., Kuroda, Y., and Yoshikawa, Y. (2004). Endogenous dopamine maintains synchronous oscillation of intracellular calcium in primary cultured-mouse midbrain neurons. Cell. Mol. Neurobiol.24:51–61. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Zhou, S., Komak, S., Du, J., and Carlton, S. M. (2001). Metabotropic glutamate 1alpha receptors on peripheral primary afferent fibers: Their role in nociception. Brain Res.913:18–26. [DOI] [PubMed] [Google Scholar]
