Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1992 Apr 1;283(Pt 1):235–241. doi: 10.1042/bj2830235

Lipid remodelling during epididymal maturation of rat spermatozoa. Enrichment in plasmenylcholines containing long-chain polyenoic fatty acids of the n-9 series.

M I Aveldaño 1, N P Rotstein 1, N T Vermouth 1
PMCID: PMC1131019  PMID: 1567371

Abstract

In their transit from the caput to the cauda segments of the epididymis, rat spermatozoa undergo significant modifications in lipid content and composition. The amount of lipid phosphorus per cell decreases, and most lipid classes show specific changes in their constituent fatty acids. A depletion of phosphatidylcholine and phosphatidylethanolamine, concomitant with a virtually unchanged amount of the corresponding plasmalogens, are the major alterations, plasmenylcholine thereby becoming the major phospholipid. Diphosphatidylglycerol, sphingomyelin and the phosphoinositides decrease to a lesser extent or do not change at all, also resulting in relative increases with sperm maturation. Concerning the fatty acids, the proportions of oleate (C18:1, n-9) and linoleate (C18:2, n-6) in most lipids decrease on movement of sperm from caput to cauda, augmenting in turn the proportions of longer-chain (C20 to C24) and more unsaturated fatty acids. Docosapentaenoate (C22:5, n-6) is a major acyl chain present in all lipids at both stages, but uncommon long-chain polyenoic fatty acids of the n-9 series are also present, being almost exclusively found in the choline glycerophospholipids. These fatty acids are found to undergo the most significant changes during sperm maturation. They are minor components of plasmenylcholine in immature spermatozoa, but increase severalfold on maturation, representing more than half of the acyl chains of this major lipid in cells from the cauda. The high concentration of n-9 polyenes in mature sperm plasmenylcholine raises intriguing questions on the possible role epididymal cells may play in providing spermatozoa with such an unusual phospholipid. These plasmenylcholines could contribute to the characteristic lipid domain organization of the mature spermatozoa plasma membrane.

Full text

PDF
235

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Ackman R. G., Sebedio J. L., Ratnayake W. N. Structure determinations of unsaturated fatty acids by oxidative fission. Methods Enzymol. 1981;72:253–276. doi: 10.1016/s0076-6879(81)72014-7. [DOI] [PubMed] [Google Scholar]
  2. Arvidson G. A. Structural and metabolic heterogeneity of rat liver glycerophosphatides. Eur J Biochem. 1968 May;4(4):478–486. doi: 10.1111/j.1432-1033.1968.tb00237.x. [DOI] [PubMed] [Google Scholar]
  3. Aveldaño M. I. A novel group of very long chain polyenoic fatty acids in dipolyunsaturated phosphatidylcholines from vertebrate retina. J Biol Chem. 1987 Jan 25;262(3):1172–1179. [PubMed] [Google Scholar]
  4. Bearer E. L., Friend D. S. Modifications of anionic-lipid domains preceding membrane fusion in guinea pig sperm. J Cell Biol. 1982 Mar;92(3):604–615. doi: 10.1083/jcb.92.3.604. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Blobel C. P., Myles D. G., Primakoff P., White J. M. Proteolytic processing of a protein involved in sperm-egg fusion correlates with acquisition of fertilization competence. J Cell Biol. 1990 Jul;111(1):69–78. doi: 10.1083/jcb.111.1.69. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Cullis P. R., de Kruijff B. Lipid polymorphism and the functional roles of lipids in biological membranes. Biochim Biophys Acta. 1979 Dec 20;559(4):399–420. doi: 10.1016/0304-4157(79)90012-1. [DOI] [PubMed] [Google Scholar]
  7. DAWSON R. M., SCOTT T. W. PHOSPHOLIPID COMPOSITION OF EPIDIDYMAL SPERMATOZOA PREPARED BY DENSITY GRADIENT CENTRIFUGATION. Nature. 1964 Apr 18;202:292–293. doi: 10.1038/202292a0. [DOI] [PubMed] [Google Scholar]
  8. FOLCH J., LEES M., SLOANE STANLEY G. H. A simple method for the isolation and purification of total lipides from animal tissues. J Biol Chem. 1957 May;226(1):497–509. [PubMed] [Google Scholar]
  9. Hajra A. K., Bishop J. E. Glycerolipid biosynthesis in peroxisomes via the acyl dihydroxyacetone phosphate pathway. Ann N Y Acad Sci. 1982;386:170–182. doi: 10.1111/j.1749-6632.1982.tb21415.x. [DOI] [PubMed] [Google Scholar]
  10. Hamilton D. W., Wenstrom J. C., Baker J. B. Membrane glycoproteins from spermatozoa: partial characterization of an integral Mr = approximately 24,000 molecule from rat spermatozoa that is glycosylated during epididymal maturation. Biol Reprod. 1986 Jun;34(5):925–936. doi: 10.1095/biolreprod34.5.925. [DOI] [PubMed] [Google Scholar]
  11. Han X. L., Gross R. W. Plasmenylcholine and phosphatidylcholine membrane bilayers possess distinct conformational motifs. Biochemistry. 1990 May 22;29(20):4992–4996. doi: 10.1021/bi00472a032. [DOI] [PubMed] [Google Scholar]
  12. Hinkovska V. T., Dimitrov G. P., Koumanov K. S. Phospholipid composition and phospholipid asymmetry of ram spermatozoa plasma membranes. Int J Biochem. 1986;18(12):1115–1121. doi: 10.1016/0020-711x(86)90085-6. [DOI] [PubMed] [Google Scholar]
  13. MORRISON W. R., SMITH L. M. PREPARATION OF FATTY ACID METHYL ESTERS AND DIMETHYLACETALS FROM LIPIDS WITH BORON FLUORIDE--METHANOL. J Lipid Res. 1964 Oct;5:600–608. [PubMed] [Google Scholar]
  14. Neill A. R., Masters C. J. Metabolism of fatty acids by bovine spermatozoa. Biochem J. 1972 Apr;127(2):375–385. doi: 10.1042/bj1270375. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Neill A. R., Masters C. J. Metabolism of fatty acids by bovine spermatozoa. Biochem J. 1972 Apr;127(2):375–385. doi: 10.1042/bj1270375. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Nikolopoulou M., Soucek D. A., Vary J. C. Changes in the lipid content of boar sperm plasma membranes during epididymal maturation. Biochim Biophys Acta. 1985 May 28;815(3):486–498. doi: 10.1016/0005-2736(85)90377-3. [DOI] [PubMed] [Google Scholar]
  17. Nissen H. P., Kreysel H. W. Polyunsaturated fatty acids in relation to sperm motility. Andrologia. 1983 May-Jun;15(3):264–269. doi: 10.1111/j.1439-0272.1983.tb00374.x. [DOI] [PubMed] [Google Scholar]
  18. Olson G. E., Orgebin-Crist M. C. Sperm surface changes during epididymal maturation. Ann N Y Acad Sci. 1982;383:372–392. doi: 10.1111/j.1749-6632.1982.tb23179.x. [DOI] [PubMed] [Google Scholar]
  19. Poulos A., Brown-Woodman P. D., White I. G., Cox R. I. Changes in phospholipids of ram spermatozoa during migration through the epididymis and possible origin of prostaglandin F2alpha in testicular and epididymal fluid. Biochim Biophys Acta. 1975 Apr 18;388(1):12–18. doi: 10.1016/0005-2760(75)90057-0. [DOI] [PubMed] [Google Scholar]
  20. Poulos A., Voglmayr J. K., White I. G. Phospholipid changes in spermatozoa during passage through the genital tract of the bull. Biochim Biophys Acta. 1973 May 24;306(2):194–202. doi: 10.1016/0005-2760(73)90225-7. [DOI] [PubMed] [Google Scholar]
  21. Rotstein N. P., Arias H. R., Barrantes F. J., Aveldaño M. I. Composition of lipids in elasmobranch electric organ and acetylcholine receptor membranes. J Neurochem. 1987 Nov;49(5):1333–1340. doi: 10.1111/j.1471-4159.1987.tb00996.x. [DOI] [PubMed] [Google Scholar]
  22. Rotstein N. P., Ilincheta de Boschero M. G., Giusto N. M., Aveldaño M. I. Effects of aging on the composition and metabolism of docosahexaenoate-containing lipids of retina. Lipids. 1987 Apr;22(4):253–260. doi: 10.1007/BF02533988. [DOI] [PubMed] [Google Scholar]
  23. Rouser G., Fkeischer S., Yamamoto A. Two dimensional then layer chromatographic separation of polar lipids and determination of phospholipids by phosphorus analysis of spots. Lipids. 1970 May;5(5):494–496. doi: 10.1007/BF02531316. [DOI] [PubMed] [Google Scholar]
  24. SCOTT T. W., DAWSON R. M. Phospholipid interrelationships in rat epididymal tissue and spermatozoa. Biochem J. 1963 Jun;87:507–512. doi: 10.1042/bj0870507. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Scott T. W. Lipid metabolism of spermatozoa. J Reprod Fertil Suppl. 1973 Jul;18:65–76. [PubMed] [Google Scholar]
  26. Scott T. W., Voglmayr J. K., Setchell B. P. Lipid composition and metabolism in testicular and ejaculated ram spermatozoa. Biochem J. 1967 Feb;102(2):456–461. doi: 10.1042/bj1020456. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Selivonchick D. P., Schmid P. C., Natarajan V., Schmid H. H. Structure and metabolism of phospholipids in bovine epididymal spermatozoa. Biochim Biophys Acta. 1980 May 28;618(2):242–254. doi: 10.1016/0005-2760(80)90030-2. [DOI] [PubMed] [Google Scholar]
  28. Thakkar J. K., East J., Franson R. C. Modulation of phospholipase A2 activity associated with human sperm membranes by divalent cations and calcium antagonists. Biol Reprod. 1984 Apr;30(3):679–686. doi: 10.1095/biolreprod30.3.679. [DOI] [PubMed] [Google Scholar]
  29. Uma S., Ramakrishnan C. V. Studies on polyphosphoinositides in developing rat brain. J Neurochem. 1983 Apr;40(4):914–916. doi: 10.1111/j.1471-4159.1983.tb08073.x. [DOI] [PubMed] [Google Scholar]
  30. Voglmayr J. K., Sawyer R. F., Jr, Dacheux J. L. Glycoproteins: a variable factor in surface transformation of ram spermatozoa during epididymal transit. Biol Reprod. 1985 Aug;33(1):165–176. doi: 10.1095/biolreprod33.1.165. [DOI] [PubMed] [Google Scholar]
  31. Wolf D. E., Lipscomb A. C., Maynard V. M. Causes of nondiffusing lipid in the plasma membrane of mammalian spermatozoa. Biochemistry. 1988 Feb 9;27(3):860–865. doi: 10.1021/bi00403a004. [DOI] [PubMed] [Google Scholar]
  32. Wolf D. E., Voglmayr J. K. Diffusion and regionalization in membranes of maturing ram spermatozoa. J Cell Biol. 1984 May;98(5):1678–1684. doi: 10.1083/jcb.98.5.1678. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES