Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1992 Apr 1;283(Pt 1):307–311. doi: 10.1042/bj2830307

Developmental aspects of a unique glutathione S-transferase subunit Yx in the liver cytosol from rats with hereditary hyperbilirubinuria. Comparison with rat fetal liver transferase subunit Yfetus.

T Igarashi 1, T Tsuchiya 1, Y Shikata 1, F Sagami 1, O Tagaya 1, T Horie 1, T Satoh 1
PMCID: PMC1131029  PMID: 1567376

Abstract

The unique glutathione S-transferase (GST) subunit Yx, which is undetectable in normal adult rat liver cytosol, was shown to occur in the liver cytosol of rats with hereditary hyperbilirubinuria (EHB). The Yx subunit is a member of the Alpha-class GST subunits, and is immunologically closely related to the Yc subunit. The Yx subunit has an apparent M(r) of 26,400, different from those of Ya (M(r) 25,800), Yb1 and Yb2 (both M(r) 27,200) and Yc (M(r) 28,400). During postnatal development in livers of EHB rats, the Yx subunit concentration in either sex was highest during the first week post partum and declined rapidly with age. Although the concentration of subunit Yx at 8 weeks of age accounted for about 60% in females and 40% in males of that observed in 1-week-old 'neonatal' male EHB rats, concentrations in females thereafter increased gradually to almost the neonatal level and remained at this high level at least up to 37 weeks of age, whereas the concentration in males did not increase again. Thus the post-pubertal Yx subunit concentration was 2-fold higher in females than in males. In contrast, in normal Sprague-Dawley rat liver, the Yfetus subunit, with the same M(r) as the Yx subunit, had the highest concentration in 10-day-old animals, declined rapidly thereafter, and was not detectable in the post-pubertal period. The Yfetus subunit was also immunoreactive with an antibody against GST YcYc. The analysis of GST subunits by reverse-phase h.p.l.c. revealed that the Yx subunit was eluted at a retention time different from other known subunits, but coincided with that of Yfetus. The N-terminal amino acid sequence of the Yx subunit displayed a high degree of sequence similarity to that of the Yfetus subunit. These data suggest that the Yx subunit in EHB rats may be very similar to, if not identical with, the Yfetus subunit.

Full text

PDF
307

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Alin P., Jensson H., Cederlund E., Jörnvall H., Mannervik B. Cytosolic glutathione transferases from rat liver. Primary structure of class alpha glutathione transferase 8-8 and characterization of low-abundance class Mu glutathione transferases. Biochem J. 1989 Jul 15;261(2):531–539. doi: 10.1042/bj2610531. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Alin P., Mannervik B., Jörnvall H. Structural evidence for three different types of glutathione transferase in human tissues. FEBS Lett. 1985 Mar 25;182(2):319–322. doi: 10.1016/0014-5793(85)80324-0. [DOI] [PubMed] [Google Scholar]
  3. Bradford M. M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem. 1976 May 7;72:248–254. doi: 10.1016/0003-2697(76)90527-3. [DOI] [PubMed] [Google Scholar]
  4. Del Boccio G., Di Ilio C., Alin P., Jörnvall H., Mannervik B. Identification of a novel glutathione transferase in human skin homologous with class alpha glutathione transferase 2-2 in the rat. Biochem J. 1987 May 15;244(1):21–25. doi: 10.1042/bj2440021. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Habig W. H., Pabst M. J., Jakoby W. B. Glutathione S-transferases. The first enzymatic step in mercapturic acid formation. J Biol Chem. 1974 Nov 25;249(22):7130–7139. [PubMed] [Google Scholar]
  6. Hales B. F., Neims A. H. Developmental aspects of glutathione S-transferase B (ligandin) in rat liver. Biochem J. 1976 Nov 15;160(2):231–236. doi: 10.1042/bj1600231. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Igarashi T., Muramatsu H., Ohmori S., Ueno K., Kitagawa H., Satoh T. Plasma glutathione S-transferase in carbon tetrachloride treated rats and its association to hepatic cytosolic isozymes. Jpn J Pharmacol. 1988 Mar;46(3):211–216. doi: 10.1254/jjp.46.211. [DOI] [PubMed] [Google Scholar]
  8. Igarashi T., Satoh T., Iwashita K., Ono S., Ueno K., Kitagawa H. Sex difference in subunit composition of hepatic glutathione S-transferase in rats. J Biochem. 1985 Jul;98(1):117–123. doi: 10.1093/oxfordjournals.jbchem.a135249. [DOI] [PubMed] [Google Scholar]
  9. Igarashi T., Tsuchiya T., Satoh T. A specific glutathione S-transferase isozyme occurring in hereditary hyperbilirubinuria rats. J Biochem. 1991 Jan;109(1):3–5. doi: 10.1093/oxfordjournals.jbchem.a123346. [DOI] [PubMed] [Google Scholar]
  10. Ketterer B. Detoxication reactions of glutathione and glutathione transferases. Xenobiotica. 1986 Oct-Nov;16(10-11):957–973. doi: 10.3109/00498258609038976. [DOI] [PubMed] [Google Scholar]
  11. LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
  12. Laemmli U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970 Aug 15;227(5259):680–685. doi: 10.1038/227680a0. [DOI] [PubMed] [Google Scholar]
  13. Mannervik B., Alin P., Guthenberg C., Jensson H., Tahir M. K., Warholm M., Jörnvall H. Identification of three classes of cytosolic glutathione transferase common to several mammalian species: correlation between structural data and enzymatic properties. Proc Natl Acad Sci U S A. 1985 Nov;82(21):7202–7206. doi: 10.1073/pnas.82.21.7202. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Mannervik B., Danielson U. H. Glutathione transferases--structure and catalytic activity. CRC Crit Rev Biochem. 1988;23(3):283–337. doi: 10.3109/10409238809088226. [DOI] [PubMed] [Google Scholar]
  15. McCusker F. M., Boyce S. J., Mantle T. J. The development of glutathione S-transferase subunits in rat liver. Sensitive detection of the major subunit forms of rat glutathione S-transferase by using an e.l.i.s.a. method. Biochem J. 1989 Sep 1;262(2):463–467. doi: 10.1042/bj2620463. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Meyer D. J., Gilmore K. S., Coles B., Dalton K., Hulbert P. B., Ketterer B. Structural distinction of rat GSH transferase subunit 10. Biochem J. 1991 Mar 1;274(Pt 2):619–619. doi: 10.1042/bj2740619a. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Ostlund Farrants A. K., Meyer D. J., Coles B., Southan C., Aitken A., Johnson P. J., Ketterer B. The separation of glutathione transferase subunits by using reverse-phase high-pressure liquid chromatography. Biochem J. 1987 Jul 15;245(2):423–428. doi: 10.1042/bj2450423. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Pickett C. B., Telakowski-Hopkins C. A., Ding G. J., Argenbright L., Lu A. Y. Rat liver glutathione S-transferases. Complete nucleotide sequence of a glutathione S-transferase mRNA and the regulation of the Ya, Yb, and Yc mRNAs by 3-methylcholanthrene and phenobarbital. J Biol Chem. 1984 Apr 25;259(8):5182–5188. [PubMed] [Google Scholar]
  19. Scott T. R., Folb P. I., Kirsch R. E. The identification of a glutathione S-transferase isozyme in fetal rat livers which is absent from adult livers. Biochem Int. 1986 Jul;13(1):65–69. [PubMed] [Google Scholar]
  20. Scott T. R., Kirsch R. E. The isolation of a fetal rat liver glutathione S-transferase isoenzyme with high glutathione peroxidase activity. Biochim Biophys Acta. 1987 Dec 7;926(3):264–269. doi: 10.1016/0304-4165(87)90212-1. [DOI] [PubMed] [Google Scholar]
  21. Spearman M. E., Leibman K. C. Aging selectively alters glutathione S-transferase isozyme concentrations in liver and lung cytosol. Drug Metab Dispos. 1984 Sep-Oct;12(5):661–671. [PubMed] [Google Scholar]
  22. Stocker R., Glazer A. N., Ames B. N. Antioxidant activity of albumin-bound bilirubin. Proc Natl Acad Sci U S A. 1987 Aug;84(16):5918–5922. doi: 10.1073/pnas.84.16.5918. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Stocker R., Yamamoto Y., McDonagh A. F., Glazer A. N., Ames B. N. Bilirubin is an antioxidant of possible physiological importance. Science. 1987 Feb 27;235(4792):1043–1046. doi: 10.1126/science.3029864. [DOI] [PubMed] [Google Scholar]
  24. WITMANS J., SCHALM L., SCHULTE M. J. Some aspects of serum bilirubin determination. Clin Chim Acta. 1961 Jan;6:7–15. doi: 10.1016/0009-8981(61)90028-6. [DOI] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES